\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 04, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/04\hfil Regularization and error estimates] {Regularization and error estimates for nonhomogeneous backward heat problems} \author[D. T, Dang, H. T. Nguyen\hfil EJDE-2006/04\hfilneg] {Duc Trong Dang, Huy Tuan Nguyen} % in alphabetical order \address{Duc Trong Dang\hfill\break Department of Mathematics, Hochiminh City National University, 227 Nguyen Van Cu, Q5, HoChiMinh City, Vietnam} \email{ddtrong@mathdep.hcmuns.edu.vn} \address{Huy Tuan Nguyen \hfill\break Department of Mathematics, Hochiminh City National University, 227 Nguyen Van Cu, Q5, HoChiMinh City, Vietnam} \email{tuanhuy\_bs@yahoo.com} \date{} \thanks{Submitted November 11, 2005. Published January 11, 2006.} \subjclass[2000]{35K05, 35K99, 47J06, 47H10} \keywords{Backward heat problem; ill-posed problem; contraction principle; \hfill\break\indent quasi-reversibility methods} \begin{abstract} In this article, we study the inverse time problem for the non-homogeneous heat equation which is a severely ill-posed problem. We regularize this problem using the quasi-reversibility method and then obtain error estimates on the approximate solutions. Solutions are calculated by the contraction principle and shown in numerical experiments. We obtain also rates of convergence to the exact solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} For a positive real number $T$, consider the problem of finding the temperature $u(x,t)$, such that \begin{gather} u_t-u_{xx}=f(x,t),\quad 0\leq x \leq \pi,\; 00 $, we define ${\psi(x,t) = e^{k(t - T) }w(x,t)}$. Note that $\psi(x,t)$ satisfies \begin{equation} \label{e14} \begin{gathered} \psi_t(x,t) - \psi_{xx}(x,t) - \epsilon \psi_{xxxx}(x,t)-k\psi(x,t) = 0,\quad (x,t) \in (0,\pi ) \times (0,T),\\ \psi (x,T) = 0, \quad x\in(0,\pi), \\ \psi (0,t) = \psi (\pi ,t) = \psi_{xx} (0,t) = \psi_{xx} (\pi ,t) = 0. \end{gathered} \end{equation} Multiplying \eqref{e14} by $\psi(x,t)$ and integrating on $x $ from 0 to $\pi$, we obtain \begin{align*} \int_0^\pi {\frac{d } {{dt}}} \psi (x,t)\psi (x,t)dx - \int_0^\pi \psi _{xx} (x,t)\psi (x,t)dx&\\ - \int_0^\pi \psi _{xxxx} (x,t)\psi (x,t)dx - \int_0^\pi k \psi (x,t)\psi (x,t)dx &= 0. \end{align*} Applying the Green formula, we have \[ \int_0^\pi \psi _{xx} (x,t)\psi (x,t)dx = - \int_0^\pi {} \psi _x (x,t)\psi _x (x,t)dx = - \|\nabla \psi (x,t)\|^2, \] \begin{align*} \int_0^\pi \psi _{xxxx} (x,t)\psi (x,t)dx &= - \int_0^\pi {} \psi _{xxx} (x,t)\psi _x (x,t)dx\\ &= \int_0^\pi {} \psi _{xx} (x,t)\psi _{xx} (x,t)dx = \|\Delta \psi (x,t)\|^2. \end{align*} It follows that \[ \frac{d } {{d t}}\|\psi (x,t)\|^2 + \|\nabla \psi (x,t)\|^2 - \epsilon \|\Delta \psi (x,t)\|^2 - k\|\psi (x,t)\|^2 = 0\,. \] Using Schwartz inequality, we have \begin{align*} \|\nabla \psi (x,t)\|^2 &= \int_0^\pi - \psi _{xx} (x,t)\psi (x,t)dx \\ &= \langle - \Delta ^{} \psi (x,t),\psi (x,t)\rangle\\ &\leq \epsilon \|\Delta \psi (x,t)\|^2 + \frac{1} {{4\epsilon }}\|\psi (x,t)\|^2. \end{align*} Therefore, \[ \frac{d }{{d t}}\|\psi (x,t)\|^2 \geq (k - \frac{1} {{4\epsilon }})\|\psi (x,t)\|^2, \] Choosing $k = 1/4\epsilon $, we have \begin{eqnarray*} \|\psi (.,T)\|^2 - \|\psi(.,t)\|^2 \geq \int_t^T {} (k - \frac{1} {4\epsilon })||\psi(.,s) ||^2ds = 0. \end{eqnarray*} Since $w(.,T)=0$ it follows that $w(.,t)=0$ and $\psi(.,t)=0$ therefore, $u(x,t)=v(x,t)$. \noindent{\bf Step 3:} The solution of \eqref{e7}--\eqref{e9} depends continuously on $g \in L^2(0,\pi)$. Let $u $ and $ v $ be two solution of \eqref{e7}--\eqref{e9} corresponding to the final values $g$ and $h $, respectively. By \eqref{e10}, \begin{gather*} u(x,t) = \sum_{n = 1}^{ \infty } {(e^{(T - t)(n^2 - \epsilon n^4 )} g _n - \int_t^T {e^{(s - t)(n^2 - \epsilon n^4 )} e^{ - \epsilon n^4 (T - t)} f_n (s)ds)\sin (nx)} },\\ v(x,t) = \sum_{n = 1}^{ \infty } {(e^{(T - t)(n^2 - \epsilon n^4 )} h _n - \int_t^T {e^{(s - t)(n^2 - \epsilon n^4 )} e^{ - \epsilon n^4 (T - t)} f_n (s)ds)\sin (nx)} }, \end{gather*} where \begin{gather*} g _n = \frac{2}{\pi}\langle g (x),\sin (nx) \rangle, \quad h _n = \frac{2}{\pi}\langle h (x),\sin (nx) \rangle \end{gather*} It follows that \[ \|u(.,t) - v(.,t)\|_H^2 = \frac{\pi}{2}\sum_{n = 1}^{ \infty } {e^{2(n^2 - \epsilon n^4 )(T - t)} (g _n - h _n )^2 }. \] In view of the inequality $n^2 - \epsilon n^4 \leq 1/(4\epsilon)$, we have \begin{align*} \|u(.,t) - v(.,t)\|^2 &\leq \frac{\pi}{2} \sum_{n = 1}^{ \infty } {e^{(T - t)/2\epsilon } (g _n - h _n )^2 }\\ &= \frac{\pi}{2}e^{(T - t)/2\epsilon } \sum_{n = 1}^{ \infty } {(g _n - h _n )^2 } = e^{(T - t)/2\epsilon } \|g - h \|^2 . \end{align*} Hence \[ \|u(.,t) - v(.,t)\| \leq e^{(T - t)/4\epsilon } \|g-h \|. \] This completes the proof of Step 3 and the proof of the theorem. \end{proof} \section{Regularization of Problem \eqref{e1}--\eqref{e3}} We first have a uniqueness result. \begin{theorem} \label{thm2} Let $f (x,t)\in L^2 (0,T;L^2 (0,\pi ))$. Then \eqref{e1}--\eqref{e3} has at most one (weak) solution in $C([0,T];L^2 (0,\pi )) \cap L^2 (0,T;H_0^1 (0,\pi ) \cap H^2 (0,\pi ))$. \end{theorem} The proof of the above lemma can be found in \cite{l1}. Despite the uniqueness, Problem \eqref{e1}--\eqref{e3} is still ill-posed. Hence, a regularization has to be used. \begin{theorem} \label{thm3} Let $f \in L^2 (0,T;L^2 (0,\pi ))$ be such that $\frac{{\partial ^4 f(x,t)}}{{\partial x^4 }} \in L^2 (0,T;L^2 (0,\pi ))$. Suppose that