\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 130, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{7mm}} \begin{document} \title[\hfilneg EJDE-2006/130\hfil Weak solutions] {Weak solutions for a strongly-coupled nonlinear system} \author[O. A. Lima, A. T. Lour\^edo, A. O. Marinho\hfil EJDE-2006/130\hfilneg] {Osmundo A. Lima, Aldo T. Lour\^edo, Alexandro O. Marinho} % in alphabetical order \address{Osmundo A. Lima\newline Universidade Estadual da Para\'iba, DME, Campina Grande - PB, Brazil} \email{osmundo@hs24.com.br} \address{Aldo T. Lour\^edo\newline Universidade Estadual da Para\'iba, DME, Campina Grande - PB, Brazil} \email{aldotl@bol.com.br} \address{Alexandro O. Marinho\newline Universidade Federal da Para\'iba, DM, Jo\~ao Pessoa - PB, Brazil} \email{nagasak@ig.com.br} \date{} \thanks{Submitted March 3, 2006. Published October 16, 2006.} \thanks{O. A. Marinho is partially supported by CNPq-Brazil} \subjclass[2000]{35L85, 35L05, 35L20, 35L70, 49A29} \keywords{Weak solutions; coupled system; monotonic operator} \begin{abstract} In this paper the authors study the existence of local weak solutions of the strongly nonlinear system \begin{gather*} u''+\mathcal{A}u +f(u,v)u = h_1 \\ v''+\mathcal{A}v +g(u,v)v = h_2 \end{gather*} where $ \mathcal{A}$ is the pseudo-Laplacian operator and $f$, $g$, $h_1 $ and $h_2 $ are given functions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma}[section] \allowdisplaybreaks \section{Introduction} Let $\Omega $ be an open and bounded subset in ${\mathbb{R}^n} $ with smooth boundary $\Gamma $ and let $T $ be a positive real number. In the cylinder $Q=\Omega \times ]0, T[$, with lateral boundary $\sum = \Gamma \times ]0, T[$, we consider the nonlinear system \begin{equation} \label{e*} \begin{gathered} u''+ \mathcal{A}u + f(u,v)u=h_1 \\ v''+ \mathcal{A}v + g(u,v)v=h_2 \\ u(0)=u_0,\quad v(0)=v_0, \quad u'(0)=u_1, \quad v'(0)=v_1 \\ u=v=0 \quad \mbox{on } \Sigma = \Gamma \times ]0, T[ \end{gathered} \end{equation} where $$ \mathcal{A}u=- \sum_{i=1}^n\frac{\partial}{\partial x_i} \Big(\big |\frac{\partial u}{\partial x_i}|^{p-2}\frac{\partial u}{\partial x_i} \Big), \quad p>2, $$ is the pseudo-Laplacian operator, $f$ is a continuous function in the first variable and Lipschitz in the second variable and $g $ is a Lipschitz's function in the first variable and continuous in the second variable, with $f(0,0)=g(0,0)=0 $ and $u_0$, $v_0$, $u_1$, $v_1$, $h_1 $ and $h_2 $ are given functions. When $p\geq 2$, many authors studied the system \eqref{e*}. For instance, we can mention: Segal \cite{segal}, where the physical meaning of \eqref{e*} is presented, Medeiros and Menzala \cite{luis1}, Medeiros and M. Miranda \cite{luis2}, Castro \cite{castro}, Biazutti \cite{biazutti} and more recently, Clark and Lima \cite{clark1} showed the existence, a local solution and its uniqueness for the system \begin{gather*} u'' -\Delta u + f(u,v)u= h_1 \quad \mbox{in } Q=\Omega\times (0,T)\\ v'' -\Delta u + g(u,v)v= h_2 \quad \mbox{in } Q\\ u(0)=u_0,\quad u'(0)=u_1 \quad \mbox{in } \Omega\\ v(0)=v_0,\quad v'(0)=v_1 \quad \mbox{in } \Omega \\ u=0,\quad v=0 \quad \mbox{on }\Sigma=\Gamma\times (0,T) , \end{gather*} where the functions $f$ and $g$ satisfying the same conditions of the problem \eqref{e*}. Castro \cite{castro} showed the existence of solution for the system \begin{gather*} u'' + \mathcal{A}u -\Delta u' + |v|^{\rho + 2}|u|^{\rho}u = f_1 \quad \mbox{in }Q\\ v'' + \mathcal{A}v -\Delta v' + |u|^{\rho + 2}|v|^{\rho}v = f_2 \quad \mbox{in }Q\\ u(0)=u_0,\quad u'(0)=u_1 \quad \mbox{in } \Omega \\ v(0)=v_0, \quad v'(0)=v_1 \quad \mbox{in } \Omega \\ u=0,\quad v=0 \quad \mbox{on }\Sigma, \end{gather*} where $\mathcal{A}$ is the pseudo-Laplacian operator. We can show that the functions $f(u,v)=|u|^{\rho +2}|v|^{\rho}$ and $g(u,v)=|v|^{\rho + 2}|u|^{\rho},\rho \geq -1$, satisfy the conditions of the system \eqref{e*}. Consequently the above system, without the dissipations $\Delta u'$ and $\Delta v'$, is a particular case of $(\ast)$. Thus, we see that \eqref{e*} generalizes the above mentioned problems. To show the existence of a {\it local} solution for \eqref{e*}, we encounter following technical difficulties: \begin{itemize} \item[(i)] The choices of the functional spaces; \item[(ii)] In the a priori estimate for $u''_m$, we had that to