\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 117, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2006/117\hfil Existence and uniqueness of periodic solutions] {Existence and uniqueness of periodic solutions for first-order neutral functional differential equations with two deviating arguments} \author[J. Xiao,B. Liu \hfil EJDE-2006/117\hfilneg] {Jinsong Xiao, Bingwen Liu} \address{Jinsong Xiao \newline Department of Mathematics and Computer Science, Hunan City University, Yiyang, Hunan 413000, China} \email{bingxiao209@yahoo.com.cn} \address{Bingwen Liu \newline College of Mathematics and Information Science, Jiaxing University, Jiaxing, Zhejiang 314001, China} \email{liubw007@yahoo.com.cn} \date{} \thanks{Submitted March 16, 2006. Published September 26, 2006.} \thanks{Supported by grants 10371034 from the NNSF of China and 05JJ40009 from the \hfill\break\indent Hunan Provincial Natural Science Foundation of China} \subjclass[2000]{34C25, 34D40} \keywords{First order; neutral; functional differential equations; \hfill\break\indent deviating argument; periodic solutions; coincidence degree} \begin{abstract} In this paper, we use the coincidence degree theory to establish the existence and uniqueness of $T$-periodic solutions for the first-order neutral functional differential equation, with two deviating arguments, $$ (x(t)+Bx(t-\delta))'= g_{1}(t,x(t-\tau_{1}(t))) +g_{2}(t,x(t-\tau_{2}(t))) +p(t). $$ \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Consider the first-order neutral functional differential equation (NFDE), with two deviating arguments, \begin{equation} (x(t)+Bx(t-\delta))'= g_{1}(t,x(t-\tau_{1}(t)))+g_{2}(t,x(t-\tau_{2}(t))) +p(t), \label{e1.1} \end{equation} where $\tau_{1}$, $\tau_{2}$, $p:\mathbb{R}\to \mathbb{R}$ and $g_{1},g_{2}:\mathbb{R}\times \mathbb{R}\to \mathbb{R}$ are continuous functions, $B $ and $\delta$ are constants, $\tau_{1}, \tau_{2}$ and $p$ are $T$-periodic, $g_{1}$ and $g_{2}$ are $T$-periodic in the first argument, $|B|\neq 1$ and $T>0$. The above equation has been used for the study of distributed networks containing lossless transmission lines \cite{k1,k2}. Hence, in recent years, the problem of the existence of periodic solutions for \eqref{e1.1} has been extensively studied. For more details, we refer the reader to \cite{b1,g1,h2,h3,k1,k2,l2,z1} and the references cited therein. However, to the best of our knowledge, there exist no results for the existence and uniqueness of periodic solutions of \eqref{e1.1}. The main purpose of this paper is to establish sufficient conditions for the existence and uniqueness of $T$-periodic solutions of \eqref{e1.1}. The results of this paper are new and they complement previously known results. An illustrative example is given in Section 4. For ease of exposition, throughout this paper we will adopt the following notation: $$ |x|_k=\Big(\int^T_0|x(t)|^kdt\Big)^{1/k}, \quad |x|_\infty=\max_{t\in [0,T]}|x(t)|. $$ Let $ X=\{x|x\in C(\mathbb{R}, \mathbb{R}), x(t+T)=x(t), \mbox{ for all } t\in \mathbb{R}\} $ be a Banach space with the norm $ \|x\|_{X}=|x|_\infty$. Define the two linear operators \begin{equation} \begin{gathered} A:X\to X, \quad (Ax)(t)=x(t)+Bx(t-\delta); \\ L: D(L)\subset X\to X, \quad Lx=(Ax)', \label{e1.2} \end{gathered} \end{equation} where $D(L)=\{x|x\in X,x'\in C(\mathbb{R}, \mathbb{R})\}$. We also define the nonlinear operator $N: X\to X$ by $$ Nx= g_{1}(t,x(t-\tau_{1}(t)))+g_{2}(t,x(t-\tau_{2}(t))) +p(t).\label{e1.3} $$ By Hale's terminology \cite{h2}, a solution $u(t)$ of \eqref{e1.1} is that $u\in C(\mathbb{R}, \mathbb{R})$ such that $Au\in C^{1}(\mathbb{R}, \mathbb{R})$ and \eqref{e1.1} is satisfied on $\mathbb{R}$. In general, $u\not\in C^{1}(\mathbb{R}, \mathbb{R})$. But from \cite[Lemma 1]{l2}, in view of $|B|\neq 1$, it is easy to see that $(Ax)'=Ax'$. So a $T$-periodic solution $u(t)$ of \eqref{e1.1} must be such that $u\in C^{1}(\mathbb{R}, \mathbb{R})$. Meanwhile, according to \cite[Lemma 1]{l2}, we can easily get that $ \ker L=\mathbb{R}$, and $\mathop{\rm Im} L=\{x\in X : \int^{T}_{0}x(s)ds=0 \}$. Therefore, the operator $L$ is a Fredholm operator with index zero. Define the continuous projectors $P: X \to \ker L$ and $ Q:X \to X/ImL$ by setting \begin{gather*} Px(t)=\frac{1}{T}\int^{T}_{0}x(s)ds, \\ Qx(t)=\frac{1}{T}\int^{T}_{0}x(s)ds. \end{gather*} Hence, $\mathop{\rm Im}P=\ker L$ and $ \ker Q=\mathop{\rm Im}L$. Set $L_{P}=L|_{D(L)\cap \rm{Ker} P}$, then $L_{P}$ has continuous inverse $L^{-1}_{P}$ defined by \begin{equation} L^{-1}_{P}y(t)=A^{-1}\Big(\frac{1}{T}\int^{T}_{0}sy(s)ds +\int^{t}_{0}y(s)ds\Big). \label{e1.4} \end{equation} Therefore, it is easy to see from \eqref{e1.3} and \eqref{e1.4} that $N$ is $L$-compact on $\overline{\Omega}$, where $\Omega$ is an open bounded set in $X$. \section{Preliminary Results} In view of \eqref{e1.2} and \eqref{e1.3}, the operator equation $$ Lx=\lambda Nx $$ is equivalent to the equation $$ x'(t)+Bx'(t-\delta)=\lambda [ g_{1}(t,x(t-\tau_{1}(t))) +g_{2}(t,x(t-\tau_{2}(t))) +p(t)], \label{e2.1} $$ where $ \lambda\in (0, 1) $. For convenience of use, we introduce the Continuation Theorem \cite{g1} as follows. \begin{lemma} \label{lem2.1} Let $X$ be a Banach space. Suppose that $L:D(L)\subset