Problem \eqref{e1}--\eqref{e3} has a weak solution $u$ in $C([0,T];L^2 (0,\pi )) \cap L^2 (0,T;H_0^1 (0,\pi ) \cap H^2 (0,\pi ))$. Then \[ \|u(.,t) - u^\epsilon (.,t)\| \leq \epsilon (T - t)\sqrt {\frac{8} {{t^4 }}\|u(.,0)\|^2 + t^2 \|\frac{{\partial ^4 f(x,t)}} {{\partial x^4}}\|_{L^2(0,T;L^2(0,\pi))}^2 } , \] for every $t \in (0,T]$, where $u^\epsilon $ is the unique solution of \eqref{e7}--\eqref{e9}. \end{theorem} \begin{proof} Suppose $u$ is the exact solution of \eqref{e1}--\eqref{e3}. Then, as shown in \cite{c2}, \begin{eqnarray} u(x,t) = \sum_{n = 1}^{ \infty } \Big(e^{ - tn^2 } u_n (0) + \int_0^t e^{(s - t)n^2 } f_n (s)ds\Big)\sin (nx). \end{eqnarray} where $u_n(0)=\frac{2}{\pi}\langle u(x,0),\sin (nx)\rangle$. Then \begin{align*} g (x) &= u(x,T) \\ &= \sum_{n = 1}^{ \infty } \Big(e^{ - Tn^2 } u_n (0) + \int_0^T e^{(s - T)n^2 } f_n (s)ds\Big)\sin (nx),\\ &=\sum_{n = 1}^\infty \varphi _n \sin (nx). \end{align*} Hence $g _n = e^{ - Tn^2 } u_n (0) + \int_0^T {e^{(s - T)n^2 } f_n (s)ds} $ and \begin{align*} u_n^\epsilon (t) &=e^{(T - t)(n^2 - \epsilon n^4 )} g _n - \int_t^T {e^{(s - t)(n^2 - \epsilon n^4 )} e^{ - \epsilon n^4 (T - s)} f_n (s)ds,} \\ & = e^{(T - t)(n^2 - \epsilon n^4 )} (e^{ - Tn^2 } u_n (0) + \int_0^T {e^{(s - T)n^2 } f_n (s)ds} )\\ &\quad - \int_t^T {e^{(s - t)(n^2 - \epsilon n^4 )} e^{ - \epsilon n^4 (T - s)} f_n (s)ds,} \\ &= e^{ - tn^2 } e^{ - \epsilon (T - t)n^4 } u_n (0) + \int_0^t {e^{(T - t)(n^2 - \epsilon n^4 )} e^{(s - T)n^2 } f_n (s)ds} )\\ &\quad + \int_t^T {e^{(T - t)(n^2 - \epsilon n^4 )} e^{(s - T)n^2 } f_n (s)ds} \\ &\quad - \int_t^T e^{(s - t)(n^2 - \epsilon n^4 )} e^{ - \epsilon n^4 (T - s)} f_n (s)\,ds. \end{align*} It follows that \begin{equation} \label{e16} u_n^\epsilon (t) = e^{ - tn^2 } e^{ - \epsilon (T - t)n^4 } u_n (0) + \int_0^t e^{(s - t)n^2 } e^{ - \epsilon (T - t)n^4 } f_n (s)ds. \end{equation} From \eqref{e10}, \eqref{e13}, \eqref{e14} and using the inequality $1-e^{-x} \leq x $ for $x>0$, we have \begin{equation} \label{e17} \begin{aligned} &|u_n(t) - u_n^\epsilon (t)|\\ & \leq e^{ - tn^2 } (1 - e^{ - \epsilon n^4 (T - t)} )|u_n (0)| + |\int_0^t {e^{(s - t)n^2 } (1 - e^{ - \epsilon n^4 (T - t)} ) f_n (s)ds} | \\ &\leq e^{ - tn^2 } (1 - e^{ - \epsilon n^4 (T - t)} )|u_n (0)| + \int_0^t {e^{(s - t)n^2 } (1 - e^{ - \epsilon n^4 (T - t)} )|f_n (s)|ds}\\ &\leq e^{ - tn^2 } \epsilon n^4 (T - t)|u_n (0)| + \int_0^t {e^{(s - t)n^2 } \epsilon n^4 (T - t)|f_n (s)|ds} \\ &= \frac{\epsilon } {{t^2 }}e^{ - tn^2 } (tn^2 )^2 (T - t)|u_n (0)| + \epsilon (T - t)\int_0^t {e^{(s - t)n^2 } n^4 |f_n (s)|ds} \\ &\leq \frac{{2\epsilon }} {{t^2 }}(T - t)|u_n (0)| + \epsilon (T - t)\int_0^t {n^4 |f_n (s)|ds.