\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 132, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/132\hfil Strong resonance problems] {A note on strong resonance problems for p-Laplacian} \author[C. H. Jin, Y. Y. Ke, J. X. Yin\hfil EJDE-2006/132\hfilneg] {Chunhua Jin, Yuanyuan Ke, Jingxue Yin} \address{Chunhua Jin \newline Department of Applied Mathematics, Jilin University, Changchun 130012, China} \email{diffusion@jlu.edu.cn} \address{Yuanyuan Ke \newline Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China. \newline Department of Applied Mathematics, Jilin University, Changchun 130012, China} \email{keyy@jlu.edu.cn (corresponding author)} \address{Jingxue Yin\newline Department of Applied Mathematics, Jilin University, Changchun 130012, China} \email{yjx@jlu.edu.cn} \date{} \thanks{Submitted March 21, 2006. Published October 17, 2006.} \thanks{Supported by the NSFC, NSFGD-06300481, China Postdoctoral Science Foundation, and \hfill\break\indent the Specific Foundation for Ph.D. Specialities of Educational Department of China} \subjclass[2000]{35G30, 35A15, 35B38} \keywords{p-Laplacian equations; boundary value problem; eigenvalue; \hfill\break\indent strong resonance problems} \begin{abstract} In this note, we study the existence of the weak solutions for the $p$-Laplacian with strong resonance, which generalizes the previous results in one-dimension. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In a previous paper, Bouchala \cite{1} studied the existence of the weak solutions of the nonlinear boundary-value problem for one-dimensional case \begin{gather*} -\Delta_pu=\lambda |u|^{p-2}u+g(u)-h(x), \quad x\in (0,\pi),\\ u(0)=u(\pi)=0, \end{gather*} where $p>1$, $\lambda\in\mathbb{R}$, $h\in L^{p'}(0, \pi)$ ($p'=\frac p{p-1}$), and $g: \mathbb{R}\to \mathbb{R}$ is a continuous and nonlinear function of the Landesman-Lazer type. By applying the variational approach, the author translated problem into a critical points problem, and proved the existence of critical points separately for situations $$ \lambda<\lambda_1, \quad \lambda_k<\lambda<\lambda_{k+1}, \quad \lambda=\lambda_k, $$ where $\{\lambda_k\}$ is the sequence of eigenvalues and satisfies $0<\lambda_k<\lambda_{k+1}$. The results extended a previous result by J.~Bouchala and P.~Dr$\acute{\rm a}$bek \cite{5}, in which, they only considered the case of $\lambda=\lambda_1$, that is, $\lambda$ is the first eigenvalue. The researches on the existence of weak solutions for the resonance problem to $p$-Laplacian can also be found in the other papers, such as \cite{2,3} and the references therein. In \cite{2}, which examined resonance problems at arbitrary eigenvalues for the analogous ODE problem. However, in \cite{3}, the author not only generalized the results in \cite{2} into higher-dimension, but also proved the existence of weak solutions for the case of $\lambda\in \mathbb{R}$, that is $\lambda$ is not only an eigenvalue. In this short note, we would like to point a fact that the existence results that J.