use the projection operator, since, to derive the approximated equation we will have much technical difficulties because of the pseudo-Laplacian operator in the equation; \item[(iii)] In the passage to the limit, we use strongly the fact that $\mathcal{A}$ is a monotonic and hemicontinuous operator. \end{itemize} We remark that these difficulties do not appear in \cite{clark1}. \subsection*{Notation} We represent the Sobolev space of order $m $ in $\Omega $ by $$ W^{m,p}(\Omega)=\{u \in L^p(\Omega): D^{\alpha}u \in L^p(\Omega) \forall | \alpha | \leq m \}, $$ with the norm $$ \| u \|_{m,p}=\Big(\sum_{|\alpha | \leq m} |D^{\alpha}u | ^p_{L^p(\Omega)} \Big) ^ {1/p}, u \in W^{m,p}(\Omega), 1\leq p <\infty. $$ Let $\mathcal{D}(\Omega) $ be the space of test functions in $\Omega$ and by $W_0^{m,p}(\Omega) $ we represent the closure of $\mathcal{D}(\Omega) $ in $ W^{m,p}(\Omega)$. The dual space of $W_0^{m,p}(\Omega) $ is denoted by $W^{-m,p '} (\Omega) $ with $p ' $ is such that $ \frac{1}{p} + \frac{1}{p '} =1$. We use the symbols $(\cdot ,\cdot ) $ and $|\cdot|$, to indicate the inner product and the norm in $L^2(\Omega)$. We use $\langle \cdot,\cdot \rangle _{W^{-1,p}(\Omega),W_0^{1,p}(\Omega)} $ to indicate the duality between $W^{-1,p '}(\Omega) $ and $W_0^{1,p}(\Omega) $ and $ \|\cdot\|_0 $ to indicate the norm $W_0^{1,p}(\Omega). $ The pseudo-Laplacian operator $\mathcal{A} $ is such that $$ \begin{array}{cccc} \mathcal{A}: & W_0^{1,p}(\Omega) & \to & W^{-1,p '}(\Omega) \\ & u & \mapsto & {\mathcal{A}u} \end{array} $$ and it satisfies the following properties: \begin{itemize} \item $\mathcal{A} $ is monotonic, that is, $\langle \mathcal{A}u - \mathcal{A}v, u-v \rangle \geq 0, \forall u, v \in W_0^{1,p}(\Omega)$; \item $\mathcal{A} $ is hemicontinuous, that is, for each $u, v, w \in W_0^{1,p}(\Omega) $ the function $\lambda \mapsto \langle \mathcal{A}(u+ \lambda v),w \rangle $ is continuous in $\mathbb{R}$; \item $\langle \mathcal{A}u(t),u(t)\rangle_{W^{-1,p '}(\Omega) \times W_0^{1,p}(\Omega)} = \|u\|_0^p $; \item $\langle \mathcal{A}u(t),u'(t)\rangle _{W^{-1,p '}(\Omega) \times W_0^{1,p}(\Omega)} = \frac{1}{p}\frac{d}{dt}\|u\|_0^p $, $\frac{d}{dt} = ' $; \item $\| \mathcal{A}u(t)\|_{W^{-1,p '}(\Omega)} \leq C \|u\|_0^{p-1}$, where $C $ is a constant; \end{itemize} We will use the same notation for the operator $P $ and its restrictions, as well as for the operator $P^{\ast}$. The next lemma plays a central role in the proof of the Existence Theorem. Its proof can be found in \cite{clark1}. \begin{lemma} \label{mainlemma} Let $\phi $ be a positive real function, $\alpha, \beta $ and $\gamma $, positive real constants, with $\gamma>1 $, such that $$ \phi(t)\leq \alpha + \beta\int_0^t\big\{\phi(s) + \phi^{\gamma}(s)\big \}ds. $$ Then, there exists $T_0\in\mathbb{R}$, with $0 0 $ fixed, satisfying \begin{gather*} u,v \in L^{\infty}(0,T_0;W_0^{1,p}(\Omega)); \\ u',v' \in L^{\infty}(0,T_0;L^2(\Omega)); \\ \frac{d}{dt}(u',w) + \langle \mathcal{A}u,w\rangle + \langle f(u,v)u,w \rangle =\big( h_1,w\big), \forall w \in W_0^{1,p}(\Omega) \mbox{in } D'(0,T_0); \\ \frac{d}{dt}(v',w) + \langle \mathcal{A}v,w\rangle + \langle g(u,v)v,w \rangle =\big( h_2,w\big), \quad \forall w \in W_0^{1,p}(\Omega) \mbox{ in } D'(0,T_0);\\ u(0)=u_0, \quad u'(0)=u_1,\quad v(0)=v_0, \quad v'(0)=v_1. \end{gather*} \section{Existence Results} \begin{theorem} \label{thm31} Let $f $ and $g $ be functions of two variables such that $f $ is continuous in the first variable and Lipschitz in the second variable and $g $ is Lipschitz in the first and continuous in the second variable, with $f(0,0)=g(0,0)=0 $. \begin{gather} \label{e1} h_1,h_2 \in L^{2}(0,T;L^2(\Omega)); \\ \label{e2} u_0,v_0 \in W_0^{1,p}(\Omega); \\ \label{e3} u_1,v_1 \in L^2(\Omega). \end{gather} Then it exists $T_0>0$, $T_0 \in \mathbb{R}$ and functions $u:Q_{T_0}\to \mathbb{R}$ and $v:Q_{T_0}\to \mathbb{R}$ satisfying \begin{gather} \label{e4} u,v \in L^{\infty}(0,T_0;W_0^{1,p}(\Omega));\\ \label{e5} u',v' \in L^{\infty}(0,T_0;L^2(\Omega)); \\ \label{e6} \frac{d}{dt}(u',w) + \langle \mathcal{A}u,w\rangle + \langle f(u,v)u,w\rangle =\big(h_1,w\big), \quad \forall w \in W_0^{1,p}(\Omega) , \mbox{ in } D'(0,T_0); \\ \label{e7} \frac{d}{dt}(v',w) + \langle \mathcal{A}v,w\rangle + \rangle g(u,v)v,w \rangle = \big(h_2,w\big), \quad \forall