\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 74, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/74\hfil Damped wave equations with odd initial data] {$L^p$-$L^q$ estimates for damped wave equations with odd initial data} \author[T. Narazaki\hfil EJDE-2005/74\hfilneg] {Takashi Narazaki} \address{Takashi Narazaki\hfill\break Department of Mathematical Sciences, Tokai University, Hiratsuka 259-1292, Japan} \email{narazaki@ss.u-tokai.ac.jp} \date{} \thanks{Submitted July 5, 2003. Published July 5, 2005.} \thanks{Partially supported by Grand-in-Aid 16540205 from Science Research JSPS} \subjclass[2000]{35B40, 35L05} \keywords{Damped wave equation; $L^p$-$L^q$ estimate; odd initial data} \begin{abstract} We study the Cauchy problem for the damped wave equation. In a previous paper \cite{Narazaki} the author has shown the $L^{p}$-$L^{q}$ estimates between the solutions of the damped wave equation and the solutions of the corresponding heat equation. In this paper, we show new $L^{p}$-$L^{q}$ estimates for the damped wave equation with odd initial data. \end{abstract} \dedicatory{Dedicated to the memory of Professor Tsutomu Arai} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{corollary}{Corollary}[section] \section{Introduction} Consider the Cauchy problem for the damped wave equation \begin{equation} \partial _{t} ^{2} u - \Delta u + 2 a \partial _{t} u = 0, \quad (t, x) \in (0, \infty) \times R ^{n} \label{linear_equation} \end{equation} with initial data \begin{equation} u(0, x ) = \varphi _{0} ( x ), \quad \partial _{t} u(0, x ) = \varphi _{1} (x), \quad x \in R ^{n}, \label{initial_data} \end{equation} where $ a $ is a positive constant, $\partial _{t} = \partial / \partial t$, $\partial _{j} = \partial / \partial x _{j} $ for $j=1, 2, \dots, n$ and $\Delta = \partial _{1} ^{2} + \dots + \partial _{n} ^{2} $ is the Laplace operator in $ R ^{n} $. Here and after we denote $\partial _{x} ^{\alpha} = \partial _{1} ^{\alpha _{1} } \dots \partial _{n} ^{\alpha _{n} }$ and $|\alpha| = \alpha _{1} + \dots + \alpha _{n} $ for a multi-index of non-negative integers $ \alpha = (\alpha _{1} , \dots, \alpha _{n} )$, and $\nabla h = (\partial _{1} h, \dots, \partial _{n} h)$. Several authors have indicated the diffusive structure of problem (\ref{linear_equation})--(\ref{initial_data}) as $ t \to \infty$; see for example \cite{Bellout,Karch,Li,Marcati,Narazaki,Nishihara}. Recently the author has shown the $ L ^{p} $-$L ^{q} $ estimates of the difference between the solution of problem (\ref{linear_equation})--(\ref{initial_data}) and the solution of the corresponding heat equation \begin{equation} 2 a \partial _{t} \phi - \Delta \phi = 0, \quad (t, x) \in (0, \infty) \times R ^{n} \label{heat_equation} \end{equation} with initial data \begin{equation} \phi(0, x ) = \varphi _{0} ( x ) + \varphi _{1}(x)/2a, \quad x \in R ^{n}. \label{heat_initial} \end{equation} We use the standard function spaces $L ^{p} = L ^{p} ( R^{n} )$, $L ^{p} = H ^{0} _{p}$ and $H ^{s} _{p} = H ^{s} _{p} ( R ^{n} ) = ( 1 - \Delta ) ^{-s/2} L ^{p}$ equipped with the norms \[ \| f \| _{ H ^{s} _{p}} \equiv \| f \| _{s, p} \equiv \| \mathcal{ F} ^{-1} ( (1 + | \xi | ^{2} ) ^{s/2} \hat{f} ) | | _{p}, \] where $\| f \| _{p} $ denotes the usual $L ^{p}$-norm. $\mathcal{ F}$ denotes the Fourier transformation: \[ ( \mathcal{F} f ) (\xi) \equiv \widehat{f}(\xi) \equiv \big( \frac{1}{2\pi} \big) ^{n/2} \int _{ R ^{n}} e ^{-i x \cdot \xi} f(x) \, d x, \] $\mathcal{F} ^{-1}$ denotes an inverse of $\mathcal{F} $, and $ * $ denotes the convolution with respect to $ x $; \[ ( f * g )( x ) = \int _{ R ^{n}} f(x-y) g(y) \, dy . \] Let $X_1 \cap \dots \cap X_m$ be the normed space equipped with norm $\| \cdot \|_{X_1 \cap \dots \cap X_m} \equiv \| \cdot \|_{X_1} +\dots+ \| \cdot \|_{X_m} $ for normed spaces $X_1, \dots , X_m$, and let $[ \mu ]$ denote the greatest integer that does not exceed $\mu$. To illustrate the decay profiles of problem (\ref{linear_equation})--(\ref{initial_data}) we set $\varphi_0(x)=\varphi_1(x)=x_1 \dots x_d \exp( -a|x|^2/2)$, where $d \in [0,n]$ is an integer. Let $u$ and $\phi$ be the solutions of problem (\ref{linear_equation})--(\ref{initial_data}) and problem (\ref{heat_equation})--(\ref{heat_initial}), respectively. Since \[ \phi (t, x)=(1+1/2a)(t+1)^{-n/2-d} x _{1} \dots x _{d} \exp \big( -\frac{a |x| ^{2}}{ 2(t+1)} \big), \] it follows that \[ \| \phi(t, \cdot) \|_{p} = C(1+t)^{-n/2(1-1/p)-d/2}, \quad 1 \le p \le \infty, t > 0. \] Hence, Theorems \ref{thm1.1}--\ref{thm1.2} below show that \begin{equation} \widetilde{C}_1 (1+t)^{-n(1-1/p)-d/2} \le \| u(t, \cdot) \|_{p} \le \widetilde{C}_2(1+t)^{-n/2(1-1/p)-d/2} \label{add1} \end{equation} for any $p \in [1,\infty]$ and sufficiently large $t >0$, where $\widetilde{C}_1$ and $\widetilde{C}_2$ are positive constants that depend only on $n$, $d$, $p$ and $a$. When $d=0$, (\ref{add1}) indicates that the optimal decay rate of $L ^{p}$ norm of the solution to (\ref{linear_equation}) is $(1+t)^{-n/2(1-1/p)}$ as $t \to \infty$. When $d \ge 1$, (\ref{add1}) also shows that the solution decays faster than solutions with general initial data. This faster decay seems to be caused by the fact $(\partial/\partial \xi) ^{\alpha} \widehat{ u}(t, 0)=0$ for $|\alpha|0$, and let $b>0$ be constants. Let $v$ be the solution of \eqref{linear_equation} with initial data \[ v ( 0, x) = v _{0} ( x ), \quad \partial _{t} v( 0, x ) = v _{1} ( x ), \quad x \in R ^{n}. \] Let $V$ be the solution of (\ref{heat_equation}) with initial data \[ V(0, x ) = v _{0} ( x ) + v _{1} (x) /2a, \quad x \in R ^{n}. \] Assume that the function $ v _{i} $ is odd with respect to $x'$ and it satisfies \[ P(\cdot) v _{i} \in L ^{q}, \quad \mathop{\rm supp}\widehat{v} _{i} \subset \{ \xi; |\xi| \le b \} \quad (i=0, 1). \] Then, for any $\theta \in [0, 1]$, for a multi-index $\alpha = ( \alpha _{1}, \dots, \alpha _{n})$ and for a non-negative integer $k$, the following estimates holds: \begin{align*} & \| P(\cdot) ^{\theta} \partial _{t} ^{k} \partial _{x} ^{ \alpha} ( v(t, \cdot) - V(t, \cdot) ) | | _{p}\\ & \le C ( 1 + t ) ^{-n \delta(p, q) - |\alpha|/2 - k - (1 - \theta)d/2 - 1 + \epsilon} (\| P(\cdot) v _{0} \| _{q} + \| P(\cdot) v _{1} \| _{q} ) \end{align*} for some constant $C=C(p, q, \epsilon)>0$, where $ \delta(p, q) = 1/2q - 1/2p$. When $ 1 < q < p < \infty$, $p=\infty$ and $ q = 1$ or $p=q=2$, we may take $\epsilon =0 $ in the above estimates. \end{theorem} The decay property of the solution to (\ref{heat_equation}) with odd initial data (Proposition \ref{prop3.1} below, see also \cite{Meier}) shows the following estimates. \begin{corollary} \label{coro1.1} Under the assumptions of Theorem \ref{thm1.1}, \[ \| P(\cdot) ^{\theta} \partial _{t} ^{k} \partial _{x} ^{\alpha} v(t, \cdot) \| _{p} \le C( 1 + t ) ^{-n \delta(p, q) - |\alpha|/2 - k - (1 - \theta)d/2} (\|P(\cdot) v _{0} \| _{q} + \| P(\cdot) v _{1} \| _{q} ). \] \end{corollary} Similar arguments to ones in \cite{Narazaki} give the following estimates. \begin{theorem}[Estimate of high frequency part] \label{thm1.2} Let $1 < q \le p < \infty$ and $\theta=0, 1$. Assume that $P(\cdot) ^{\theta} w _{i} \in L ^{q}$, $\mathop{\rm supp}\widehat{w} _{i} \subset \{ \xi; |\xi| \ge 2a \}$ for $ i=0, 1$. Then the solution $w$ of (\ref{linear_equation}) with initial data \[ w(0,x) = w _{0}( x ), \quad \partial _{t} w ( 0, x) = w _{1} ( x ), \quad x \in R \sp {n} \] satisfies \begin{align*} & \| P(\cdot) ^{\theta} ( w(t, \cdot) - e ^{-at} \mathcal{ F} ^{-1} ( M _{0}( t , \cdot ) \widehat{w} _{0} + M _{1}( t , \cdot ) \widehat{w} _{1} ) ) \| _{p}\\ & \le C(p, q) e ^{-a t}(1 + t) ^{N} ( \| P(\cdot) ^{\theta} w _{0} \| _{q} + \| P(\cdot) ^{\theta} w _{1} \| _{q} ) \end{align*} for some constant $N=N(n) >0$ and $C(p, q)>0$, where \begin{align*} M _{1}( t , \xi ) &= \frac{1}{\sqrt{|\xi| ^{2} - a ^{2}}} \Big( \sin t |\xi| \sum _{0 \le k<(n-1)/4} \frac{(-1) ^{k}}{(2k)!} t ^{2k} \Theta(\xi) ^{2k} \\ &\quad -\cos t|\xi| \sum _{0 \le k< (n-3)/4} \frac{(-1) ^{k}}{(2k+1)!} t ^{2k+1} \Theta(\xi) ^{2k+1} \Big), \\ M _{0}( t, \xi) &= \cos t|\xi| \sum _{0 \le k < (n + 1 )/4} \frac{( - 1) ^{k} }{(2k)!} t ^{2k} \Theta(\xi) ^{2k}\\ &\quad + \sin t |\xi| \sum _{0 \le k < ( n - 1)/4} \frac{(-1) ^{k}}{(2k+1)!} t ^{2k+1} \Theta(\xi) ^{2 k + 1} + a M _{1}( t , \xi ), \end{align*} and $\Theta(\xi) \equiv \Theta(|\xi|) \equiv |\xi| - \sqrt{ |\xi| ^{2} - a ^{2} }$. \end{theorem} \begin{corollary} \label{coro1.2} Let $m=[n/2]$ and $\max (0, 1/2-1/2m) < 1/p < \min (1, 1/2 + 1/2m)$. Under the assumptions in Theorem \ref{thm1.2}, the following estimate holds; \[ \| P(\cdot) ^{\theta} w(t, \cdot) \| _{p} \le C e ^{-at/2} ( \| P(\cdot) ^{\theta} w _{0} \| _{1,p} + \| P(\cdot) ^{\theta} w _{1} \| _{p} ). \] \end{corollary} \section{Preliminaries} In this section we state the preliminary results necessary for the proofs. $J_{\mu}(s) $ is the Bessel function of order $\mu$. We shall denote $\widetilde{J} _{\mu} (s) = J_{\mu}(s) /s^{\mu}$ according to Levandosky \cite{Levandosky}. Here and after we denote $g(s)=O(|s|^{\sigma})$ when $|g(s)| \le C |s|^{\sigma}$ for a constant $\sigma$. \begin{lemma} [\cite{Levandosky, Narazaki}] \label{lem2.1} Assume that $\mu$ is not a negative integer. Then it follows that: \begin{enumerate} \item $s \widetilde{J}_{\mu}'(s)=\widetilde{J}_{\mu - 1}(s) - 2 \mu \widetilde{J}_{\mu}(s) $. \item $\widetilde{J}_{\mu}'(s) = - s\widetilde{J}_{\mu + 1}(s) $. \item $\widetilde{J}_{-1/2}(s)=\sqrt{\frac{\pi}{2}} \cos s$ . \item If $\mathop{\rm Re} \mu $ is fixed, then \begin{gather*} |\widetilde{J}_{\mu}(s)| \le C e^{\pi | {\rm Im \ } \mu|} , \quad (|s| \le 1) , \\ J_{\mu}(s) = C s^{-1/2} \cos ( s - \frac{\mu}{2}\pi - \frac{\pi}{4} ) + O( e^{2\pi| {\rm Im \ } \mu|} |s|^{-3/2} ) ,\quad (|s| \ge 