~Bouchala has proved in \cite{1} are also true for the higher dimensional case. In fact, by substituting the higher dimensional domain $\Omega$ for the one-dimensional interval $(0, \pi)$, we may consider the following boundary-value problem \begin{equation} \label{1-1} \begin{gathered} -\Delta_pu=\lambda |u|^{p-2}u+g(u)-h(x), \quad x\in \Omega, \\ u|_{\partial \Omega}=0, \end{gathered} \end{equation} where $\Omega\subset \mathbb{R}^N$ is a bounded domain with smooth boundary, $\lambda \in\mathbb{R}$, $N\ge 1$, $p>1$, $g:\mathbb{R}\to\mathbb{R}$ is a continuous function, $h\in L^{p'}(\Omega)$ ($p'=\frac p{p-1}$), and $\Delta_p$ is the $p$-Laplacian operator, that is $\Delta_p u =\mathop{\rm div} (|\nabla u|^{p-2}\nabla u)$. Similar to \cite{1}, we say that $\lambda\in \mathbb{R}$ is an eigenvalue of $-\Delta_p$, if there exists a nonzero function $u\in W_0^{1, p}(\Omega)$, such that $$ \int_\Omega |\nabla u|^{p-2}\nabla u \nabla v \,dx =\lambda\int_\Omega|u|^{p-2}uv\,dx \quad \text{for all } v\in W_0^{1,p}(\Omega). $$ The function $u$ is called an eigenfunction of $-\Delta_p$ corresponding to the eigenvalue $\lambda$, and we denote it by $$ u\in \ker (-\Delta_p-\lambda)\backslash\{0\}. $$ For convenience, we first introduce some notation. Consider the functional $R: W_0^{1,p}(\Omega)\backslash \{0\}\to \mathbb{R}$, $$ R(u)=\frac{\int_\Omega|\nabla u|^p \,dx}{\int_\Omega |u|^p\,dx}, \quad u\in W_0^{1,p}(\Omega)\backslash\{0\}, $$ and the manifold $$ \mathcal{S}=\{u\in W_0^{1,p}(\Omega): \|u\|_{L^p(\Omega)}=1\}. $$ For $k\in \mathbb N$, let $$ \mathcal F_k:=\{\mathcal A\subset \mathcal{S}: \text{there exists a continuous odd surjection} \ h: \mathcal{S}_{k-1}\to \mathcal A\}, $$ where $\mathcal{S}_{k-1}$ represents the unit sphere in $\mathbb{R}^{k}$. Let $$ \lambda_k=\inf_{\mathcal A\in \mathcal F_k}\sup_{u\in \mathcal A} R(u). $$ It is known that $\lambda_k$ is an eigenvalue of $-\Delta_p$, and $0<\lambda_k<\lambda_{k+1}$ (see \cite{3, 4, 6}). Here, we denote the norm in $W_0^{1,p}(\Omega)$ by $$ \|u\|=\Big(\int_\Omega |\nabla u|^p \,dx\Big)^{1/p} \quad \text{for all } u\in W_0^{1,p}(\Omega). $$ By Poincar\'{e}'s inequality, we see that the norm $\|\cdot\|$ parallels to the usual definition. Furthermore, we denote \begin{equation} \label{1-2} F(u)=\begin{cases} \frac pu\int_0^ug(s)ds-g(u), & u\not=0, \\ (p-1)g(0), & u=0, \end{cases} \end{equation} and set \begin{gather*} \overline {F(-\infty)}=\limsup_{u\to -\infty}F(u), \quad \underline {F(-\infty)}=\liminf_{u\to -\infty}F(u), \\ \overline {F(+\infty)}=\limsup_{u\to +\infty}F(u), \quad \underline {F(+\infty)}=\liminf_{u\to +\infty}F(u). \end{gather*} Throughout this paper, we assume: (i) \begin{equation} \label{1-3} \lim_{|t|\to \infty}\frac{g(t)}{|t|^{p-1}}=0. \end{equation} (ii) For any $v\in \ker (-\Delta_p-\lambda)\backslash\{0\}$, %% \begin{equation}\label{1-4} (p-1)\int_{\Omega}h(x)v(x)\,dx<\underline {F(+\infty)}\int_{\Omega}v^+(x)\,dx +\overline {F(-\infty)}\int_{\Omega}v^-(x)\,dx, \end{equation} or for every $v\in \ker (-\Delta_p-\lambda)\backslash\{0\}$, \begin{equation} \label{1-5} (p-1)\int_{\Omega}h(x)v(x)\,dx>\overline {F(+\infty)}\int_{\Omega}v^+(x)\,dx +\underline {F(-\infty)}\int_{\Omega}v^-(x)\,dx, \end{equation} where $v^+=\max\{0, v\}$, $v^-=\min\{0, v\}$. The following theorem is the main result of this note. \begin{theorem}\label{1.1} If \eqref{1-3}, \eqref{1-4} (or \eqref{1-5}) hold, then problem \eqref{1-1} admits at least one weak solution. \end{theorem} \begin{remark} If $\lambda$ is not an eigenvalue of $-\Delta_p$, then \eqref{1-4}, \eqref{1-5} are vacuously true. \end{remark} \section{Proof of Main Result} To employ the variational approach, we introduce the functional $$ J_\lambda(u):=\frac1p\int_\Omega|\nabla u|^p\,dx-\frac\lambda p\int_\Omega|u|^p\,dx -\int_\Omega G(u)\,dx+\int_\Omega h(x)u(x)\,dx, $$ where $G(t)=\int_0^tg(s)ds$. Clearly, $J_\lambda\in C_1(W_0^{1,p}(\Omega); \mathbb{R})$, and for every $v\in W_0^{1,p}(\Omega)$, $$ \langle J_\lambda'(u), v\rangle=\int_\Omega|\nabla u|^{p-2}\nabla u\nabla v\,dx -\lambda\int_\Omega |u|^{p-2}uv \,dx -\int_{\Omega}g(u)v\,dx +\int_\Omega hv\,dx. $$ Note that the weak solutions of \eqref{1-1} correspond to the critical points of $J_\lambda$. To show that $J_\lambda$ has critical points of saddle point type, we need a fundamental lemma as follows. (see \cite{3} or \cite{7}) \begin{lemma}[Deformation Lemma] Suppose that $J_\lambda$ satisfies the Palais-Smale condition, i.e. if $\{u_n\}$ is a sequence of functions in $W_0^{1,p}(\Omega)$ such that $\{J_\lambda(u_n)\}$ is bounded in $\mathbb{R}$, and $J'_\lambda(u_n)\to 0$ in $(W_0^{1,p}(\Omega))^*$, then $\{u_n\}$ has a subsequence that is strongly convergent in $W_0^{1,p}(\Omega)$. Let $c\in\mathbb{R}$ be a regular value of $J_\lambda$ and let $\bar \varepsilon>0$. Then there exists $\varepsilon\in (0, \bar\varepsilon)$ and a continuous one-parameter family of homeomorphisms, $\phi: W_0^{1,p}(\Omega)\times [0, 1]\to W_0^{1,p}(\Omega)$ with the properties: \begin{itemize} \item[(i)] If $t=0$ or if $|J_\lambda(u)-c|\ge \bar\varepsilon$, then $\phi(u,t)=u$; \item[(ii)] if $J_\lambda(u)\le c+\varepsilon$, then $J_\lambda(\phi(u,1))\le c-\varepsilon$. \end{itemize} \end{lemma} The following lemma is a crucial step of our argument. %% \begin{lemma} \label{Lem-1} Assume \eqref{1-3} and \eqref{1-4} (or \eqref{1-5}) hold. Then the functional $J_\lambda$ satisfies the Palais-Smale condition. \end{lemma} \begin{proof} Assume that $\{u_n\}$ is a sequence of functions in $W^{1,p}_0(\Omega)$, and there exists an positive constant $M$ such that \begin{gather} \label{3.1} |J_\lambda(u_n)|\le M, \\ \label{3.2} J_\lambda'(u_n)\to 0\qquad \hbox{ in }(W^{1,p}_0(\Omega))^*. \end{gather} %% In the following, we shall show that the Palais-Smale sequence $\{u_n\}$ is bounded. Suppose to the contrary (passing to the subsequence if necessary), namely $$ \|u_n\|\to +\infty. $$ Let $v_n:=\frac{u_n}{\|u_n\|}$. Due to the reflexivity of $W^{1,p}_0(\Omega)$ and the compact embedding $$ W^{1,p}_0(\Omega)\hookrightarrow L^p(\Omega), $$ there exists $v\in W^{1,p}_0(\Omega)$ such that (passing to subsequences) %% \begin{gather} \label{3.4} v_n\rightharpoonup v\quad \hbox{in } W^{1,p}_0(\Omega), \\ \label{3.5} v_n\to v\quad\hbox{in } L^p(\Omega). \end{gather} %% From (\ref{3.2}) and (\ref{3.4}), we have \begin{equation} \label{3.6} \begin{aligned} 0&\leftarrow \frac{\langle J'_\lambda(u_n),v_n-v\rangle}{\|u_n\|^{p-1}} \\ =&\int_{\Omega}|\nabla v_n|^{p-2}\nabla v_n(\nabla v_n-\nabla v)\,dx -\lambda\int_{\Omega}|v_n|^{p-2}v_n(v_n-v)\,dx \\ &\quad -\int_{\Omega}\frac{g(u_n)}{\|u_n\|^{p-1}}(v_n-v)\,dx +\int_{\Omega}\frac{h}{\|u_n\|^{p-1}}(v_n-v)\,dx. \end{aligned} \end{equation} Since \eqref{1-3} and (\ref{3.5}), it follows that the last three terms approach to $0$ as $n\to\infty$. Then