w \in W_0^{1,p}(\Omega), \mbox{ in } D'(0,T_0);\\ \label{e8} u(0)=u_0, \quad v(0)=v_0; \\ \label{e9} u'(0)=u_1, \quad v'(0)=v_1. \end{gather} \end{theorem} The main tools in the proof of this theorem are the Faedo-Galerkin method and compactness arguments. Let $H_0^s(\Omega)$, with $s>m=n\big(\frac{1}{2}-\frac{1}{p}\big) + 1 $ a separable Hilbert space such that $H_0^s(\Omega)\hookrightarrow W_0^{1,p}(\Omega)$, is a continuous and dense immersion. In $H_0^s(\Omega) $, there exists a complete orthonormal hilbertian base $ \{w_j \}_{j\in N} $ in $L^2(\Omega)$. We consider $V_m=[w_1,\dots ,w_m] $ the subspace of $H_0^s(\Omega) $ generated by the $m $ first vectors of the base $ \{w_j \}_{j\in \mathbb{N}}$. Also, we have the following chain of continuous and dense immersions. \begin{equation} \label{e10} H_0^s(\Omega)\hookrightarrow W_0^{1,p}(\Omega)\hookrightarrow L^2(\Omega)\hookrightarrow W^{-1,p'}(\Omega)\hookrightarrow H^{-s}(\Omega). \end{equation} We will divide the proof in three steps: $(i)$ Approximated Problem, $(ii)$ A Priori Estimates $I$ and $(iii)$ A Priori Estimates $II$. \subsection*{Approximated Problem} We want to find $u_m(t),v_m(t) $ in $V_m $ satisfying the approximated problem. \begin{gather} (u_{m}''(t),w) + \langle \mathcal{A}u_{m}(t),w \rangle + \langle f(u_m(t),v_m(t))u_m(t),w \rangle = (h_{1}(t),w), \label{e11}\\ (v_{m}''(t),w) + \langle \mathcal{A}v_{m}(t),w\rangle + \langle g(u_m(t),v_m(t))v_{m}(t),w\rangle = (h_{2}(t),w), \label{e12} \end{gather} for all $w\in V_{m}$; and \begin{equation} \label{e13} \begin{gathered} u_{m}(0) = u_{0m} , \quad u_{m}'(0) = u_{1m}, \\ v_{m}(0) = v_{0m}, \quad v_{m}'(0) = v_{1m}; \end{gathered} \end{equation} So that \begin{gather*} u_{0m}\to u_{0},\quad v_{0m}\to v_{0}, \quad \mbox{in } W_{0}^{1,p}(\Omega); \label{e14} \\ u_{1m}\to u_{1},\quad v_{1m}\to v_{1},\quad \mbox{in } L^{2}(\Omega).\label{e15} \end{gather*} It can be shown that the above system satisfies the Caracthéodory's conditions; therefore there exists solutions $u_m(t),v_m(t) $ in $[0,t_m)$, $t_m 0 $, such that $ \frac{1}{\alpha}+ \frac{1}{\beta} + \frac{1}{2}=1 $, with $1\leq \alpha, \beta\leq \frac{np}{n-p}$. Now, using Holder and Young inequalities, the inequality $ab\leq\frac{a^2+b^2}{2}$ and the hypothesis over $f$, we have \begin{align*} %\label{22} &2\int_{0}^t\int_{\Omega} |f(u_m(s),v_m(s))| |u_m(s)| |u'_m(s)|ds\\ & \leq C\int_{0}^t \int_{\Omega}|v_m(s)| |u_m(s)| |u'_m(s)|ds\\ & \leq C\int_{0}^t \Big(\int_{\Omega}|v_m(s)|^{\alpha}\Big)^{\frac{1}{\alpha}} \Big(\int_{\Omega}|u_m(s)|^{\beta}\Big)^{\frac{1}{\beta}} \Big(\int_{\Omega}|u'_m(s)|^2\Big)^{2}\\ &= C\int_{0}^t|v_m(s)|_{L^{\alpha}(\Omega)} |u_m(s)|_{L^{\beta}(\Omega)}|u'_m(s)|_{L^{2}(\Omega)}ds\\ &\leq C\int_{0}^t\Big\{\frac{1}{p}|v_m(s)|_{L^{\alpha}(\Omega)}^p+ \frac{p-1}{p}|u_m(s)|_{L^{\beta}(\Omega)}^{\frac{p}{p-1}}\Big\} |u'_m(s)|_{L^{2}(\Omega)}ds \\ &\leq C\int_{0}^t\Big\{\frac{1}{p}|v_m(s)|_{L^{\alpha}(\Omega)}^p+ \frac{1}{p}|u_m(s)|_{L^{\beta}(\Omega)}^{\frac{p}{p-1}(p-1)} + \frac{p-2}{p-1}\Big\} |u'_m(s)|_{L^{2}(\Omega)}ds\\ &= C\int_{0}^t\Big\{\frac{1}{p}|v_m(s)|_{L^{\alpha}(\Omega)}^p+ \frac{1}{p}|u_m(s)|_{L^{\beta}(\Omega)}^{p} + \frac{p-2}{p-1}\Big\} |u'_m(s)|_{L^{2}(\Omega)}ds\\ &\leq C\int_{0}^t\Big\{\frac{1}{p}|v_m(s)|_{L^{\alpha}(\Omega)}^p+ \frac{1}{p}|u_m(s)|_{L^{\beta}(\Omega)}^{p} + \frac{p-2}{p-1}\Big\}^2 + |u'_m(s)|_{L^{2}(\Omega)}^2ds\\ &\leq C\int_{0}^t\Big\{\frac{1}{p^2}|v_m(s)|_{L^{\alpha}(\Omega)}^{2p}+ \frac{1}{p^2}|u_m(s)|_{L^{\beta}(\Omega)}^{2p} + \big(\frac{p-2}{p-1}\big)^2+ |u'_m(s)|_{L^{2}(\Omega)}^2\Big\}ds \\ &\leq C\int_{0}^t\Big\{\frac{1}{p^2}|v_m(s)|_{L^{\alpha}(\Omega)}^{2p}+ \frac{1}{p^2}|u_m(s)|_{L^{\beta}(\Omega)}^{2p} + 1 + |u'_m(s)|_{L^{2}(\Omega)}^2\Big\}ds. \end{align*} Since $W_0^{1,p}(\Omega)\hookrightarrow L^{\alpha}(\Omega)$ and $W_0^{1,p}(\Omega)\hookrightarrow L^{\beta}(\Omega)$, it follows that \begin{equation} \label{e23} \begin{aligned} &2\int_{0}^t\int_{\Omega} |f(u_m(s),v_m(s))| |u_m(s)| |u'_m(s)|ds \\ &\leq C\int_{0}^t\Big\{\frac{1}{p^2}\|v_m(s)\|_0^{2p}+ \frac{1}{p^2}\|u_m(s)\|_0^{2p} + 1 + |u'_m(s)|_{L^{2}(\Omega)}^2\Big\}ds. \end{aligned} \end{equation} Similarly, we have \begin{equation} \label{e24} \begin{aligned} &2\int_{0}^t\int_{\Omega} |g(u_m(s),v_m(s))| |v_m(s)| |v'_m(s)|ds \\ &\leq C\int_{0}^t\Big\{\frac{1}{p^2}\|u_m(s)\|_0^{2p}+ \frac{1}{p^2}\|v_m(s)\|_0^{2p} + 1 + |v'_m(s)|_{L^{2}(\Omega)}^2\Big\}ds. \end{aligned} \end{equation} Substituting, \eqref{e23} and \eqref{e24} in \eqref{e20}, \begin{equation} \label{e25} \begin{aligned} &|u'_m(t)|^2 +|v'_m(t)|^2 +\frac{2}{p}\|u_m(t)\|_0^p +\frac{2}{p}\|v_m(t)\|_0^p \\ &\leq C + C\int_{0}^t\big(|u'_m(s)|^2 + |v'_m(s)|^2\big)ds + C\int_{0}^t\big\{\|u_m(s)\|_0^{2p} + \|v_m(s)\|_0^{2p}\big\} \\ &\quad + C\int_{0}^t2\,ds \\ &\leq C + C\int_{0}^t\big(|u'_m(s)|^2 + |v'_m(s)|^2\big)ds + C\int_{0}^t\big\{\|u_m(s)\|_0^{2p} + \|v_m(s)\|_0^{2p} \big\} \\ &\quad + C\int_{0}^T2\,ds \\ &\leq C + C\int_{0}^t\big(|u'_m(s)|^2 + |v'_m(s)|^2\big)ds + C\int_{0}^t\big\{\|u_m(s)\|_0^{2p} + \|v_m(s)\|_0^{2p} \big\}. \end{aligned} \end{equation} Note that \begin{align*} &\frac{2}{p}|u'_m(t)|^2 +\frac{2}{p}|v'_m(t)|^2 +\frac{2}{p}\|u_m(t)\|_0^p +\frac{2}{p}\|v_m(t)\|_0^p\\ &\leq |u'_m(t)|^2 +|v'_m(t)|^2 +\frac{2}{p}\|u_m(t)\|_0^p +\frac{2}{p}\|v_m(t)\|_0^p, \end{align*} with $p>2$, It follows that %\label{e26} \begin{align*} &|u'_m(t)|^2 +|v'_m(t)|^2 +\|u_m(t)\|_0^p +\|v_m(t)\|_0^p\\ &\leq C + C\int_{0}^t\big(|u'_m(s)|^2 + |v'_m(s)|^2\big)ds + C\int_{0}^t\big\{\|u_m(s)\|_0^{2p} + \|v_m(s)\|_0^{2p} \big\}\\ &\leq C + C\int_{0}^t\Big\{\big(|u'_m(s)|^2 + |v'_m(s)|^2\big)^2 + \big(\|u_m(s)\|_0^p + \|v_m(s)\|_0^p\big)^2 \\ &\quad + 2\big(|u'_m(s)|^2 + |v'_m(s)|^2\big)\big(\|u_m(s)\|_0^p + \|v_m(s)\|_0^p\big) \Big\}ds \\ &\quad + C\int_{0}^t\big\{|u'_m(s)|^2 + |v'_m(s)|^2 + \|u_m(s)\|_0^{p} + \|v_m(s)\|_0^{p} \big\}ds\\ &= C + C\int_{0}^t\big\{|u'_m(s)|^2 + |v'_m(s)|^2 + \|u_m(s)\|_0^{p} + \|v_m(s)\|_0^{p}\big\}^2ds \\ &\quad + C\int_{0}^t\big\{|u'_m(s)|^2 + |v'_m(s)|^2 + \|u_m(s)\|_0^{p} + \|v_m(s)\|_0^{p} \big\}ds. \end{align*} By setting $$ \phi(t)=|u'_m(t)|^2 +|v'_m(t)|^2 +\|u_m(t)\|_0^p +\|v_m(t)\|_0^p, $$ the above inequality can be rewritten as \begin{equation} \label{e27} \phi(t)\leq C + C\int_0^{t}\big\{\phi(s) + \phi^2(s)\big\}ds. \end{equation} Then, by Lemma \ref{mainlemma}, there exists $T_0 \in \mathbb{R}$, with $0= \int_0^{T_0}(u'_{\nu}(t),\phi(t))dt$, and assuming $\phi(x,t)=w(x)\psi(t)$ imply hat $$ \int_0^{T_0}(u'_{\nu}(t),\phi(t))dt=\int_0^{T_0}(u'_{\nu}(t),w(x))\psi(t)dt, \forall w \in L^2(\Omega), \quad \forall \psi \in L^1(0,T_0). $$ Consequently, for all $w \in L^2(\Omega)$ and all $\psi \in L^1(0,T_0)$, \begin{equation*} %72 \int_0^{T_0}(u'_{\nu}(t),w(x))\psi(t)dt\to \int_0^{T_0}(u'(t),w(x))\psi(t)dt\,. \end{equation*} In fact, \begin{equation*} %73 \int_0^{T_0}(u'_{\nu}(t),w(x))\varphi'(t)dt\to \int_0^{T_0}(u'(t),w(x))\varphi'(t)dt, \end{equation*} for all $w \in V_m\subset W_0^{1,p}(\Omega)\subset L^2(\Omega)$ and all $\psi=\varphi'$, $\varphi \in D(0,T_0)\subset L^1(0,T_0)$. In a similar way, \begin{equation*} %74 \int_0^{T_0}<\mathcal{A}u_{\nu}(t),w(x)>\psi(t)dt\to \int_0^{T_0}<\chi(t),w(x)>\psi(t)dt, \end{equation*} for all $w \in W_0^{1,p}(\Omega)$ and all $\psi \in L^1(0,T_0)$. In fact, \begin{equation*} %75 \int_0^{T_0}(\mathcal{A}u_{\nu}(t),w(x))\varphi(t)dt\to \int_0^{T_0}(\chi(t),w(x))\varphi(t)dt, \end{equation*} for all $w \in V_m\subset W_0^{1,p}(\Omega)$ and all $\varphi \in D(0,T_0)\subset L^1(0,T_0)$. From \eqref{e34}, we have the existence of a subsequence $(f(u_{\nu,},v_{\nu,})u_{\nu})_{\nu}$ such that \begin{equation} \label{e76} f(u_{\nu,},v_{\nu,})u_{\nu}\stackrel{*} {\rightharpoonup} \lambda, \quad \mbox{in } L^{\infty}(0,T_0;L^{\theta}(\Omega)). \end{equation} Since $L^{\infty}(0,T_0;L^{\theta}(\Omega))\hookrightarrow L^{\theta}(0,T_0;L^{\theta}(\Omega))$, we have from \eqref{e41} that \begin{equation*} %77 (f(u_m(t),v_m(t))u_m(t))_m,(g(u_m(t),v_m(t))v_m(t))_m \end{equation*} are bounded in $L^{\theta}(0,T_0;L^{\theta}(\Omega))$; Thus we guarantee the existence of a subsequence, denoted as above, such that \begin{equation} \label{e78} f(u_{\nu,},v_{\nu,})u_{\nu}\rightharpoonup \lambda, \quad \mbox{in } L^{\theta}(0,T_0;L^{\theta}(\Omega)). \end{equation} Since \begin{gather*} (u'_m)_m, \quad \mbox{is bounded in } L^{\infty}(0,T_0;L^2(\Omega)),\\ (u_m)_m, \quad \mbox{is bounded in } L^{\infty}(0,T_0;W_0^{1,p}(\Omega)) W_0^{1,p}(\Omega)\stackrel{c}{\hookrightarrow} L^2(\Omega), \end{gather*} we have by Aubin-Lions theorem, the existence of a subsequence $(u_{\nu} )_{\nu} $ such that \begin{gather} % \label{P} %79-80 