X\to X$ is a Fredholm operator with index zero and $N: \overline{\Omega}\to X$ is $L$-compact on $\overline{\Omega}$, where $\Omega$ is an open bounded subset of $X$. Moreover, assume that all the following conditions are satisfied: \begin{enumerate} \item $Lx\neq \lambda Nx$, for all $x\in \partial \Omega\cap D(L)$, $\lambda\in (0,1)$; \item $Nx \not \in ImL$, for all $x\in \partial \Omega\cap \ker L$; \item For the Brower degree, $\deg\{QN, \Omega\cap \ker L , 0 \}\neq 0 $. \end{enumerate} Then the equation $Lx= Nx$ has at least one solution on $\overline{\Omega}\cap D(L)$. \end{lemma} By using a similar argument of the proof of \cite[Lemma 2.5]{l1}, from \cite[Theorem 225]{h1}, we can obtain the following Lemma. \begin{lemma} \label{lem2.2} Let $x(t)\in X\cap C^{1}(\mathbb{R},\mathbb{R})$ . Suppose that there exists a constant $D\geq 0$ such that $$ |x(\tau_0)|\leq D, \tau_0\in [0,T]. \label{e2.2} $$ Then \begin{equation} |x|_2\le \frac{T}{\pi}|x'|_2+\sqrt{T} D. \label{e2.3} \end{equation} \end{lemma} \begin{lemma}[\cite{l3}] \label{lem2.3} Let $\mu \in [0, T]$ be a constant, $\overline{\delta}\in C (\mathbb{R},\mathbb{R})$ be periodic with period $T$, and $\sup_{t \in [0, T]}|\overline{\delta}(t)|\leq \mu$. Then for any $ h\in C^{1} (\mathbb{R},\mathbb{R})$ which is periodic with period $T$, we have \begin{equation} \int^T_0|h(s)-h(s-\overline{\delta}(s))|^{2}ds\leq 2\mu^{2}\int^T_0|h'(s)|^{2}ds. \label{e2.4} \end{equation} For the next lemma we need the following conditions \begin{itemize} \item[(H)] For $i=1,2$, there exist a constants $\mu_{i}$ and an integers $K_{i}$ such that $$ \mu_{i}=\sup_{t\in [0,T]}|\tau_{i}(t)-K_{i}T|\leq T. $$ \item[(A0)] One of the following conditions holds:\\ (1) $(g_{i}(t,u_{1})-g_{i}(t,u_{2}))(u_{1}-u_{2})>0$, for $i=1,2, u_{i}\in \mathbb{R}$, for all $t\in \mathbb{R}$ and $u_{1}\neq u_{2}$;\\ (2) $(g_{i}(t,u_{1})-g_{i}(t,u_{2}))(u_{1}-u_{2})<0$, for $i=1,2, u_{i}\in \mathbb{R}$, for all $t\in \mathbb{R}$ and $u_{1}\neq u_{2}$; \item[(A0')] One of the following conditions holds:\\ (1) there exists constants $b_{1}$ and $ b_{2}$ such that $ b_{1} (\sqrt{2}\mu_{1}+ \frac{T}{\pi} )+b_{2}(\sqrt{2}\mu_{2}+ \frac{T}{\pi})< 1-|B|$, and $$ |g_{i}(t,u_{1})-g_{i}(t,u_{2})| \leq b_{i}|u_{1}-u_{2}|,\mbox{ for } i=1,2, u_{i}\in \mathbb{R}, \forall t\in \mathbb{R} , $$ (2) There exists constants $ b_{1}$ and $ b_{2}$ such that $b_{1} (\sqrt{2}\mu_{1}+ \frac{T}{\pi} )+b_{2}(\sqrt{2}\mu_{2}+ \frac{T}{\pi})<|B|-1$, and $$ |g_{i}(t,u_{1})-g_{i}(t,u_{2})| \leq b_{i}|u_{1}-u_{2}|,\quad \mbox{for } i=1,2, u_{i}\in \mathbb{R}, \forall t\in \mathbb{R}. $$ \end{itemize} \end{lemma} \begin{lemma} \label{lem2.4} Under assumptions (A0) and (A0'), Equation \eqref{e1.1} has at most one $T$-periodic solution. \end{lemma} \begin{proof} Suppose that $x_{1}(t)$ and $x_{2}(t)$ are two $T$-periodic solutions of \eqref{e1.1}. Then $$ (x_{1}(t)+Bx^{}_{1}(t-\delta))' -g_{1}(t,x_{1}(t-\tau_{1}(t))) -g_{2}(t,x_{1}(t-\tau_{2}(t)))=p(t) $$ and $$ (x_{2}(t)+Bx_{2}(t-\delta))' -g_{1}(t,x_{2}(t-\tau_{1}(t)))-g_{2}(t,x_{2}(t-\tau_{2}(t)))=p(t). $$ This implies \begin{equation} \begin{aligned} &[(x_{1}(t)-x_{2}(t))+B(x_{1}(t-\delta)-x_{2}(t-\delta))]' -(g_{1}(t,x_{1}(t-\tau_{1}(t)))\\ &-g_{1}(t,x_{2}(t-\tau_{1}(t)))) -(g_{2}(t,x_{1}(t-\tau_{2}(t)))-g_{2}(t,x_{2}(t-\tau_{2}(t))))=0. \end{aligned}\label{e2.5} \end{equation} Set $Z(t)=x_{1}(t)-x_{2}(t)$. Then, from \eqref{e2.5}, we obtain \begin{equation} \label{e2.6} \begin{aligned} &Z'(t)+BZ'(t-\delta)-(g_{1}(t,x_{1}(t-\tau_{1}(t)))\\ &-g_{1}(t,x_{2}(t-\tau_{1}(t)))) -(g_{2}(t,x_{1}(t-\tau_{2}(t)))-g_{2}(t,x_{2}(t-\tau_{2}(t))))=0. \end{aligned} \end{equation} Thus, integrating \eqref{e2.6} from $0$ to $T$, we have \begin{align*} &\int^T_0[(g_{1}(t,x_{1}(t-\tau_{1}(t))) -g_{1}(t,x_{2}(t-\tau_{1}(t))))\\ & +(g_{2}(t,x_{1}(t-\tau_{2}(t))) -g_{2}(t,x_{2}(t-\tau_{2}(t))))]dt=0. \end{align*} Therefore, in view of integral mean value theorem, it follows that there exists a constant $\gamma \in [0, T]$ such that \begin{equation} \begin{aligned} & (g_{1}(\gamma,x_{1}(\gamma-\tau_{1}(\gamma)))-g_{1}(\gamma,x_{2} (\gamma-\tau_{1}(\gamma))))\\ &+(g_{2}(\gamma,x_{1}(\gamma-\tau_{2}(\gamma))) -g_{2}(\gamma,x_{2}(\gamma-\tau_{2}(\gamma))))=0. \end{aligned}\label{e2.7} \end{equation} From (A0), \eqref{e2.7} implies $$ (x_{1}(\gamma-\tau_{1}(\gamma))-x_{2}(\gamma-\tau_{1}(\gamma)))(x_{1}(\gamma-\tau_{2}(\gamma)) -x_{2}(\gamma-\tau_{2}(\gamma)))\leq 0. $$ Since $Z(t)=x_{1}(t)-x_{2}(t)$ is a continuous function on $\mathbb{R}$, it follows that there exists a constant $\xi \in \mathbb{R}$ such that \begin{equation} Z(\xi)=0. \label{e2.8} \end{equation} Let $ \xi=n T+\widetilde{\gamma}$, where $\widetilde{\gamma}\in [0, T]$ and $n$ is an integer. Then, \eqref{e2.8} implies that there exists a constant $\widetilde{\gamma} \in [0, T]$ such that \begin{equation} Z(\widetilde{\gamma})=Z(\xi)=0. \label{e2.9} \end{equation} Then, from Lemma \ref{lem2.2}, using Schwarz inequality and the inequality $$ |Z(t)|=|Z(\widetilde{\gamma})+\int^t_{\widetilde{\gamma}}Z'(s)ds|\le \int^T_0|Z'(s)|ds, \mbox{ for all } t\in [0, T], $$ we obtain \begin{equation} |Z|_\infty\le \sqrt{T} |Z'|_2, \quad\mbox{and}\quad |Z|_2\leq \frac{T}{\pi} |Z'|_2. \label{e2.10} \end{equation} Now, we