} \end{aligned} \end{equation} In view of $(a + b)^2 \leq 2(a^2 + b^2 )$ and using Holder inequality, we obtain \begin{align*} |u_n(t) - u_n^\epsilon (t)|^2 &\leq 2 [\frac{{4\epsilon ^2 }} {{t^4 }}(T - t)^2 |u_n (0)|^2 + \epsilon ^2 (T - t)^2 (\int_0^t {n^4 |f_n (s)|ds)^2 } ] \\ &\leq \frac{{8\epsilon ^2 }} {{t^4 }}(T - t)^2 |u_n (0)|^2 + \epsilon ^2 (T - t)^2 t^2 \int_0^t n^8 |f_n (s)|^2 ds. \end{align*} It follows that \begin{align*} & \|u(.,t) - u^\epsilon (.,t)\|^2\\ &= \frac{\pi}{2}\sum_{n = 1}^\infty {|u_n } (t) - u_n^\epsilon (t)|^2 \\ &\leq \frac{\pi}{2}\frac{{8\epsilon ^2 }} {{t^4 }}(T - t)^2 \sum_{n = 1}^\infty {} |u_n (0)|^2 + \frac{\pi}{2}\epsilon ^2 (T - t)^2 t^2 \int_0^t {\sum_{n = 1}^\infty n^8 |f_n (s)|^2 ds} \\ &= \frac{{8\epsilon ^2 }}{{t^4 }}(T - t)^2 \|u(.,0)\|^2 + \epsilon ^2 (T - t)^2 t^2 \int_0^t {\|\frac{{\partial ^4 f(x,s)}} {{\partial x^4 }}\|^2 ds.} \end{align*} This completes the proof. \end{proof} \begin{theorem} \label{thm4} Let $u$ be a solution of \eqref{e1}--\eqref{e3} with $u\in L^\infty (0,T;L^2 (0,\pi )) \cap L^2 (0,T;H_0^1 (0,\pi ))$ and such that $ \|\Delta ^2 u(x,t)\| < \infty$ for all $t$ in $[0,T]$. Then \[ \|u(.,t) - u^\epsilon (.,t)\| \leq \epsilon T\|\Delta ^2 u(.,t)\| \] \end{theorem} \begin{proof} From \eqref{e16}, we have \begin{align*} u_n(t) - u_n^\epsilon (t) &= e^{ - tn^2 }(1 - e^{ - \epsilon n^4 (T - t)} )u_n (0) + \int_0^t {e^{(s - t)n^2 } (1 - e^{ - \epsilon n^4 (T - t)} )f_n (s)ds}\\ &=(1 - e^{ - \epsilon n^4 T} )u_n (t). \end{align*} Hence \[ \|u(.,t) - u^\epsilon (.,t)\|^2 =\frac{\pi}{2} \sum_{n = 1}^\infty {|u_n } (t) - u_n^\epsilon (t)|^2 \leq \frac{\pi}{2}\epsilon ^2 T^2 \sum_{n = 1}^\infty {n^8 u_n^2 (t)} =\epsilon ^2 T^2 \|\Delta ^2 u(.,t)\|^2. \] This completes Proof. \end{proof} \begin{theorem} \label{thm5} Let Problem \eqref{e1}--\eqref{e3} have exact solution $u\in C([0,T];L^2 (0,\pi )) \cap L^2 (0,T;H_0^1 (0,\pi ) \cap H^2 (0,\pi ))$, corresponding to $g$. Assume that \[ \frac{{\partial ^4 f(x,t)}} {{\partial x^4 }}, \frac{{\partial u}} {{\partial t }}\in L^2 (0,T;L^2 (0,\pi )),\quad \|\Delta^2 u(x,t)\|<\infty \quad\forall t \in[0,T]\,. \] Let $g_\epsilon$ be the measured data such that $ \|g_\epsilon-g\| \leq \epsilon $. Then there exist a function $u^{\beta(\epsilon)}$ satisfying \begin{gather*} \|u^{\beta(\epsilon)}(.,t)-u(.,t)\| \leq \frac{K}{\ln (1/\epsilon)}+\epsilon^{t/T}, \quad \forall t\in (0,T], \\ \|u^{\beta(\epsilon)}(.,0)-u(.,0)\| \leq (1+C) \sqrt{\frac{T}{\ln(1/\epsilon)}}+ C\frac{T}{4\ln(1/\epsilon)}, \end{gather*} where $ \beta(\epsilon)= \frac{T}{4\ln(1/\epsilon)}$ and \begin{gather*} K=\frac{1}{4}T(T - t)\sqrt {\frac{8}{{t^4 }}\|u(.,0)\|^2 + t^2 \|\frac{{\partial ^4 f(x,t)}} {{\partial x^4 }}\|_{L^2(0,T;L^2(0,\pi))}^2,}\\ M=\max \big\{\sup_{0\leq