u_{\nu}\to u, \quad \mbox{in} L^2(0,T_0;L^2(\Omega))\equiv L^2(Q_{T_0}) \label{e79}\\ u_{\nu}\to u, \quad \mbox{a.e. in } Q_{T_0} \label{e80} \end{gather} Since, the sequences $(v_m)_m,(v'_m)_m $ satisfy the same conditions, it follows that, there exists a subsequence $(v_{\nu} )_{\nu} $ such that \begin{gather} %81-82 v_{\nu}\to v, \quad \mbox{in} L^2(0,T_0;L^2(\Omega))\equiv L^2(Q_{T_0}) \label{e81} \\ v_{\nu}\to v, \quad \mbox{a.e, in} Q_{T_0} \label{e82} \end{gather} From \eqref{e80}, \eqref{e82}, and of the hypothesis on $f,g $, we have \begin{gather} \label{e83} f(u_{\nu,},v_{\nu,})u_{\nu}\to f(u,v)u, \quad \mbox{a.e. in } Q_{T_0}. \\ g(u_{\nu,},v_{\nu,})v_{\nu}\to g(u,v)v, \quad \mbox{a.e. in } Q_{T_0}. \label{e84} \end{gather} From \eqref{e38}, we have $$ \|f(u_m,v_m)u_m\|_{L^{\theta}(Q_{T_0})}\leq C, \quad \forall m, $$ where $L^{\theta}(Q_{T_0})\equiv L^{\theta}(0,T_0;L^{\theta}(\Omega))$. From this and \eqref{e83}, by means of Lion's Lemma, it follows that \begin{equation*} %85 f(u_{\nu,},v_{\nu,})u_{\nu}\rightharpoonup f(u,v)u, \mbox{in } L^{\theta}(Q_{T_0}), \end{equation*} for $ 1\leq \theta\leq \frac{np}{3(n-p)}$. Therefore, from \eqref{e78}, we have $\lambda=f(u,v)u$ and from \eqref{e76}. This implies \begin{equation} \label{e86} f(u_{\nu,},v_{\nu,})u_{\nu}\stackrel{*} {\rightharpoonup} f(u,v)u, \quad \mbox{in } L^{\infty}(0,T_0;L^{\theta}(\Omega)). \end{equation} Similarly, \begin{equation*} %87 g(u_{\nu,},v_{\nu,})v_{\nu}\stackrel{*} {\rightharpoonup} g(u,v)v, \quad \mbox{in } L^{\infty}(0,T_0;L^{\theta}(\Omega)). \end{equation*} The convergence in \eqref{e86} implies \begin{equation*} %88 \int_0^{T_0}\big\psi(t)dt\to \int_0^{T_0}\big\psi(t)dt, \end{equation*} for all $w \in W_0^{1,p}(\Omega)\subset L^{\gamma}(\Omega)$, for all $\psi \in L^1(0,T_0)$. In fact, \begin{equation*} %89 \int_0^{T_0}\big\varphi(t)dt\to \int_0^{T_0}\big\varphi(t)dt, \end{equation*} for all $w \in V_m\subset W_0^{1,p}(\Omega)\subset L^{\gamma}(\Omega)$, for all $\varphi \in D(0,T_0)\subset L^1(0,T_0)$. Taking the limit, as $\nu\to\infty $, in \eqref{e70} and using the convergences obtained above, we have \begin{equation} \label{e90} \begin{aligned} &-\int_0^{T_0}(u'(t),w)\varphi' dt + \int_0^{T_{0}}\langle \chi(t),w\rangle \varphi dt + \int_0^{T_0}\langle f(u(t),v(t))u(t),w \rangle\varphi dt \\ &=\int_0^{T_{0}}(h_1(t),w) \varphi dt ,\quad \forall w \in V_m, \; \varphi \in D(0,T_0). \end{aligned} \end{equation} Note that, with a similar reasoning for the approximate equation \eqref{e12} we obtain \begin{equation} \label{e91} \begin{aligned} &-\int_0^{T_0}(v'(t),w)\varphi' dt + \int_0^{T_0}\langle \eta(t),w\rangle \varphi dt + \int_0^{T_0}\langle g(u(t),v(t))v(t),w\rangle \varphi dt\\ & = \int_0^{T_{0}}(h_2(t),w)\varphi dt , \quad \forall w \in V_m, \; \varphi \in D(0,T_{0}). \end{aligned} \end{equation} Now, using the basis definition and the fact that $V_m $ is dense in $W_0^{1,p}(\Omega) $, expressions \eqref{e90} and \eqref{e91} take the form \begin{equation} \label{e92} \begin{aligned} &-\int_0^{T_0}(u'(t),w)\varphi' dt + \int_0^{T_{0}}<\chi(t),w>\varphi dt + \int_0^{T_0}\langle f(u(t),v(t))u(t),w\rangle \varphi dt \\ &= \int_0^{T_{0}}(h_1(t),w) \varphi dt, \quad \forall w \in W_0^{1,p}(\Omega),\; \varphi \in D(0,T_0), \end{aligned} \end{equation} and \begin{equation} \label{e93} \begin{aligned} &-\int_0^{T_0}(v'(t),w)\varphi' dt + \int_0^{T_0}\langle \eta(t),w\rangle \varphi dt + \int_0^{T_0}\langle g(u(t),v(t))v(t),w\langle \varphi dt\\ &=\int_0^{T_0}(h_2(t),w)\varphi dt , \quad \forall w \in W_0^{1,p}(\Omega),\; \varphi \in D(0,T_0). \end{aligned} \end{equation} Note that, the mappings $t\mapsto (u'(t),w), t\mapsto (v'(t),w) $ being functions in $L^{\infty}(0,T_0) $, they define distributions on $(0,T_0) $. Therefore, the first integrals of \eqref{e92}, \eqref{e93} are the derivative of these distributions. Thus, from \eqref{e92} we have \begin{equation*} %94 \int_0^{T_0}\big\{\frac{d}{dt}(u'(t),w) + \langle \chi(t),w \rangle + \langle f(u(t),v(t))u(t),w\rangle -(h_1(t),w)\big\}\varphi dt=0 \end{equation*} for all $w \in W_0^{1,p}(\Omega)$ and all $\varphi \in D(0,T_0)$. Thus, \begin{equation*} %95 \frac{d}{dt}(u'(t),w) + \langle \chi(t),w\rangle +\langle f(u(t),v(t))u(t),w\rangle =(h_1(t),w), \end{equation*} for all $w \in W_0^{1,p}(\Omega)$, in $D'(0,T_0)$. Similarly, \begin{equation*} %96 \frac{d}{dt}(v'(t),w) + \langle \eta(t),w\rangle + \langle g(u(t),v(t))v(t),w \rangle =(h_2(t),w), \end{equation*} for all $w \in W_0^{1,p}(\Omega)$, in $D'(0,T_0)$. If one shows that $\mathcal{A}u(t)=\chi(t) $ and $\mathcal{A}v(t)=\eta(t) $, the proof of the theorem will be complete; since the verification of the initial conditions can be done in a standard way. The monotonocity of $\mathcal{A} $ implies that $$ \int_0^{T_0}\langle \mathcal{A}u_{\nu}(t)-\mathcal{A}w, u_{\nu} -w \rangle dt \geq 0,\quad \forall w \in W_0^{1,p}(\Omega); $$ that is, $$ 0 \leq \int_0^{T_0}\langle \mathcal{A}u_{\nu}(t), u_{\nu} \rangle dt - \int_0^{T_0}\langle \mathcal{A}u_{\nu}(t), w \rangle dt - \int_0^{T_0}\langle \mathcal{A}w, u_{\nu}(t)-w \rangle dt, $$ for all $w \in W_0^{1,p}(\Omega)$. \begin{equation*} %97 \label{eq86} 0 \leq \lim sup \int_0^{T_0}\langle \mathcal{A}u_{\nu}(t), u_{\nu} \rangle dt - \int_0^{T_0}\langle \chi(t), w \rangle dt - \int_0^{T_0}\langle \mathcal{A}w, u(t)-w \rangle dt, \end{equation*} for all $w \in W_0^{1,p}(\Omega)$. Considering the approximate equation \eqref{e11} with $m=\nu $ and $w=u_{\nu}(t) $ we have $$ (u_{\nu}''(t), u_{\nu}(t)) + \langle \mathcal{A}u_{\nu}(t), u_{\nu}(t) \rangle + \langle f(u_{\nu},v_{\nu})u_{\nu}, u_{\nu} \rangle = ( h_1(t), u_{\nu}(t)). $$ Therefore, $$ \frac{d}{dt}(u_{\nu}'(t),u_{\nu}(t)) - | u_{\nu}'(t)|^2 + \langle \mathcal{A}u_{\nu}(t),u_{\nu}(t) \rangle + \langle f(u_{\nu},v_{\nu})u_{\nu},u_{\nu} \rangle =(h_1(t), u_{\nu}) $$ Integrating from $0$ the $ T_0 $ we have \begin{equation} \label{e98} \begin{aligned} \int_0^{T_0} \langle \mathcal{A}u_{\nu}(t),u_{\nu}(t) \rangle dt &=(u_{\nu}'(0),u_{\nu}(0)) - (u_{\nu}'(T_0),u_{\nu}(T_0)) + \int_0^{T_0}| u_{\nu}'(t)|^2 dt \\ &\quad - \int_0^{T_0} \langle f(u_{\nu},v_{\nu})u_{\nu},u_{\nu} \rangle dt + \int_0^{T_0}(h_1(t), u_{\nu})dt \end{aligned} \end{equation} Recall that $W_0^{1,p}(\Omega)\hookrightarrow L^2(\Omega)$. Since $u_{\nu}(0) \rightharpoonup u(0) $ in $W_0^{1,p}(\Omega) $ it implies $u_{\nu}(0) \to u(0) in L^2(\Omega)$. Since $u_{\nu} ' (0) \rightharpoonup u'(0)$ in $L^2(\Omega) $, it implies \begin{equation} \label{e99} ( u_{\nu}'(0),u_{\nu}(0)) \to ( u'(0),u(0)) \quad\text{in } {\mathbb{R}} \end{equation} Recall that $(u_m(T_0) )_m $ is bounded in $W_0^{1,p}(\Omega) $ and $(u_m'(T_0) )_m $ is bounded in $L^2(\Omega)$. Thus, there exists subsequences $(u_{\nu}(T_0))_{\nu}$ and $(u_{\nu} ' (T_0) )_{\nu} $ such that $$ u_{\nu}(T_0) \rightharpoonup u(T_0) \quad \text{in } W_0^{1,p}(\Omega) \stackrel{c}\hookrightarrow L^2(\Omega), $$ which implies \begin{gather*} u_{\nu}(T_0) \to u(T_0) , in L^2(\Omega), \\ u_{\nu}'(T_0) \rightharpoonup u'(T_0) in L^2(\Omega) \end{gather*} Consequently, \begin{equation} \label{e100} ( u_{\nu}'(0),u_{\nu}(T_0)) \to ( u'(T_0),u(T_0)) \quad\text{in } \mathbb{R}. \end{equation} We have that $(u_m')$ bounded in $L^{\infty}(0,T_0; L^{2}(\Omega))$. Since $$ L^{\infty}(0,T_0; L^{2}(\Omega)) \hookrightarrow L^{2}(0,T_0; L^{2}(\Omega)), $$ it follows that $(u_m')$ is bounded in $L^{2}(0,T_0; L^{2}(\Omega))$. We also have that $(u_m'')$ is bounded in $L^{2}(0,T_0; H^{-s}(\Omega))$. Therefore, by the Aubin-Lions Theorem, there exists a subsequence $(u_{\nu} ' ) $ such that $$ u_{\nu}' \to u' \quad\text{in } L^2(0,T_0; L^2(\Omega))\equiv L^2(Q_{T_0}). $$ Hence \begin{equation} \label{e101} \int_0^{T_0}|u_{\nu}'(t)|^2dt \to \int_0^{T_0}|u'(t)|^2dt \end{equation} Note that $$ \langle f(u_m(t),v_m(t))u_m(t), u_m(t) \rangle _{L^{\theta}, L^{\gamma}}= \langle f(u_m(t),v_m(t))u_m^2(t), 1 \rangle _{L^{\theta}, L^{\gamma}}. $$ From \eqref{e101} we have $u_{\nu}^2 \to u^2$ a.e. in $Q_{T_0}$. Similarly $$ \int_0^{T_0}|v_{\nu}'(t)|^2dt \to \int_0^{T_0}|v'(t)|^2dt $$ hence, we have $ v_{\nu}^2 \to v^2$ a.e. in $Q_{T_0}$, From \eqref{e44}, we have \begin{equation} \label{e102} \|f(u_{\nu},v_{\nu})u_{\nu}^2\|_{L^{\theta}(0,T_0;L^{\theta}(\Omega))\equiv L^{\theta}(Q_{T_0})}\leq C, \quad \forall m. \end{equation} From this inequality and \eqref{e61}, we guarantee the existence of a subsequence such that \begin{gather} \label{e103} f(u_{\nu},v_{\nu})u_{\nu}^2 \stackrel{*}{\rightharpoonup} \sigma \quad\text{in } L^{\infty}(0,T_0; L^{\theta}(\Omega)) \\ f(u_{\nu},v_{\nu})u_{\nu}^2 {\rightharpoonup} \sigma \quad\text{in } L^{\theta}(0,T_0; L^{\theta}(\Omega)) \label{e104} \end{gather} Thus, from \eqref{e80}, \eqref{e82} and the hypotheses on $f,g $, we have that \begin{gather} f(u_{\nu},v_{\nu})u_{\nu}^2 \to f(u,v)u^2 \quad\text{a.e. in } Q_{T_0}, \label{e105}\\ g(u_{\nu},v_{\nu})u_{\nu}^2 \to g(u,v)u^2 \quad\text{a.e in } Q_{T_0} \label{e106} \end{gather} From \eqref{e102}, \eqref{e105} and the Lions' Lemma it follows that \begin{equation*} % 107 f(u_{\nu},v_{\nu})u_{\nu}^2 \rightharpoonup f(u,v)u^2 in L^{\theta}(Q_{T_0})\equiv L^{\theta}(0,T_0; L^{\theta}(\Omega)), \quad\text{for }1 \leq \theta \leq \frac{np}{3(n-p)} \end{equation*} From this convergence and \eqref{e104}, we have $ {\sigma} = f(u,v)u^2 $ and from \eqref{e103}, \begin{equation} \label{e108} f(u_{\nu},v_{\nu})u_{\nu}^2 \stackrel{*}{\rightharpoonup} f(u,v)u^2 \quad\text{in } L^{\infty}(0,T_0; L^{\theta}(\Omega)). \end{equation} Similarly, \begin{equation*} %109 g(u_{\nu},v_{\nu})v_{\nu}^2 \stackrel{*}{\rightharpoonup} g(u,v)u^2 in L^{\infty}(0,T_0; L^{\theta}(\Omega)). \end{equation*} The convergence \eqref{e108} implies $$ \langle f(u_{\nu},v_{\nu})u_{\nu}^2, \psi \rangle \to \langle f(u,v)u^2, \psi \rangle , \quad \forall \psi \in L^1(0,T_0; L^{\gamma}(\Omega)) $$ or better $$ \int_0^{T_0}\langle f(u_{\nu},v_{\nu})u_{\nu}^2, w(x) \rangle \varphi (t) dt \to \int_0^{T_0}\langle f(u,v)u^2, w(x)\rangle \varphi (t)dt , $$ for all $w \in L^{\gamma}(\Omega)$ and all $\varphi \in L^1(0,T_0)$. When fixing $w\equiv 1 $ and $ \varphi \equiv 1$, we have $$ \int_0^{T_0}\langle f(u_{\nu}(t),v_{\nu}(t))u_{\nu}(t), u_{\nu}(t) \rangle dt = \int_0^{T_0}\langle f(u_{\nu}(t),v_{\nu}(t))u_{\nu}^2(t), 1 \rangle dt $$ which approaches $$ \int_0^{T_0}\langle f(u(t),v(t))u^2(t), 1\rangle dt = \int_0^{T_0}\langle f(u(t),v(t))u(t), u(t) \rangle dt. $$ hence \begin{equation} \label{e110} \int_0^{T_0}\langle f(u_{\nu}(t),v_{\nu}(t))u_{\nu}(t), u_{\nu}(t) \rangle dt \to \int_0^{T_0}\langle f(u(t),v(t))u(t), u(t) \rangle dt, \end{equation} as $ {\nu} \to {\infty}$. Therefore, taking the limit in \eqref{e98}, using the convergence \eqref{e99}, \eqref{e100}, \eqref{e101} and \eqref{e110}, as ${\nu} \to + {\infty}$, we have \begin{align*} %111 \limsup \int_0^{T_0} \langle Au_{\nu}(t),u_{\nu}(t) \rangle dt &= (u'(0), u(0)) - (u'(T_0),u(T_0)) + \int_0^{T_0}|u'(t)|^2dt\\ &\quad - \int_0^{T_0} \!\langle f(u(t),v(t))u(t),u(t)\rangle dt + \int_0^{T_0}\!(h_1(t), u(t))dt \end{align*} From this equality and \eqref{e110}, we have \begin{equation} \label{e112} \begin{aligned} 0&\leq (u'(0),u(0)) - (u'(T_0)-u(T_0)) + \int_0^{T_0} |u'(t)^2|dt - \int_0^{T_0} \langle f(u,v)u,u \rangle dt \\ &\quad - \int_0^{T_0} \langle \chi(t), w \rangle dt - \int_0^{T_0} \langle Aw, u(t)-w \rangle dt + \int_0^{T_0}(h_1(t),u(t))dt, \end{aligned} \end{equation} for all $w \in W_0^{1,p}(\Omega)$. From the approximate equation \eqref{e11}, we have $$ (u''_{\nu}(t),w) + \langle Au_{\nu}(t), w \rangle + \langle f(u_{\nu}(t),v_{\nu}(t))u_{\nu}(t), w \rangle = (h_1(t),w), \quad \forall w \in V_m, {\nu} \geq m. $$ Now, let $ \varphi \in C^1([0,T_0])$. Then \begin{align*} &\int_0^{T_0}(u''_{\nu}(t),w)\varphi + \int_0^{T_0}\langle Au_{\nu}(t), w \rangle \varphi + \int_0^{T_0}\langle f(u_{\nu}(t),v_{\nu}(t)) u_{\nu}(t), w \rangle \varphi \\ &= \int_0^{T_0}(h_1(t), w), \end{align*} for all $w \in V_m$ and all ${\nu} \geq m$. Setting \begin{align*} & (u_{\nu}'(t),w)\varphi(T_0) - (u_{\nu}'(0),w)\varphi(0) - \int_0^{T_0}(u_{\nu}'(t),w){\varphi}' dt \\ &+ \int_0^{T_0}\langle Au_{\nu}(t), w \rangle \varphi dt + \int_0^{T_0}\langle f(u_{\nu}(t),v_{\nu}(t))u_{\nu}(t), w \rangle \varphi (t) dt\\ &= \int_0^{T_0}(h_1(t), w)\varphi (t)dt,\quad \forall w \in V_m, \; \varphi \in C^1([0,T_0]),\; {\nu} \geq m. \end{align*} Taking into account the previous convergence statements, it follows that \begin{align*} &(u'(T_0),w)\varphi (T_0) - (u'(0),w)\varphi (0) - \int_0^{T_0}(u'(t),w){\varphi}'dt \\ &+ \int_0^{T_0}\langle \chi(t), w \rangle \varphi dt + \int_0^{T_0}\langle f(u(t),v(t))u(t), w \rangle \varphi (t)dt\\ &= \int_0^{T_0}(h_1(t), w)\varphi (t)dt, \quad \forall w \in V_m ,\; \varphi \in C^1([0,T_0]) \end{align*} Using a basis argument and the fact that $V_m $ is dense in $W_0^{1,p}(\Omega)$, it follows that \begin{equation} \label{e113} \begin{aligned} &(u'(T_0),w)\varphi (T_0) - (u'(0),w)\varphi (0) - \int_0^{T_0}(u'(t),w){\varphi}'dt \\ & + \int_0^{T_0}\langle \chi(t), w \rangle \varphi dt + \int_0^{T_0}\langle f(u(t),v(t))u(t), w \rangle \varphi (t)dt\\ &= \int_0^{T_0}(h_1(t), w)\varphi (t)dt, \quad \forall w \in W_0^{1,p}(\Omega), \; \varphi \in C^1([0,T_0]). \end{aligned} \end{equation} Observing that the set of the linear combinations of the type $w \varphi $, with $w \in W_0^{1,p}(\Omega) $ and $\varphi \in C^1([0,T_0])$, is dense in the space $$ V = \{v \in L^2(0,T_0; W_0^{1,p}(\Omega)), v' \in L^2(0,T_0; L^2(\Omega)) \}. $$ It follows that \eqref{e113} is true in the space $V$. Using the fact that, \begin{gather*} u \in L^{\infty}(0,T_0; W_0^{1,p}(\Omega))\hookrightarrow L^{2}(0,T_0; W_0^{1,p}(\Omega)), \\ u' \in L^{\infty}(0,T_0; L^2(\Omega))\hookrightarrow L^{2}(0,T_0; L^2(\Omega)), \end{gather*} we obtain that $ u \in V$. So \eqref{e113} takes the form \begin{align*} %114 &(u'(T_0),w)\varphi (T_0) - (u'(0),w)\varphi (0) \\ &-\int_0^{T_0}(u'(t),u'(t))dt + \int_0^{T_0}\langle \chi(t),u(t) \rangle dt + \int_0^{T_0}\langle f(u,v)u, u \rangle dt\\ &= \int_0^{T_0}(h_1(t),u(t)dt \end{align*} Substituting this expression in \eqref{e112}, it follows that $$ 0 \leq \int_0^{T_0}\langle \chi (t), u(t)-w \rangle dt -\int_0^{T_0}\langle \mathcal{A}w, u(t)-w \rangle dt, \quad \forall w \in W_0^{1,p}(\Omega). $$ Let us take $w=u(t)+\lambda v(t), \lambda >0$. Thus $$ 0 \leq - \int_0^{T_0}\langle \chi (t), \lambda v(t) \rangle dt + \int_0^{T_0}\langle \mathcal{A}u(t)+\lambda v(t), \lambda v(t) \rangle dt, \forall w \in W_0^{1,p}(\Omega) $$ which implies $$ 0 \leq -\int_0^{T_0}\langle \chi (t), \lambda v(t) \rangle dt + \int_0^{T_0}\langle \mathcal{A}(u(t)+\lambda v(t)), \lambda v(t) \rangle dt. $$ Dividing the previous inequality by $\lambda$ and letting $\lambda \to 0^{+}$, by the hemicontinuity of $\mathcal{A}$, we have $$ 0 \leq -\int_0^{T_0}\langle \chi (t), v(t) \rangle dt + \int_0^{T_0}\langle \mathcal{A}(u(t)), v(t) \rangle dt, \quad \forall v \in W_0^{1,p}(\Omega). $$ Hence $$ 0 \leq \int_0^{T_0}\langle \mathcal{A}u(t)- \chi (t), v(t) \rangle dt, \quad \forall v \in W_0^{1,p}(\Omega). $$ Now, for $\lambda<0$ it follows that $$ \int_0^{T_0}\langle \mathcal{A}u(t)- \chi (t), v(t) \rangle dt \leq 0, \quad \forall v \in W_0^{1,p}(\Omega). $$ Therefore, $$ 0 \leq \int_0^{T_0}\langle \mathcal{A}u(t)- \chi (t), v(t) \rangle dt \leq 0, \quad \forall v \in W_0^{1,p}(\Omega). $$ Thus $ \mathcal{A}u(t)=\chi (t)$. Similarly, $\mathcal{A}v(t)=\eta (t)$. This completes the proof of the theorem. \begin{thebibliography}{99} \bibitem{biazutti} Biazutti. A; \emph{Sobre uma Equa\c c\~ao n\~ao Linear de Vibra\c c\~oes: Exist\^encia de Solu\c c\~oes Fracas e Comportamento Assint\'otico}. Phd Thesis, IM-UFRJ, Rio-Brazil (1988). \bibitem{brezis} Brezis, H; \emph{Analyse Fonctionelle-theorie et Applications}. Masson, Paris (1983). \bibitem{castro} Castro, N. N; \emph{Existence and asymptotic behavior of solutions for a nonlinear evolution problem}. Appl. of Mathematics, 42(1997), No. 6, 411-420. \bibitem{clark} Clark, M.R., Lima, O.A; \emph{On a class of nonlinear Klein-Gordon equations}. Proceedings of 52 Semin\'ario Brasileiro de An\'alise (2000), 445-451. \bibitem{maciel} Clark, M.R., Maciel, A.B; \emph{On a mixed problem for a nonlinear $K\times K$ system}. IJAM, 9, No. 2(2000), 207-219. \bibitem{clark1} Clark, M.R., Clark, H.R., Lima, O.A; \emph{On a Nonlinear Coupled System. International Journal of Pure and Applied Mathematics}. Vol. 20 No. 1 (2005), 81-95. \bibitem{lions} Lions, J.L; \emph{Quelque Methodes des Resolution des Probl\'ems aux Limites non Lineaires}. Dunod, Paris (1969). \bibitem{luis} Medeiros, L.A., Menzala, G.P; \emph{On a mixed problem for a class of nonlinear Klein-Gordon equation}. Acta Math Hung., $52, No. 1-2(1988), 61-69$. \bibitem{luis1} Medeiros, L.A., Menzala, G.P; \emph{On the existence of global solutions for a coupled nonlinear Klein-Gordon equations}. Funkcialaj Ekvacioj, 30 (1987), 147-161. \bibitem{luis2} Medeiros, L.A., Miranda, M.M; \emph{Weak Solutions for the system of nonlinear Klein-Gordon equation}. Annali di Matematica Pura ed Applicata, IV, CXLVI (1987), 173-183. \bibitem{segal} Segal, I; \emph{Nonlinear partial differential equations in quantum field theory}. Proc. Symb. Appl. Math. A.M.S., (1965), 210-226. \end{thebibliography} \end{document}