consider two cases. \subsection*{Case (i)} If (A0')(1) holds, multiplying both sides of \eqref{e2.6} by $Z'(t)$ and then integrating them from $0$ to $T$, using (H), \eqref{e2.4}, \eqref{e2.10} and Schwarz inequality, we have \begin{align*} &|Z'|_2^2\\ & = \int^T_0|Z'(t)|^2dt \\ & = -B\int^T_0Z'(t)Z'(t-\delta)dt +\int^T_0(g_{1}(t,x_{1}(t-\tau_{1}(t))) -g_{1}(t,x_{2}(t-\tau_{1}(t))))Z'(t)dt\\ & \quad +\int^T_0(g_{2}(t,x_{1}(t-\tau_{2}(t))) -g_{2}(t,x_{2}(t-\tau_{2}(t))))Z'(t)dt \\ &\le |B||Z'|_2^2+b_{1} \int^T_0|x_{1}(t-\tau_{1}(t))-x_{2}(t-\tau_{1}(t))||Z'(t)| dt\\ & \quad +b_{2} \int^T_0|x_{1}(t-\tau_{2}(t))-x_{2}(t-\tau_{2}(t))||Z'(t)| dt\\ &\le |B||Z'|_2^2+b_{1} \int^T_0|Z(t-\tau_{1}(t))-Z(t )||Z'(t)| dt+b_{1} \int^T_0|Z(t )||Z'(t)| dt\\ & \quad +b_{2}\int^T_0|Z(t-\tau_{2}(t))-Z(t )||Z'(t)| dt+b_{2} \int^T_0|Z(t )||Z'(t)| dt \\ &\le |B||Z'|_2^2+b_{1} (\int^T_0|Z(t-\tau_{1}(t))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2}+b_{1} |Z |_{2}|Z' |_{2}\\ & \quad +b_{2} (\int^T_0|Z(t-\tau_{2}(t))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2} +b_{2} |Z |_{2}|Z' |_{2}\\ &= |B||Z'|_2^2+b_{1} (\int^T_0|Z(t-(\tau_{1}(t)-K_{1}T))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2}+b_{1} |Z |_{2}|Z' |_{2}\\ & \quad +b_{2} (\int^T_0|Z(t-(\tau_{2}(t)-K_{2}T))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2} +b_{2} |Z |_{2}|Z' |_{2}\\ &\le [|B| +b_{1} (\sqrt{2}\mu_{1}+ \frac{T}{\pi} )+b_{2}(\sqrt{2}\mu_{2}+ \frac{T}{\pi} )]|Z'|_2^2. %\eqref{e2.11} \end{align*} From \eqref{e2.10} and (A0')(1), the above inequalit implies $$ Z(t)\equiv Z'(t) \equiv 0, \quad \mbox{for all } t\in \mathbb{R}. $$ Hence, $x_{1}(t)\equiv x_{2}(t)$, for all $ t\in \mathbb{R}$. Therefore, \eqref{e1.1} has at most one $T$-periodic solution. \subsection*{Case (ii)} If (A0')(2) holds, multiplying both sides of \eqref{e2.6} by $Z'(t-\delta)$ and then integrating them from $0$ to $T$, using $(H)$, \eqref{e2.4}, \eqref{e2.10} and Schwarz inequality, we have \begin{align*} &|B||Z'|_2^2 \\ & = |\int^T_0B|Z'(t-\delta)|^2dt |\\ & = |-\int^T_0Z'(t)Z'(t-\delta)dt \\ &\quad +\int^T_0(g_{1}(t,x_{1}(t-\tau_{1}(t))) -g_{2}(t,x_{2}(t-\tau_{1}(t))))Z'(t-\delta)dt\\ & \quad +\int^T_0(g_{2}(t,x_{1}(t-\tau_{2}(t))) -g_{2}(t,x_{2}(t-\tau_{2}(t))))Z'(t-\delta)dt |\\ &\le |Z'|_2^2 +b_{1} \int^T_0|x_{1}(t-\tau_{1}(t))-x_{2}(t-\tau_{1}(t))||Z'(t-\delta)| dt\\ & \quad +b_{2} \int^T_0|x_{1}(t-\tau_{2}(t))-x_{2}(t-\tau_{2}(t))||Z'(t-\delta)| dt\\ &\le |Z'|_2^2+b_{1} \int^T_0|Z(t-\tau_{1}(t))-Z(t )||Z'(t-\delta)| dt+b_{1} \int^T_0|Z(t )||Z'(t-\delta)| dt\\ & \quad +b_{2}\int^T_0|Z(t-\tau_{2}(t))-Z(t )||Z'(t-\delta)| dt+b_{2} \int^T_0|Z(t )||Z'(t-\delta)| dt \\ &\le |Z'|_2^2+b_{1} (\int^T_0|Z(t-\tau_{1}(t))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2}+b_{1} |Z |_{2}|Z' |_{2}\\ & \quad +b_{2} (\int^T_0|Z(t-\tau_{2}(t))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2} +b_{2} |Z |_{2}|Z' |_{2}\\ &= |Z'|_2^2+b_{1} (\int^T_0|Z(t-(\tau_{1}(t)-K_{1}T))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2}+b_{1} |Z |_{2}|Z' |_{2}\\ & \quad +b_{2} (\int^T_0|Z(t-(\tau_{2}(t)-K_{2}T))-Z(t )| ^{2} dt)^{\frac{1}{2}}|Z' |_{2} +b_{2} |Z |_{2}|Z' |_{2}\\ &\le [1 +b_{1} (\sqrt{2}\mu_{1}+ \frac{T}{\pi} )+b_{2}(\sqrt{2}\mu_{2}+ \frac{T}{\pi} )]|Z'|_2^2 % \eqref{e2.12} \end{align*} Then using the methods similar to those used in Case (i), from the above inequality, \eqref{e2.10}, and (A0')(2), we can conclude that \eqref{e1.1} has at most one $T$-periodic solution. The proof of Lemma \ref{lem2.4} is now complete. \end{proof} For the next lemma we use the following assumptions: \begin{itemize} \item[(A1)] $x(g_{1}(t,x)+g_{2}(t,x)+p(t))>0$, for all $t\in \mathbb{R}, |x|\ge d$; \item[(A2)] $x(g_{1}(t,x)+g_{2}(t,x)+p(t))<0$, for all $t\in \mathbb{R}, |x|\ge d$. \end{itemize} \begin{lemma} \label{lem2.5} Assume (A0) and that there exists a positive constant $d$ such that one of the two conditions (A1) or (A2) holds. If $x(t)$ is a $T$-periodic solution of \eqref{e2.1}, then \begin{equation} |x|_\infty\le d+\sqrt{T}|x'|_2. \label{e2.13} \end{equation} \end{lemma} \begin{proof} Let $x(t)$ be a $T$-periodic solution of \eqref{e2.1}. Then, integrating \eqref{e2.1} from $0$ to $T$, we have $$ \int^T_0[g_{1}(t, x(t-\tau_{1}(t)))+g_{2}(t, x(t-\tau_{2}(t)))+p(t)] dt=0. $$ This implies that there exists a constant $t_{1}\in \mathbb{R}$ such that \begin{equation} g_{1}(t_{1}, x(t_{1}-\tau_{1}(t_{1})))+g_{2}(t_{1}, x(t_{1}-\tau_{2}(t_{1})))+p(t_{1})=0. \label{e2.14} \end{equation} We show next the following Claim: If $x(t)$ is a $T$-periodic solution of \eqref{e2.1}, then there exists a constant $t_{2}\in \mathbb{R}$ such that \begin{equation} |x(t_{2})|\leq d . \label{e2.15} \end{equation} Assume, by way of contradiction, that \eqref{e2.15} does not hold. Then $$ |x(t)|> d, \quad\text{for all } t\in \mathbb{R}, \label{e2.16} $$ which, together with (A1), (A2) and \eqref{e2.14}, implies that one of the following relations holds: \begin{gather} x(t_{1}-\tau_{1}(t_{1}))> x(t_{1}-\tau_{2}(t_{1}))> d;\label{e2.17} \\ x(t_{1}-\tau _{2}(t_{1}))> x(t_{1}-\tau_{1}(t_{1}))> d;\label{e2.18}\\ x(t_{1}-\tau_{1}(t_{1}))< x(t_{1}-\tau_{2}(t_{1}))<- d;\label{e2.19}\\ x(t_{1}-\tau_{2}(t_{1}))< x(t_{1}-\tau_{1}(t_{1}))<- d.