t\leq T} \|u_t(x,t)\|, T \sup_{0\leq t\leq T} \|\Delta^2 u(x,t)\| \big\}. \end{gather*} \end{theorem} \begin{proof} Let $v^{\beta(\epsilon)}(.,t)$ be a solution of \eqref{e7}--\eqref{e9} corresponding $g$, and $w^{\beta(\epsilon)}$ be solution of \eqref{e7}--\eqref{e9} corresponding $g_\epsilon $. We consider the function $h(t)=\frac{\ln t}{t}-\frac{\ln \epsilon}{T}$ for $\epsilon \in (0,T)$. We have $h(T)>0 $ and $\lim_{t \to 0} h(t)=-\infty $ then $h(t)=0$ has solution in $(0,T)$. We call $t_\epsilon $ is smallest solution of it. Apply inequality $\ln t >-\frac{1}{t}$ we get $t_\epsilon< \sqrt{\frac{T}{\ln(1/\epsilon)}}$. Using Lagrange Theorem for $u(.,t)$ and $u^\epsilon(.,t)$ in $(0,t_\epsilon)$ we have \[ \|u(0)-u(t_\epsilon)\| \leq t_\epsilon \|u'(\alpha)\| \leq Ct_\epsilon, \quad \forall \alpha \in (0,t_\epsilon). \] Using Theorem \ref{thm4} we get \begin{align*} \|v^{\beta(\epsilon)}(t_\epsilon)-u(0)\| &\leq \|v^{\beta(\epsilon)}(t_\epsilon-u(t_\epsilon)\| +\|u(0)-u(t_\epsilon)\|\\ &\leq \beta(\epsilon)(T-t_\epsilon)\|\Delta^2 u(t_\epsilon)\|+Ct_\epsilon\\ &\leq C\ ( \sqrt{\frac{T}{\ln(1/\epsilon)}}+\frac{T}{4\ln(1/\epsilon)}) \end{align*} We put \[ u^{\beta(\epsilon)}(t) = \begin{cases} w^{\beta(\epsilon)} (t), \quad 0 < t \leq T ,\\ w^{\beta(\epsilon)} (t_\epsilon ), \quad t = 0. \end{cases} \] By Step 3 of Theorem \ref{thm1}, \[ \|v^{\beta(\epsilon)}(.,t)-w^{\beta(\epsilon)}(.,t)\| \leq e^{\frac{T-t}{4\beta(\epsilon)}}\|g^\epsilon-g\| = \epsilon^{t/T}\,. \] By Theorem \ref{thm3} and applying the triangle inequality, we have \begin{eqnarray*} \|u^{\beta(\epsilon)}(.,t)-u(.,t)\| &\leq &\|v^{\beta(\epsilon)}(.,t)-w^{\beta(\epsilon)}(.,t)\|+\|v^{\beta(\epsilon)}(.,t)-u(.,t)\|\\ &\leq&\frac{K}{\ln(1/\epsilon)}+\epsilon^{t/T}. \end{eqnarray*} On the other hand, \begin{align*} \|u^{\beta(\epsilon)}(.,0)-u(.,0)\| &\leq \|v^{\beta(\epsilon)}(.,t_\epsilon)-w^{\beta(\epsilon)} (.,t_\epsilon)\|+\|v^{\beta(\epsilon)}(.,t_\epsilon)-u(.,0)\|\\ &\leq (1+C) \sqrt{\frac{T}{\ln(1/\epsilon)}}+ C\frac{T}{4\ln(1/\epsilon)}. \end{align*} This completes the proof. \end{proof} \section{Numerical experiments} Consider the problem \begin{equation} \label{e18} \begin{gathered} u_t- u_{xx}=2e^t \sin(x), \\ u(x,1) = g (x) = e\sin(x) \end{gathered} \end{equation} whose exact solution is $ u(x,t)=e^t \sin (x)$. Note that $u(x,1/2)= \sqrt e \sin (x)\approx 1.648721271\sin(x)$. Let $g_n $ be the measured final data \begin{eqnarray*} g _n (x) = e\sin(x) + \frac{1} {n}\sin (nx). \end{eqnarray*} So that the data error, at the final time, is \[ F(n) = \|g_n - g \|_{L^2 (0,\pi )} = \sqrt {\int_0^\pi {\frac{1}{{n^2 }}\sin ^2 nxdx} } = \frac{1} {n}\sqrt {\frac{\pi } {2}}. \] The solution of \eqref{e18}, corresponding