1) . \end{gather*} \item $r^2 \rho \widetilde{J}_{\mu + 1}(r \rho )= -\frac{\partial}{\partial \rho}\widetilde{J}_{\mu} (r \rho)$ . \end{enumerate} \end{lemma} The following lemmas are well-known. \begin{lemma}[\cite{Stein}] \label{lem2.2} Assume that $\widehat{f} \in L^p$ $(1 \le p \le 2)$ is a radial function. Then \[ f(x) = c \int_0 ^{\infty} g(\rho) \rho ^{n-1} \widetilde{J}_{n/2-1}(|x| \rho) \, d\rho, \quad g(|\xi|) \equiv \widehat{f}(\xi). \] \end{lemma} \begin{lemma}[Young] \label{lem2.3} Let $1 \le q \le p \le \infty$ satisfy $1-1/r=1/q-1/p$, then the following estimate holds for any $f \in L^q $ and $g \in L^{r} $: \[ \| f*g \|_p \le C \| f \|_q \| g \|_r . \] \end{lemma} \begin{lemma}[Hardy-Littlewood-Sobolev] \label{lem2.4} Let $ 10, x \in R ^{n} \label{heat_equation2} \end{equation} with initial data \begin{equation} V(0, x) = V_0 (x), \quad x \in R ^{n}. \label{heat_initial2} \end{equation} Assume that the function $V _{0}$ is odd with respect to $x'$ and $V_0 \in L ^{q} $ for some $1 \le q \le \infty$. Then, $V (t, \cdot)$ is also odd with respect to $x'$. Arguments similar to those in \cite{Meier} and \cite{Narazaki} give the following result. \begin{proposition}[Meier \cite{Meier}] \label{prop3.1} Let $1 \le q \le p \le \infty$, $ 0 \le \theta_1, \dots, \theta_d \le 1$ and $b>0$ be constants. Assume that $V_0$ is odd with respect to $x'$, $ P (\cdot) V_0 \in L ^{q} $ and ${\hat V} _{0} (\xi)=0 $ for $ |\xi| \ge b$. Let $V$ be the solution of the Cauchy problem \eqref{heat_equation2}--\eqref{heat_initial2}. Then, for $t>0$, $V(t, \cdot)$ is odd with respect to $x'$ and ${\hat V}(t, \xi) = 0$ for $|\xi| \ge b $. Moreover, for any multi-index of non-negative integers $\alpha=(\alpha_1, \dots, \alpha_n)$ and for any integer $k \ge 0$, the following estimates hold; \begin{align*} &\|(1+x_1^{2}) ^{\theta_1/2} \dots (1+x_d ^{2}) ^{\theta_d/2} \partial_ t ^{k} \partial_ x ^{\alpha} V(t, \cdot) | | _{p} \\ &\le C (1 + t ) ^{-n \delta(p, q) - k - |\alpha|/2 - (1 - \theta_1)/2 - \dots - (1-\theta_d)/2} \| P(\cdot) V_0 \|_{q}, \end{align*} where $ \delta(p, q) = 1/2q - 1/2p$. \end{proposition} Choose a function $\chi_1$ of class $C ^{\infty}$ satisfying $ \chi_1(\rho) = 1 $ for $\rho \le a/2$ and $ \chi_1(\rho) = 0 $ for $\rho \ge 2a/3$. Define the functions $\Theta_1$ and $g$ by \begin{gather} \Theta_{1}(\rho)= \frac{\rho^{4}}{ 2a( a +\sqrt{a^{2}-\rho^{2}})^{2}}, \label{Theta_1_teigi} \\ g(t, \rho) = ( \exp ( -t \Theta_{1}(\rho)) -1) \exp \big( -\frac{t \rho ^{2}}{4a} \big). \label{g_teigi} \end{gather} Here and after we denote $\chi _{1}(\xi)=\chi _{1} (|\xi|)$ and $g(t,\xi)=g(t,|\xi|)$. For the proof of Theorem \ref{thm1.1}, we need the following lemmas. Let $\mathcal{I}$ be the set of all multi-indices $\alpha=(\alpha _{1}, \dots, \alpha _{n})$ satisfying $\alpha _{j}=0$, $1$ for $j=1, \dots, d$ and $\alpha _{j}=0$ for $j=d+1, \dots, n$. \begin{lemma} \label{lem3.1} Let $1 \le q \le p \le \infty$ and $b>0$ be constants, and let $\chi_{11}$ be a function of class $C ^{\infty}$ satisfying $\chi _{11}(\xi) = 0 $ for $|\xi| \ge b$. Then, the estimates \[ \| P(\cdot) \mathcal{F} ^{-1} ( \chi_{11}\widehat{h} ) \| _{p} \le C _{b} \sup_{\xi} \sum_{|\alpha| \le n+d+1} |\partial_{\xi} ^{\alpha} \chi_{11}(\xi) | \|P(\cdot) h \| _{q} \] hold for any $h$ satisfying $P(\cdot) h \in L^q$. \end{lemma} \begin{proof} Since $P(x) \le C_{1} \sum _{ \alpha \in \mathcal{I} } |x ^{\alpha}| \le C _{2} P(x)$ and $\mathcal{F} ( x ^{\alpha} f )(\xi)= c _{\alpha} \partial _{\xi} ^{\alpha} {\hat f}(\xi)$, it follows that \begin{equation} \| P(\cdot)\mathcal{F}^{-1} ( \chi_{11} \widehat{h} )\| _{p} \le C \sum _{\alpha \in \mathcal{I}} \| x ^{\alpha} \mathcal{F} ^{-1} ( \chi _{11} {\hat h} )\|_{p} \le C \sum_{\alpha \in \mathcal{I}} \sum _{\beta+ \gamma= \alpha} \| \mathcal{F}^{-1} ( \partial_{\xi}^{\beta} \chi_{11} \partial_{\xi} ^{\gamma} \widehat{h} ) \| _{p}. \label{lemma3_1_1} \end{equation} Since $(1+|x|)^{-(n+1)} \in L ^{1}$ and $\mathop{\rm supp}\chi _{11} \subset \{ \xi: |\xi| \le b\}$, it follows that \begin{align*} \|\mathcal{F} ^{-1} ( \partial_{\xi} ^{\beta} \chi_{11} )\|_{L ^{1} \cap L ^{\infty}} & \le C \| (1+|x|)^{n+1} \mathcal{F} ^{-1} ( \partial_{\xi} ^{\beta} \chi_{11} )\|_{\infty} \\ & \le C \sum_{ |\alpha| \le n+1} \| \partial _{\xi} ^{\alpha} \partial _{\xi} ^{\beta} \chi _{11} \| _{L ^{1}} \\ & \le C \sup _{\xi} \sum _{|\alpha| \le n+1} \big| \partial _{\xi} ^{\alpha}\partial _{\xi} ^{\beta} \chi _{11} (\xi) \big|. \end{align*} Hence, for any $\beta$ satisfying $|\beta| \le d$, \begin{equation} \|\mathcal{F} ^{-1} ( \partial_{\xi} ^{\beta} \chi_{11} ) | |_{L^1 \cap L^{\infty}} \le C \sup_{\xi} \sum_{|\alpha| \le n+d+1} | \partial_{\xi} ^{\alpha} \chi_{11}(\xi) |. \label{lemma3_1_2} \end{equation} Since \begin{gather*} \mathcal{F}^{-1} ( \partial_{\xi} ^{\beta} \chi_{11} \partial_{\xi} ^{\gamma} \widehat{h} ) = c \mathcal{F} ^{-1} ( \partial_{\xi} ^{\beta} \chi_{11} )* \mathcal{F} ^{-1} ( \partial_{\xi} ^{\gamma} {\hat h} ), \\ \| \mathcal{F} ^{-1} ( \partial_{\xi} ^{\gamma} {\hat h} ) \| _{q} \le C \| P(\cdot) h \| _{q} , \quad \gamma \in \mathcal{I}, \end{gather*} Lemma \ref{lem2.3} and estimates (\ref{lemma3_1_1})--(\ref{lemma3_1_2}) give the desired estimate. \end{proof} Note that the function \[ I(t, x)=\mathcal{F} ^{-1} ( \chi_1 g(t, \cdot) )(x) =(\frac{1}{2\pi} )^{n/2}\int_{R^n} e^{ix \cdot \xi} \chi _{1}(\xi)g(t, \xi) \, d\xi \] is a radial function and belongs to $\mathcal{S}(R ^{n})$ for any $t \ge 0$. \begin{lemma} \label{lem3.2} For any $t >0$, the following two estimates hold \begin{gather} \sup _{x} | I(t, x) | \le C(1+t) ^{-n/2 -1}, \label{lemma3_2_1} \\ \sup _{x} |(1+ |x|) ^{n+1/2} I(t, x) | \le C(1+t) ^{ - 3/4}. \label{lemma3_2_2} \end{gather} \end{lemma} \begin{proof} We prove only the case where $n=1$. For the proof when $ n \ge 2$, see \cite[Proposition 3.1]{Narazaki}. Since \begin{equation} I(t, x)= \sqrt{\frac{2}{\pi}} \int _{0} ^{\infty} \chi _{1}(\rho) g (t, \rho) \cos \rho |x| \, d\rho \label{lemma3_2_1pr} \end{equation} and \[ | g (t, \rho) | \le C t \rho ^{4} \exp \big( - \frac{t \rho ^{2}}{4a} \big), \quad ( 0 \le \rho \le 2a/3), \] easy calculations show that \[ | I(t, x)| \le C \int _{0} ^{2a/3} t \rho ^{4} \exp \big( - \frac{t \rho ^{2}}{4a} \big) \, d\rho \le C ( 1+ t) ^{-3/2}. \] Thus we have proved estimate (\ref{lemma3_2_1}). Since \[ \cos \rho |x| = -\frac{1}{ |x| ^{2} } ( \frac{\partial}{\partial \rho} ) ^{2} \cos \rho |x|, \] Using integration by parts in (\ref{lemma3_2_1pr}), \begin{equation} | I(t, x) | \le \frac{C}{ x ^{2}} \int _{0} ^{\infty} \big|( \frac{\partial}{\partial \rho} ) ^{2} ( \chi _{1} (\rho) g(t, \rho) ) \big| \, d\rho \le \frac{C}{ x ^{2}} (1+t) ^{-1/2}, \label{lemma3_2_2pr} \end{equation} where we have used \[ | \frac{\partial g}{\partial \rho} (t, \rho) |+ |\frac{\partial^{2} g}{\partial \rho ^{2}} (t, \rho) | \le C \exp \big( - \frac{t \rho ^{2}}{8a} \big), \quad (0 \le \rho \le a). \] Estimates (\ref{lemma3_2_1}) and (\ref{lemma3_2_2pr}) show that \[ | I(t, x) | \le \frac{C}{1 + x ^{2} } (1+t) ^{-1/2}. \] Therefore, \[ | I(t, x) | \le C ( (1+t) ^{ - 3/2} ) ^{1/4} (\frac{1}{ 1 + x ^{2} } (1+t) ^{-1/2}) ^{3/4} \le \frac{C}{ (1+|x|) ^{3/2}} (1+t) ^{-3/4}. \] Thus we have proved estimate (\ref{lemma3_2_2}). \end{proof} \begin{lemma} \label{lem3.3} Let $ 1 \le q \le p \le \infty$, and let $k$ be a non-negative integer. Then \[ \| \partial _{t} ^{k} I(t, \cdot) * f \| _{p} \le C(1+t)^{-n \delta(p, q) - k -1+ \epsilon} \|f\| _{q}, \quad t \ge 0 \] for any $ \epsilon > 0 $, where $C=C(p, q, \epsilon, k)>0$ and $\delta(p, q) =1/2q - 1/2p$. We may take $\epsilon=0$ when $1 0$. Assume that $f$ is odd with respect to $x'$, $P(\cdot) f \in L^{q}$ and $\widehat{f}(\xi)=0$ for $|\xi| \ge a/2$. We set \[ \widehat{h}(t, \xi) = \exp \big( - \frac{|\xi|^{2} t}{4a} \big)\widehat{f}(\xi), \quad t \ge 0. \] Then, for any integer $k \ge 0$ and a multi-index $\alpha$, estimates \[ \| P(\cdot) ^{\theta} \partial _{t} ^{k} \partial_x ^{\alpha} ( I(t,\cdot) * h(t, \cdot) ) \| _{p} \le C(1+t) ^{- n \delta(p, q) - k - |\alpha|/2 -(1-\theta) d/2-1+\epsilon} \| P(\cdot) f \| _{q} \] hold, where $C = C(p, q, \epsilon, k, \alpha)$ and $\delta(p, q)=1/2q - 1/2p$. In the above estimates we may take $\epsilon=0$ when $10, x \in R^n, \] hence \begin{equation} v _{k}(t, x)=e^{-2at}v _{k}(0, x)+\int_0 ^t e^{-2a(t-\tau)}\Delta v _{k-1}(\tau, x) \, d \tau, \quad t \ge 0, x \in R^n \label{Theorem1_1_6pr} \end{equation} for $k=1,2, \dots$. Moreover, it satisfies ${\hat v} _{k} (0, \xi)=0$ for $|\xi| \ge b$, and \begin{equation} \| P(\cdot) \partial _{x} ^{\beta} v _{k} (0, \cdot) | | _{q} \le C _{k,\beta} \big( \| P(\cdot) v _ 0 \|_q + \| P(\cdot) v _ 1 \|_q\big) \quad 1 \le q \le \infty, \label{Theorem1_1_7pr} \end{equation} for $k=1,2, \dots$. Therefore, (\ref{Theorem1_1_5pr})-- (\ref{Theorem1_1_7pr}) show \begin{equation} \| P(\cdot) \partial_t ^k \partial_x ^{\beta} v(t, \cdot) \|_p \le C_{k,\beta} e^{ - \lambda t} \big( \| P(\cdot) v _{0}\| _{q} + \| P(\cdot) v _{1}\| _{q} \big), \quad t \ge 0 \label{Theorem1_1_8pr} \end{equation} for $1 \le q \le p \le \infty$, $k=0,1,2, \dots$ and $\beta$. Since ${\hat v}_i(\xi)=\chi_{12}(\xi) {\hat v}_i(\xi)$ $(i=0,1)$, the solution formula \[ {\hat V}(t, \xi)= \exp \big( -\frac{t|\xi|^2}{2a} \big) \big( {\hat v}_0(\xi) + \frac{1}{2a} {\hat v}_1(\xi) \big), \quad t \ge 0, \] shows that ${\hat V}(t, \xi)=\chi_{12} {\hat V}(t, \xi)$. Hence, the similar arguments to the above estimates and Lemma \ref{lem3.1} shows \begin{equation} \| P(\cdot) \partial_t ^k \partial_x ^{\beta} V(t, \cdot) \|_p \le C_{k, \beta} e^{-\lambda t} ( \| P(\cdot) v_0 \|_q+ \| P(\cdot)v_1 \|_q ), \quad t \ge 0 \label{Theorem1_1_9pr} \end{equation} for $1 \le q \le p \le \infty$, $k=0,1,2,\dots$ and $\beta$. Since $P(x) \ge 1$, (\ref{Theorem1_1_8pr})--(\ref{Theorem1_1_9pr}) give the desired result in Theorem \ref{thm1.1}, in the case where $b \ge a/2$ and $\mathop{\rm supp}\widehat{v}_0\cup\mathop{\rm supp}\widehat{v}_1 \subset \{ \xi : a/3 \le |\xi| \le b \}$. Now we consider the case where $\mathop{\rm supp}\widehat{v}_{0} \cup \widehat{v}_{1} \subset \{ \xi: |\xi| \le a/2 \}$. The solution formula (\ref{Theorem1_1_1pr}) shows that \begin{equation} \widehat{v}(t, \xi) = \widehat{V}(t,\xi)+ \frac{1}{2}\widehat{\phi}_{1}(t, \xi) +\widehat{\phi}_{2}(t, \xi)+\widehat{\phi}_{3}(t, \xi), \label{Theorem1_1_10pr} \end{equation} where \begin{gather*} \widehat{\phi}_{1}(t, \xi)=g(t, \xi)\chi_{1}(\xi) \exp \big( -\frac{t|\xi|^{2}}{4a} \big) \big( \widehat{v}_{0}(\xi) + \frac{a \widehat{v}_{0}(\xi)+ \widehat{v}_{1}(\xi)}{ \sqrt{a^{2} - |\xi|^{2}}} \big), \\ \widehat{\phi}_{2}(t, \xi) = \exp \big( -\frac{t|\xi|^{2}}{2a} \big) \frac{ |\xi|^{2} \chi_{1}(\xi)}{ \sqrt{a^{2}-|\xi|^{2}}(a+\sqrt{a^{2}-|\xi|^{2}})} \cdot \frac{a \widehat{v}_{0}(\xi) + \widehat{v}_{1}(\xi)}{2a}, \\ \widehat{\phi}_{3}(t, \xi) = \frac{1}{2} \exp \big( -at -t\sqrt{a^{2}-|\xi|^{2}} \big) \chi_{1}(\xi) \big( \widehat{v}_{0}(\xi)- \frac{a \widehat{v}_{0}(\xi) + \widehat{v}_{1}(\xi)}{\sqrt{a^{2}-|\xi|^{2}}} \big). \end{gather*} It follows that $\widehat{v}_i(\xi) = \chi_1(\xi) \widehat{v}_i(\xi)$ for $i=0, 1$, the function $ \xi \mapsto \chi_1(\xi)/\sqrt{a ^{2} - |\xi|^{2}}$ is a radial function that belongs to $S( R ^{n} )$, and the function $v_i$ $(i=0, 1)$ is odd with respect to $x'$. Hence the function \[ \mathcal{F}^{-1}\big( \widehat{v}_0+ \frac{a \widehat{v}_0+ \widehat{v}_1}{\sqrt{a^{2}-|\xi|^{2}}} \big) =v_0+ c\mathcal{F}^{-1}\big( \frac{\chi_1(\xi)}{\sqrt{a^{2}-|\xi|^{2}}} \big)*( a v_0+v_1 ) \] is also odd with respect to $x'$, and moreover, Lemma \ref{lem2.3} shows \begin{equation} \| P(\cdot) \mathcal{F}^{-1} ( \widehat{v}_0 + \frac{a \widehat{v}_0 +\widehat{v}_1}{\sqrt{a^{2}-|\xi|^{2}}}) \|_q \le C ( \| P(\cdot) v_0 \|_q +\| P(\cdot) v_1 \|_q ) \label{Theorem1_1_11pr} \end{equation} for $t \ge 0$. Set \[ \widehat{h}(t, \xi)= \exp \big( -\frac{t|\xi|^{2} }{4a} \big) \big( \widehat{v}_0 (\xi) + \frac{ a \widehat{v}_0(\xi) + \widehat{v}_1(\xi)}{\sqrt{a^{2}-|\xi|^{2}}} \big), \quad t \ge 0. \] Since $\phi_1(t, \cdot)=c I(t, \cdot)*h(t, \cdot)$, Lemma \ref{lem3.4} and estimate (\ref{Theorem1_1_11pr}) show that \begin{equation} \begin{aligned} & \| P(\cdot) ^{\theta} \partial _{t} ^{k} \partial_x ^{\alpha} \phi_1(t, \cdot)\|_p \\ & \le C (1+t) ^{- n \delta(p,q) - k - |\alpha|/2 - (1-\theta)d/2-1+\epsilon} ( \|P(\cdot) v_0\|_q +\|P(\cdot) v_1\|_q ) \end{aligned} \label{Theorem1_1_12pr} \end{equation} for $t \ge 0$, $1 \le q \le p \le \infty$ and $\theta=0, 1$. Proposition \ref{prop3.1} and Lemma \ref{lem3.1} show \begin{equation} \begin{aligned} & \| P(\cdot) ^{\theta} \partial _{t} ^{k} \partial_x ^{\alpha} \phi_2(t, \cdot) \|_p + \| P(\cdot) ^{\theta} \partial _{t} ^{k} \partial_x ^{\alpha} \phi_3(t, \cdot) \|_p \\ &\le C (1+t) ^{- n \delta(p, q) - k - |\alpha|/2 - (1-\theta)d/2 - 1 + \epsilon} ( \|P(\cdot) v_0\|_q +\|P(\cdot) v_1\|_q ) \end{aligned} \label{Theorem1_1_13pr} \end{equation} for $t \ge 0$, $1 \le q \le p \le \infty$ and $\theta=0, 1$. Hence, (\ref{Theorem1_1_10pr}) and estimates (\ref{Theorem1_1_12pr})--(\ref{Theorem1_1_13pr}) give the desired estimate. \end{proof} \section{Proof of Theorem \ref{thm1.2}} Let $N$ be a positive integer. Then the function \begin{equation} h _{N} ( y ) = e^{iy} - \sum _{k=0} ^{N} \frac{(iy)^{k}}{k!} \label{h_N_teigi} \end{equation} satisfies $| \partial_{y} ^{k} h _{N} (y)| \le C |y| ^{N - k}$, for $k \in [0, N]$. Let $\chi _{2}$ be a radial function of class $C^{\infty}$ that satisfies $ \chi _{2}( \xi)= 0$ for $|\xi| \le 3a/2$, and $ \chi _{2}( \xi)= 1$ for $|\xi| \ge 2a$. Here and after we denote $\chi _{2}(\rho)=\chi _{2}(\rho \omega)$ for $\rho \ge 0$ and $\omega \in R^n$, $|\omega|=1$. Define the function \[ II _{N} (t, x ) = \mathcal{F}^{-1} ( \chi _{2}(\cdot) h _{N} (t \Theta(\cdot)) e^{it|\xi|} )(x)\,. \] Then Lemma \ref{lem2.2} shows that \begin{equation} II _{N} (t, x) = c \int _{0} ^{\infty} \chi _{2}(\rho) h _{N} (t \Theta (\rho) ) \rho^{n - 1} \widetilde{J} _{-1 + n/2}( \rho |x| ) \, d \rho. \label{II_N_seishitsu} \end{equation} \begin{lemma}[{cf. in \cite[Lemma 4.1]{Narazaki}}] \label{lem4.1} Let $N \ge n+1$ and $ m = [ n/2 ]$, then \begin{enumerate} \item $\| II _{N} (t, \cdot) \| _{\infty} \le C | t | ^{N}$, \item $\| II _{N} (t, \cdot) \| _{1} \le C ( | t | ^{N} + |t | ^{ N + m + 2})$. \end{enumerate} \end{lemma} \begin{proof} (1) Since $ | h _{N} (t \Theta(\rho) ) | \le C | t | ^{N} \Theta(\rho) ^{N} \le C |t| ^{N}/ \rho^{N}$, for $\rho \ge 3a/2$, Lemma \ref{lem2.1} (4) and (\ref{II_N_seishitsu}) show the desired estimate \[ | II _{N} (t, x) | \le C \int _{3a/2} ^{\infty} \frac{|t|^{N} }{\rho^{N - n + 1}} \, d \rho \le C | t |^{N}. \] (2) Since \[ | ( \frac{d}{dy} ) ^{k} h _{N} (y) | \le C |y|^{N - k}, \quad | ( \frac{d}{d \rho} ) ^{k} \Theta (\rho) | \le C \rho^{- k - 1} \] for $ \rho \ge 3a/2$ and $0 \le k \le N$, easy calculations show \begin{equation} | ( \frac{\partial}{\partial \rho} ) ^{k} h _{N} ( t \Theta(\rho) ) | \le C |t|^{N} \rho^{- k - N}, \quad (0 \le k \le N, \rho \ge 3a/2). \label{Lemma4_1_1pr} \end{equation} The differential operator $X$ defined by \[ X v(t, \rho) = \frac{\partial}{\partial \rho} ( \frac{1}{\rho} v(t, \rho) ) \] satisfies \begin{equation} X ^{k} ( v(t, \rho) \rho^{l}) = \sum _{j=0} ^{k} c _{j k l} \partial _{\rho}^{j} v(t, \rho) \rho^{l - 2k + j}. \label{Lemma4_1_2pr} \end{equation} Then (\ref{Lemma4_1_1pr})--(\ref{Lemma4_1_2pr}) read \begin{equation} ( \frac{\partial}{\partial \rho} )^{l} ( \rho ^{i} X ^{k} ( \chi _{2} (\rho) h _{N} (t\Theta (\rho)) e ^{it\rho} \rho ^{n - 1} ) ) \Big| _{0} ^{\infty} = 0 \label{Lemma4_1_3pr} \end{equation} for $i=0, 1$, $0 \le k \le m$ and $ 0 \le l \le 2$. Hence, Lemma \ref{lem2.1} (5), (\ref{II_N_seishitsu}), (\ref{Lemma4_1_3pr}) and integration by parts give \begin{align*} II _{N}(t, x)&= \frac{c}{|x|^{2}} \int _{0} ^{\infty} \chi _{2}(\rho) h _{N} (t \Theta(\rho)) e^{it\rho} \rho ^{n - 1} \frac{1}{\rho} ( \frac{\partial}{\partial \rho} ) \widetilde{J} _{n/2 - 2}(\rho |x|) \, d\rho \\ &= \frac{c}{|x|^{2} } \int _{0} ^{\infty} X ( \chi _{2}(\rho) h _{N} (t \Theta(\rho)) e^{it\rho} \rho ^{n - 1} ) \widetilde{J} _{n/2 - 2}(\rho |x|) \, d\rho, \end{align*} when $(n/2 - 2)$ is not a negative integer. Repeating the above integration by parts, we obtain \begin{equation} II _{N}(t, x)= \frac{c}{|x| ^{2\mu}} \int _{0} ^{\infty} X ^{\mu} ( \chi _{2}(\rho) h _{N} (t \Theta(\rho)) e ^{it\rho} \rho ^{ n - 1} ) \widetilde{J} _{n/2 - 1 - \mu}(\rho |x|) \, d\rho, \label{Lemma4_1_4pr} \end{equation} where $\mu=[(n - 1)/2]$. In the case where $ n = 2m $, equation (\ref{Lemma4_1_4pr}) reads \begin{equation} II _{N}(t, x)= \frac{c}{|x| ^{n - 2}} \int _{0} ^{\infty} X ^{m - 1} ( \chi _{2}(\rho) h _{N} (t \Theta(\rho)) e ^{it\rho} \rho ^{n - 1} ) J_{0}(\rho |x|) \, d\rho . \label{Lemma4_1_5pr} \end{equation} Lemma \ref{lem2.1} (1) shows that \[ J _{0}(\rho |x|) = 2 \widetilde{J} _{1}(\rho |x|)+ \rho ( \frac{\partial}{\partial \rho} ) \widetilde{J} _{1}(\rho |x|), \] hence (\ref{Lemma4_1_3pr}), (\ref{Lemma4_1_5pr}) and integration by parts give \begin{equation} \label{Lemma4_1_6pr} \begin{aligned} &| II _{N} (t, x) | \\ & \le \frac{c}{|x| ^{n-2}} \sum _{k=0} ^{1} \Big| \int _{0} ^{\infty} \rho ^{k} ( \frac{\partial}{\partial \rho} ) ^{k} X ^{m-1}(\chi _{2}(\rho) h _{N} (t\Theta(\rho)) e ^{it\rho} \rho ^{n-1}) \widetilde{J} _{1} (\rho | x | ) \, d \rho \Big| . \end{aligned} \end{equation} Since Lemma \ref{lem2.1} (4) shows \[ | \widetilde{J} _{1}(\rho |x|) - c \rho ^{-3/2}|x| ^{-3/2} \cos ( \rho |x|- \frac{3\pi}{4} ) | \le C \rho ^{-5/2}|x| ^{-5/2}, \] estimate (\ref{Lemma4_1_6pr}) and integration by parts show \begin{equation} \label{Lemma4_1_7pr} \begin{aligned} & |II _{N}(t, x)|\\ & \le \frac{C}{|x| ^{n+1/2}} \sum _{ k = 0} ^{2} \int _{0} ^{\infty} \rho^{k - 5/2} \big| ( \frac{\partial}{\partial \rho} ) ^{k} X ^{m - 1}(\chi _{2}(\rho) h _{N} (t\Theta(\rho)) e ^{it\rho} \rho ^{n - 1}) \big| \, d\rho, \end{aligned} \end{equation} where we have used \[ \cos ( \rho |x|- \frac{3\pi}{4} )= \frac{1}{|x|} \frac{\partial}{\partial \rho} \sin ( \rho |x|- \frac{3\pi}{4} ). \] Hence, estimate (\ref{Lemma4_1_2pr}), (\ref{Lemma4_1_7pr}) and (\ref{Lemma4_1_1pr}) show \begin{equation} | II _{N} (t, x) | \le \frac{C}{|x| ^{n+1/2}} |t| ^{N} (1 + |t| ^{m+2}). \label{Lemma4_1_8pr} \end{equation} Since \[ \| II _{N} (t, \cdot) \| _{1} =\int _{|x| \le 1} | II _{N} (t, x) | \, dx +\int _{|x| \ge 1} | II _{N} (t, x) | \, dx, \] estimate (\ref{Lemma4_1_8pr}) and Lemma \ref{lem4.1} (1) give the desired estimate in Lemma \ref{lem4.1} (2) when $ n = 2m$. Now let us consider the case where $n=2m+1$. Since Lemma \ref{lem2.1} (3) shows \[ \widetilde{J} _{-1/2}(\rho |x|)=\sqrt{ \frac{\pi}{2} } \cos \rho |x| = -\sqrt{ \frac{\pi}{2} } \frac{1}{|x| ^{2}} ( \frac{\partial}{\partial \rho} ) ^{2} \cos \rho |x|, \] (\ref{Lemma4_1_2pr})--(\ref{Lemma4_1_4pr}) and integration by parts give \begin{equation} \begin{aligned} |II _{N} (t, x)| & =\frac{c}{|x|^{n+1}} \big| \int _{0} ^{\infty} X ^{m-1} ( \chi _{2}(\rho) h _{N} (t\Theta (\rho))e ^{it\rho} \rho ^{n-1} ) ( \frac{\partial}{\partial \rho} )^2 \cos \rho | x | \, d\rho \big| \\ & = \frac{c}{|x| ^{n+1}} \int _{0} ^{\infty} \big| ( \frac{\partial}{\partial \rho} ) ^{2} X ^{m} ( \chi _{2} (\rho) h _{N}( t \Theta(\rho) ) e ^{it\rho} \rho ^{n-1} ) \cos \rho |x| \big| \, d \rho \\ & \le \frac{C}{|x| ^{n+1}}|t| ^{N}( 1 + |t| ^{m+2}). \end{aligned}\label{Lemma4_1_9pr} \end{equation} Estimates (\ref{Lemma4_1_9pr}) and Lemma \ref{lem4.1} (1) give the desired estimate when $ n = 2m + 1$. \end{proof} \begin{corollary} \label{coro4.1} Let $1 \le q \le p \le \infty$. Under the assumptions in Lemma \ref{lem4.1}, the following estimates hold; \[ \| II _{N} (t, \cdot)* g \| _{p} \le C |t| ^{N} ( 1 + |t| ^{m+2}) \| g \| _{q}, \quad g \in L ^{q}. \] \end{corollary} \begin{proof} Set $r \in [0, \infty]$ by $ 1 - 1/r = 1/q - 1/p$. Lemma \ref{lem4.1} shows \[ \| II _{N} (t, \cdot) \| _{r} \le \| II _{N} (t, \cdot) \| _{1} ^{1/r} \| II _{N} (t, \cdot) \| _{\infty} ^{1 - 1/r} \le C |t| ^{N} ( 1 + |t| ^{m+2}), \] hence Lemma \ref{lem2.3} gives the desired estimate. \end{proof} Note that Corollary \ref{coro4.1} shows the following estimates: \begin{lemma} \label{lem4.2} Let $ N \ge n + d + 1$, $1 < q \le p < \infty$ and $ m = [n/2] $. Assume that $f \in L^{q} $ and $\mathop{\rm supp}\widehat{f} \subset \{ \xi; |\xi| \ge 2a \}$, then \[ \| P(\cdot) \mathcal{F} ^{-1} ( \chi _{2} h _{N} (t\Theta ) \widehat{f} ) | | _{p} \le C |t|^{N} ( 1 + |t| ^{m+d+2} ) \| P(\cdot) f | | _{q} . \] \end{lemma} \begin{proof} Let $\alpha \in \mathcal{I}$ be fixed. Since $\chi _{2}(\xi)=1$ on $\mathop{\rm supp}\widehat{f}$, \begin{equation} \begin{aligned} &\| x ^{\alpha} \mathcal{F} ^{-1} \Big( \chi _{2} h _{N} ( t\Theta ) e^{it|\xi|} \widehat{f} \Big) \| _{p} = c \| \mathcal{F}^{-1} \Big( \chi _{2}\partial_{\xi} ^{\alpha} \big( h _{N} ( t\Theta) e ^{it|\xi|} \widehat{f} \big) \Big) \| _{p} \\ &\le C \sum _{\beta +\gamma + \mu = \alpha} \| \mathcal{F} ^{-1}\Big( \chi _{2} \partial _{\xi} ^{\beta} h _{N} ( t\Theta) \chi _{2} \partial _{\xi} ^{\gamma} e ^{it|\xi|} \partial _{\xi} ^{\mu} \widehat{f} \Big) \| _{p}. \end{aligned} \label{Lemma4_2_1pr} \end{equation} Easy calculations show \begin{equation} \chi _{2}(\xi)\partial _{\xi} ^{\beta} h _{N}(t \Theta(\xi))= \sum _{0 \le k \le |\beta|} c t ^{k} H _{\beta, k, 1} (\xi) h _{N-k}(t \Theta(\xi)) \label{Lemma4_2_2pr} \end{equation} when $|\beta| \ge 1$, and \begin{equation} \chi _{2}(\xi)\partial _{\xi} ^{\gamma} e ^{it|\xi|} = \sum _{0 \le k \le |\gamma|} c t ^{k} H _{\gamma, k, 2}(\xi) e ^{it|\xi|} \label{Lemma4_2_3pr} \end{equation} when $|\gamma| \ge 1$, where \[ H _{\beta, k, 1}(\xi) = \chi _{2}(\xi) \sum _{\widetilde{\beta} _{1}+ \dots + {\tilde \beta}_k = \beta, | \widetilde{\beta} _{1}| \ge 1, \dots, |\widetilde{\beta}_k| \ge 1} c \partial _{\xi} ^{ \widetilde{\beta} _{1}} \Theta(\xi) \dots \partial _{\xi} ^{ \widetilde{\beta}_k} \Theta (\xi), \] and \[ H _{\gamma, k, 2}(\xi) = \chi _{2}(\xi) \sum _{ \widetilde{\gamma} _{1}+\dots+ \widetilde{\gamma}_k=\gamma, | \widetilde{\gamma} _{1}| \ge 1, \dots, | \widetilde{\gamma}_k| \ge 1} c \partial _{\xi} ^{ \widetilde{\gamma} _{1}}|\xi| \dots \partial _{\xi} ^{ \widetilde{\gamma}_k} |\xi|. \] Since $H _{\beta, k, 1}, H _{\gamma, k,2} \in C ^{\infty}( R ^{n})$ satisfying \[ | \partial _{\xi} ^{\nu} H _{\beta, k, 1} (\xi) | + | \partial _{\xi} ^{\nu} H _{\gamma, k, 2} (\xi) | \le C _{\nu, \beta, \gamma, k} \] for any $k$, $\beta, \gamma \in \mathcal{I}$ with $|\beta| \ge 1$ and $|\gamma| \ge 1$ and any multi-index $\nu$, H\"{o}rmander's multiplier theorem(see \cite{Duoandikoetxea} for example) shows that \begin{equation} \|\mathcal{F} ^{-1}( H _{\beta, k, 1}\widehat{g} ) \| _{p} +\|\mathcal{F} ^{-1}(H _{\gamma, k, 2} \widehat{g} ) \| _{p} \le C _{\beta, \gamma, p, k}\| g \| _{p} \label{Lemma4_2_4pr} \end{equation} for $1 < p < \infty$ and $k \ge 0$ when $\beta, \gamma \in \mathcal{I}$ satisfy $| \beta | \ge 1 $ and $| \gamma | \ge 1$. Since $N - k \ge n + 1$ when $0 \le k \le d$, (\ref{Lemma4_2_1pr})--(\ref{Lemma4_2_4pr}) and Corollary \ref{coro4.1} show that \begin{equation} \begin{aligned} \| x ^{\alpha} \mathcal{F} ^{-1}( \chi _{2} h _{N} (t \Theta) e ^{it|\xi|}\widehat{f} ) \| _{p} & \le C \sum _{0 \le k + l \le d, \mu \in \mathcal{I}} |t| ^{ k + l} \| \mathcal{F} ^{-1}( \chi _{2} h _{N-k}(t \Theta) e ^{it|\xi|} \partial _{\xi} ^{\mu} \widehat{f} ) \| _{p} \\ &\le C \sum _{ k + l \le d, \mu \in \mathcal{I}} |t| ^{ k + l} \| II _{N-k}(t, \cdot) * ( x ^{\mu} f ) \| _{p} \\ & \le C \sum _{ l = 0} ^{d} | t | ^{ N + l}( 1 + |t| ^{m+2} ) \sum _{\mu \in \mathcal{I}} \| x ^{\mu} f\| _{q} \nonumber \\ & \le C | t| ^{N}( 1 + | t | ^{m + d + 2} ) \| P(\cdot) f \| _{q} \end{aligned} \label{Lemma4_2_5pr} \end{equation} for $ 1 0$, $x \in R^n$. Hence, the solution formula for the Cauchy problem to the wave equation \[ \partial _{t} ^{2} W - \Delta W=0 \] shows that $T _{m}(t)$ is a bounded operator on $L ^{p}$ for any $ 1 < p < \infty$, and it satisfies \begin{equation} \| T _{m}(t) f \| _{p} \le C _{p} (1+ |t|) ^{m} \| f \| _{p}\,. \label{Cor1_2_1pr} \end{equation} For any $t$, the operator $T_0(t)$ is bounded on $L ^{2}$, and satisfies \begin{equation} \| T _{0}(t) f \| _{2} \le C \| f \| _{2}\,. \label{Cor1_2_2pr} \end{equation} Hence, the Stein interpolation theorem between estimates (\ref{Cor1_2_1pr})--(\ref{Cor1_2_1pr}) shows that \begin{equation} \| T _{1}(t) f \| _{p} \le C _{p} (1+ |t|)^{m} \| f \| _{p} \label{Cor1_2_3pr} \end{equation} holds for $\max (0, 1/2 - 1/2m ) < 1/p < \min( 1, 1/2 + 1/2m)$. For any $p \in (1, \infty)$ and $\alpha$, the functions \[ |\xi| \partial _{\xi} ^{\alpha}( \chi _{2}(\xi) \Theta), \quad |\xi| \partial _{\xi} ^{\alpha} \big( \frac{\chi _{2}(\xi)}{\sqrt{|\xi| ^{2} - a ^{2}}} \big) \] are Fourier-multipliers on $L ^{p}$ (see \cite{Duoandikoetxea}). Therefore estimate (\ref{Cor1_2_3pr}) and similar calculations to ones in the proof of Lemma \ref{lem4.2} show that \begin{equation} \| P(\cdot) \mathcal{F} ^{-1} \big( e ^{it |\xi|} \Theta ^{k} \frac{|\xi|}{ \sqrt{|\xi|^{2}-a^{2}}} \widehat{f}(\xi) \big) \| _{p} \le C(1+|t|)^{m + d} \|P(\cdot) f\| _{p} \label{Cor1_2_4pr} \end{equation} and \begin{equation} \| P(\cdot) \mathcal{F} ^{-1} \big( e ^{it |\xi|} \Theta ^{l} |\xi| \widehat{f}(\xi) \big) \| _{p} \le C( 1 + | t | ) ^{m + d} \| P(\cdot) f \| _{p} \label{Cor1_2_5pr} \end{equation} for any $p$ satisfying $\max (0, 1/2 -1/2m ) < 1/p < \min( 1, 1/2 + 1/2m)$, and for positive integers $k \ge 0$, $l \ge 1$ , provided that $\mathop{\rm supp} \widehat{f} \subset \{ \xi: |\xi| \ge 2a \}$. Estimate (\ref{Cor1_2_4pr})--(\ref{Cor1_2_5pr}) and Theorem \ref{thm1.2} give the desired estimate. \end{proof} \begin{thebibliography}{00} \bibitem{Bellout} H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation, SIAM J. Math. Anal. {\bf 20} (1989), 354--366. \bibitem{Duoandikoetxea} J. Duoandikoetxea; \emph{Fourier Analysis}, Grad. Stud. Math. {\bf 29}, Amer. Math. Soc., Providence, 2001. \bibitem{Hayashi} N. Hayashi, E. I. Kaikina and P. I. Naumkin; \emph{Damped wave equations with a critical nonlinearity}, Differential Integral Equations {\bf 17} (2004), 637--652. \bibitem{Hosono} T. Hosono and T. Ogawa; \emph{Large Time Behavior and $L^p$-$L^q$ estimate of Solutions of 2-Dimensional Nonlinear Damped Wave Equations}, J. Differential Equations {\bf 203}(2004), 82--118. \bibitem{Ikehata2} R. Ikehata; \emph{Critical exponent for semilinear damped wave equations in the $N$-dimensional half space}, J. Math. Anal. Appl. {\bf 288} (2003), 803--818. \bibitem{Ikehata} R. Ikehata; \emph{New decay estimates for linear damped wave equations and their application to nonlinear problem}, Math. Meth. Appl. Sci. {\bf 27} (2004), 865--889. \bibitem{Karch} G. Karch; \emph{Selfsimilar profiles in large time asymptotic of solutions to damped wave equations}, Studia Math. {\bf 143} (2000), 175--197. \bibitem{Kawashima} S. Kawashima, M. Nakao and K. Ono; \emph{On the decay property of solutions to the Cauchy problem of the semilinear wave equation with dissipative term}, J. Math. Soc. Japan {\bf 47} (1995), 617--653. \bibitem{Levandosky} S. P. Levandosky; \emph{Decay estimates for fourth order wave equations}, J. Differential Equations {\bf 143} (1998), 360--413. \bibitem{Li} T.-T. Li; \emph{Nonlinear heat conduction with finite speed of propagation, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspect}, World Sci. Publishing, River Edge, NJ, 1997, 81--91. \bibitem{Li-Zhou} T.-T. Li and Y. Zhou; \emph{Breakdown of solutions to $ \Box u + u_{t} = u^{1 + \alpha}$}, Discrete Cont. Dynam. Syst. {\bf 1} (1995), 503--520. \bibitem{Marcati} P. Marcati and K. Nishihara; \emph{The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their applications to the compressible flow through porus media}, J. Differential Equations {\bf 191} (2003), 445--469. \bibitem{Meier} P. Meier; \emph{Blow-up of solutions of semilinear parabolic differential equations}, Z. Angew. Math. Phys. {\bf 39} (1988), 135-149. \bibitem{Matsumura} A. Matsumura; \emph{On the asymptotic behavior of solutions of semi-linear wave equations}, Publ. Res. Inst. Math. Sci. {\bf 12} (1976), 169--189. \bibitem{Nakao} M. Nakao and K. Ono; \emph{Global existence to the Cauchy problem for the semilinear dissipative wave equations}, Math. Z. {\bf 214} (1993), 325--342. \bibitem{Narazaki} T. Narazaki; \emph{$L^p$-$L^q$ Estimates of Solutions of Damped Wave Equations and Applications to Nonlinear Problem}, J. Math. Soc. Japan {\bf 56} (2004), 586--626. \bibitem{Nishihara} K. Nishihara; \emph{$L^p$-$L^q$ Estimates of Solutions to the Damped Wave Equation in 3-Dimensional Space and their Application}, Math. Z. {\bf 244} (2003), 631--649. \bibitem{Stein} E. M. Stein and G. Weiss; \emph{Introduction to Fourier Analysis on Euclidean Spaces}, Princeton University Press, (1975). \bibitem{Todorova} G. Todorova and B. Yordanov; \emph{Critical exponent for a nonlinear wave equation with damping}, J. Differential Equations {\bf 174} (2000), 464--489. \bibitem{Zhang} Q. Zhang; \emph{A blow-up result for a nonlinear wave equation with damping: The critical case}, C. R. Acad. Sci, Paris S\`{e}r. I. Math. {\bf 333} (2001), 109--114. \end{thebibliography} \end{document}