\label{e2.20} \end{gather} If \eqref{e2.17} holds, in view of (A0)(1), (A0)(2), (A1) and (A2), we shall consider four cases as follows. \noindent Case (i). If (A1) and (A0)(1) hold, according to \eqref{e2.17}, we obtain \begin{align*} 0&\max\{D_{1}\sqrt{T}+d , \overline{D}_{1}\sqrt{T}+d , d \}$ that the conditions (1) and (2) in Lemma \ref{lem2.1} hold. Furthermore, define the continuous functions \begin{gather*} H_{1}(x,\mu)=(1-\mu)x+\mu\cdot \frac{1}{T}\int^{T}_{0}[g_{1}(t,x)+g_{2}(t,x)+p(t)]dt; \mu\in [0 \, 1], \\ H_{2}(x,\mu)=-(1-\mu)x+\mu\cdot \frac{1}{T}\int^{T}_{0}[g_{1}(t,x)+g_{2}(t,x)+p(t)]dt; \mu\in [0 \, 1]. \end{gather*} If (A1) holds, then $$ xH_{1}(x,\mu)\neq 0 \quad \mbox{for all} x\in \partial \Omega\cap \ker L. $$ Hence, using the homotopy invariance theorem, we have \begin{align*} \deg\{QN, \Omega\cap \ker L , 0 \} & =\deg\{\frac{1}{T} \int^{T}_{0}[g_{1}(t,x)+g_{2}(t,x)+p(t)]dt, \Omega\cap \ker L , 0 \}\\ & =deg\{x, \Omega\cap \ker L , 0 \}\neq 0. \end{align*} If (A2) holds, then $ xH_{2}(x,\mu)\neq 0 $ for all $x\in \partial \Omega\cap \ker L$. Hence, using the homotopy invariance theorem, we obtain \begin{align*} \deg\{QN, \Omega\cap \ker L , 0 \} & =\deg\{\frac{1}{T}\int^{T}_{0}[g_{1}(t,x)+g_{2}(t,x)+p(t)]dt, \Omega\cap \ker L , 0 \} \\ &=\deg\{-x, \Omega\cap \ker L , 0 \}\neq 0. \end{align*} In view of all the discussions above and Lemma \ref{lem2.1}, Theorem \ref{thm3.1} is proved. \end{proof} \section{Concluding remarks} \begin{example} \label{examp4.1} \rm The first-order neutral functional differential \begin{equation} (x(t)+\frac{1}{8}x(t-\delta))' =- \frac{3}{8 } x(t-\frac{\sqrt{2}}{64}\sin ^{2} t)+ \frac{1 }{32}[1-x(t-\frac{\sqrt{2}}{64}\cos ^{2} t)]+e^{\cos t} \label{e4.1} \end{equation} has a unique $2\pi$-periodic solution. From \eqref{e4.1}, we have $B=\frac{1}{8}$, $g_{1}(x)=-\frac{3}{8 } x$, $g_{2}(x )=\frac{1}{32}[1-x ]$ and $p(t)=e^{\cos t}$. Then, $ \mu_{1}=\sup_{t\in [0,T]}|\frac{\sqrt{2}}{64}\sin ^{2} t| =\frac{\sqrt{2}}{64}< 2\pi$, $\mu_{2}=\sup_{t\in [0,T]}|\frac{\sqrt{2}}{64}\cos ^{2} t|=\frac{\sqrt{2}}{64}< 2\pi$, $b_{1}=\frac{3}{8 }$, $b_{2}=\frac{1}{32}$. It is straight forward to check that all the conditions needed in Theorem \ref{thm3.1} are satisfied. Therefore, \eqref{e4.1} has a unique $2\pi$-periodic solution. \end{example} \begin{remark} \label{rmk4.1} \rm Equation \eqref{e4.1} is a very simple version of first order NFDE. Since $B\neq 0$, all the results in the references and their references can not be applicable to \eqref{e4.1} to obtain the existence and uniqueness of $2\pi$-periodic solutions. This implies that the