the final value $g _n $, is \[ u^n (x,t) = e^t \sin (x) + \frac{1} {n}e^{n^2 (1 - t)} \sin (nx), \] The error at the original time is \[ O(n):= ||u^n (.,0) - u(.,0)||_{L^2 (0,\pi )} = \sqrt {\int_0^\pi {\frac{{e^{2n^2 } }} {{n^2 }}\sin ^2 (nx)\,dx} } = \frac{{e^{n^2 } }}{{n }}\sqrt {\frac{\pi }{2}}. \] Then, we notice that \begin{gather*} \lim_{n \to \infty } F(n)=\mathop {\lim }_{n \to \infty } ||\varphi _n - \varphi _0 ||_{L^2 (0,\pi )} = \lim _{n \to \infty } \frac{1} {n}\sqrt {\frac{\pi } {2}} = 0,\\ \lim _{n \to \infty } O(n)=\lim _{n \to \infty } \|u^n (.,0) - u(.,0)\|_{L^2 (0,\pi )} = \lim_{n \to \infty } \frac{{e^{n^2 } }} {{n^{} }}\sqrt {\frac{\pi } {2}} = \infty. \end{gather*} From the two equalities above, we see that \eqref{e18} is an ill-posed problem. Approximating the problem as in \eqref{e7}--\eqref{e9}, the regularized solution is \begin{align*} u^\epsilon (x,t) &= \sum_{m = 1}^{ \infty } \Big(e^{(T - t)(m^2- \epsilon m^4 )} g _m \\ &- \int_t^T e^{(s - t)(m^2 - \epsilon m^4 )} e^{ - \epsilon m^4 (T - s)} f_m (s)ds\Big)\sin (mx), \\ u^\epsilon (x,t) &= e^{(1 - t)(1 - \epsilon ) + 1} \sin(x)\\ &- 2\Big(\int_t^1 {e^{(s - t)(1 - \epsilon )} e^{ - \epsilon (1 - s) + 1} ds} \Big) \sin(x) + \frac{1}{n}e^{(1 - t)(n^2 - \epsilon n^4 )} \sin (nx). \end{align*} Hence \[ u^\epsilon (x,\frac{1} {2}) = \big[e^{\frac{{3 - \epsilon }} {2}} - 2\int_{1/2}^1 {e^{2s - 1/2 - \epsilon /2} ds\big]\sin(x) + \frac{1} {n}} e^{\frac{1} {2}(n^2 - \epsilon n^4 )} \sin (nx). \] \begin{table}[ht] \caption{Approximations and error estimates for several values of $\epsilon$} \begin{tabular}{|c|c|c|} \hline $\epsilon$& $u_\epsilon$& $\|u-u_\epsilon\|$\\ \hline $10^{-2}\sqrt{\frac{\pi}{2}}$& $1.643563444\sin(x)+0.8243606355\sin200x$ & 0.1462051256\\ \hline $10^{-4}\sqrt{\frac{\pi}{2}}$& $1.648617955\sin(x) + 0.1648721271\sin10000 x$& 0.02066391506\\ \hline $10^{-10}\sqrt{\frac{\pi}{2}}$ &$1.648721271\big(\sin(x) +10^{-10}\sin(10^{10}x)\big)$ &0.00002066365678\\ \hline $10^{-16}\sqrt{\frac{\pi}{2}}$ &$1.648721271\big(\sin(x) +10^{-16}\sin(10^{16}x)\big)$ &$2.066365678\times10^{-8}$\\ \hline $10^{-30}\sqrt{\frac{\pi}{2}}$ &$1.648721271\big(\sin(x) +10^{-30}\sin(10^{30}x)\big)$ &$2.066365678\times10^{-15}$\\ \hline \end{tabular} \end{table} \begin{thebibliography}{00} \bibitem{a1} S. M. Alekseeva, N. I. Yurchuk, {\it The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition}, Differential Equations {\bf 34} (1998), no. 4, 493-500. \bibitem{a2} K. A. Ames, L. E. Payne, P. W. Schafer, {\it Energy and pointwise bounds in some non-standard parabolic problem,} Proc. Roy. Soc. Edinburgh. Sect. A 134 (2004), 1-9. \bibitem{a3} K. A. Ames, L. E. Payne, {\it Asymptovic for two regularizations of