results of this paper are essentially new. \end{remark} \begin{remark} \label{rmk4.2} \rm By using the methods similarly to those used for \eqref{e1.1}, we can deal with the NFDE with multiple deviating arguments, for example \begin{equation} (x(t)+Bx(t-\delta))'=\sum_{i=1}^{n}g_{i}(t,x(t-\tau_{i}(t))) +p(t), \label{e4.2} \end{equation} where $\tau_{i}(i=1,2,\dots, n)$, $p:\mathbb{R}\to \mathbb{R}$ and $g_{i}(i=1,2,\dots, n) :\mathbb{R}\times \mathbb{R}\to \mathbb{R}$ are continuous functions, $\tau_{i}(i=1,2,\dots, n)$ and $p$ are $T$-periodic, $g_{i}, i=1,2,\dots, n, $ are $T$-periodic in the first argument, and $T>0$. One may also establish the results similarly to those in Theorem \ref{thm3.1} under some minor additional assumptions on $g_{i}(t,x)(i=1,2,\dots, n)$. \end{remark} \begin{thebibliography}{00} \bibitem{b1} T. A. Burton, {\it Stability and Periodic Solution of Ordinary and Functional Differential Equations}, Academic Press, Orland, FL., 1985. \bibitem{g1} R. E. Gaines, J. Mawhin; {\it Coincide degree and nonlinear differential equations}, Lecture Notes in Math., 568, Spring-Verlag, 1977. \bibitem{h1} G. H. Hardy, J. E. Littlewood, G. Polya; {\it Inequalities}, London: Cambridge Univ. Press, 1964. \bibitem{h2} J. K. Hale, {\it Theory of Functional Differential Equations}, Spring, New York, 1977. \bibitem{h3} J. K. Hale, J. Mawhin; {\it Coincide degree and periodic solutions of neutral equations}, J. Differential Equations, 15(1975), 295-307. \bibitem{k1} V. B. Komanovskii, V. R. Nosov; {\it Stability of Functional Differential Equations}, Academic Press, London, 1986. \bibitem{k2} Yang Kuang, {\it Delay Differential Equations with Applications in Population Dynamical system}, Academic Press, New York, 1993. \bibitem{l1} Bingwen Liu and Lihong Huang, {\it Periodic Solutions for a Class of Forced Li$\acute{e}$nard-type Equations}, Acta Mathematicae Applicatae Sinica, English Series, 21(2005), 81-92. \bibitem{l2} Shiping Lu, Weigao Ge; {\it On existence of periodic solutions for neutral differential equation}, Nonlinear Analysis, 54(2003), 1285-1306. \bibitem{l3} Shiping Lu, Weigao Ge; {\it Periodic solutions for a kind of Li\'eneard equations with deviating arguments}, J. Math. Anal. Appl., 249(2004), 231-243. \bibitem{w1} Genqiang Wang, Existence of periodic solutions for second order nonlinear neutral delay equations (in Chinese), Acta Mathematica Sinica, 47 (2004), 379-384 . \bibitem{z1} Meirong Zhang; {\it Periodic solutions of linear and quasilinear neutral functional differential equations}, J. Math. Anal. Appl., 189(1995), 378-392. \end{thebibliography} \end{document}