the Cauchy problem for the backward heat equation}, Math.Models Methods Appl. Sci. 8 (1998), 187-202. \bibitem{a4} D. D. Ang, {\it On the backward parabolic equation: a critical survey of some current method }, Numerical Analysis and Mathematical Modelling, Vol {\bf 24} (1990), 509-515. \bibitem{c1} G. Clark and C. Oppenheimer, {\it Quasireversibility Methods for Non-Well-Posed Problem}, Electronic Journal of Differential Equations, Vol. 1994 (1994), no. 08, 1-9. \bibitem{c2} D. Colton, {\it Partial Differential equation}, Random House, New York, 1988. \bibitem{d1} M. Denche, and K. Bessila, {\it A modified quasi-boundary value method for ill-posed problems}, J. Math. Anal. Appl, Vol.{\bf 301} (2005), 419-426. \bibitem{g1} H. Gajewski and K. Zaccharias, {\it Zur Regularisierung einer Klass nichtkorrekter Probleme bei Evolutiongleichungen,} J. Math. Anal. Appl. no. 38 (1972), 784-789. \bibitem{h1} Y. Huang and Z. Quan, {\it Regularization for a class of ill-posed Cauchy problems}, Proc. Amer. Math. Soc., Vol. {\bf 133}, (2005), 3005-3012. \bibitem{h2} Y. Huang, Z. Quan. {\it Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups}. J. Differential Equations Vol. {\bf 203} (2004), no. 1, 38--54. \bibitem{l1} Lawrence C. Evans, {\it Partial Differential Equation}, American Mathematiccal Society, Rhode Island, 1997. \bibitem{l2} R. Lattes, J. L. Lion, {\it Methode de Quasi-Reversibilit{\'e} et Applications,} Dunod, Paris, 1967. \bibitem{l3} M. M. Lavrentiev, {\it Some Improperly Posed problem of Mathematical Physics}, Springer Tracts in Natural Phisolophy, vol. {\bf 11} (1973), 161-171. \bibitem{m1} K. Miller, {\it Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems}, Symposium on Non-Well-Posed Problems and Logarithmic Convexity (Heriot- Watt Univ., Edinburgh, 1972), pp. 161-176. Lecture Notes in Math., Vol. {\bf 316}, Springer, Berlin, 1973. \bibitem{m2} I. V. Mel'nikova, {\it Regularization of ill-posed differential problem} (in Russian), Sibirks, Mat. Zh. 33 (1989) 126-134. \bibitem{p1} L. E. Payne, {\it Some general remarks on improperly posed problems for partial differential equation, in Symposium on Non-Well posed Problems and Logarithmic Convexity,} in: Lecture Notes in Mathematics, Vol. {316}, Springer-Verlag, Berlin , 1973, pp. 1-30. \bibitem{s1} R. E. Showalter, {\it Quasi-reversibility of first and second order parabolic evolution equations}, Improperly posed boundary value problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974), pp. 76-84. Res. Notes in Math., no. 1, Pitman, London, 1975. \bibitem{s2} R. E. Showalter, {\it The final value problem for evolution equations}, J. Math. Anal. Appl., Vol. {\bf 47} (1974), 563-572. \end{thebibliography} \end{document}