we have $$ \int_{\Omega}|\nabla v_n|^{p-2}\nabla v_n(\nabla v_n-\nabla v)\,dx\to 0. $$ Furthermore, we have %% \begin{equation} \label{3.7} \begin{aligned} 0&\leftarrow \int_{\Omega}|\nabla v_n|^{p-2}\nabla v_n(\nabla v_n-\nabla v)\,dx -\int_{\Omega}|\nabla v|^{p-2}\nabla v(\nabla v_n-\nabla v)\,dx \\ &= \int_\Omega|\nabla v_n|^p\,dx-\int_\Omega|\nabla v_n|^{p-2} \nabla v_n\nabla v\,dx -\int_\Omega|\nabla v|^{p-2}\nabla v\nabla v_n\,dx+\int_\Omega|\nabla v|^p\,dx\\ &\ge \|v_n\|^p-\|v_n\|^{p-1}\|v\|-\|v\|^{p-1}\|v_n\|+\|v\|^p \\ &= (\|v_n\|^{p-1}-\|v\|^{p-1})(\|v_n\|-\|v\|)\ge0, \end{aligned} \end{equation} which implies %% \begin{equation} \label{3.8} \|v_n\|\to \|v\|, \quad n\to\infty. \end{equation} %% Noticing that $v_n\rightharpoonup v$ in $W^{1,p}_0(\Omega)$, and combining with the uniform convexity of $W^{1,p}_0(\Omega)$, we infer that %% \begin{equation} \label{3.9} v_n\to v\quad \hbox{ in }W^{1,p}_0(\Omega), \quad\|v\|=1. \end{equation} %% Moreover, for any $w\in W^{1,p}_0(\Omega)$, as $n\to\infty$, %% \begin{align*} \frac{\langle J'_\lambda(u_n),w\rangle}{\|u_n\|^{p-1}} &=\int_\Omega|\nabla v_n|^{p-2}\nabla v_n\nabla w\,dx -\lambda\int_\Omega|v_n|^{p-2}v_nw\,dx\\ &\quad -\int_\Omega\frac{g(u_n)}{\|u_n\|^{p-1}}w\,dx +\int_\Omega\frac{h}{\|u_n\|^{p-1}}w\,dx\to 0. \end{align*} %% Clearly the last two terms approach to zero. Hence for all $w\in W^{1,p}_0(\Omega)$: %% \begin{equation}\label{3.10} \int_\Omega|\nabla v_n|^{p-2}\nabla v_n\nabla w\,dx- \lambda\int_\Omega|v_n|^{p-2}v_nw\,dx\to 0, \quad\text{as } n\to\infty, \end{equation} %% which implies $$ \int_\Omega|\nabla v|^{p-2}\nabla v\nabla w\,dx=\lambda\int_\Omega|v|^{p-2}vw\,dx, \quad\forall \ w\in W^{1,p}_0(\Omega) $$ and $v\in \ker (-\Delta_p-\lambda)\backslash\{0\}$, $\|v\|=1$. The boundedness of $\{J_\lambda(u_n)\}$, $J'_\lambda(u_n)\to 0$, and $\|u_n\|\to \infty$ imply %% \begin{align*} 0&\leftarrow \frac{\langle J'_\lambda(u_n), u_n\rangle -pJ_\lambda(u_n)}{\|u_n\|}\\ &= \int_\Omega\frac{pG(u_n)-g(u_n)u_n}{\|u_n\|}\,dx -(p-1)\int_\Omega h\frac{u_n}{\|u_n\|}\,dx\\ &= \int_\Omega F(u_n)\frac{u_n}{\|u_n\|}\,dx -(p-1)\int_\Omega h\frac{u_n}{\|u_n\|}\,dx, \end{align*} %% that is, %% \begin{equation} \label{3.11} \lim_{n\to\infty}\int_\Omega F(u_n)\frac{u_n}{\|u_n\|}\,dx=(p-1) \int_\Omega hv\,dx. \end{equation} %% Now we assume that \eqref{1-4} (the other case \eqref{1-5} can be treated similarly) holds. It follows that $$ \underline{F(+\infty)}>-\infty \quad\hbox{and}\quad \overline{F(-\infty)}<+\infty. $$ For arbitrary $\varepsilon>0$, set \begin{gather*} c_\varepsilon:=\begin{cases} \underline{F(+\infty)}-\varepsilon &\hbox{if } \underline{F(+\infty)}\in\mathbb{R}, \\ 1/\varepsilon &\hbox{if }\underline{F(+\infty)}=+\infty; \end{cases} \\ d_\varepsilon:=\begin{cases} \overline{F(-\infty)}+\varepsilon &\hbox{if } \overline{F(-\infty)}\in\mathbb{R}, \\ -1/\varepsilon &\hbox{if }\overline{F(-\infty)}=-\infty. \end{cases} \end{gather*} Then for every $\varepsilon>0$ there exists $K>0$ such that \begin{equation}\label{3.12} \begin{gathered} F(t)\ge c_\varepsilon \quad\hbox{ for all } t>K,\\ F(t)\le d_\varepsilon \quad\hbox{ for all } t<-K. \end{gathered} \end{equation} %% On the other hand, the continuity of $F$ on $\mathbb{R}$ implies that for any $K>0$ there exists $c(K)>0$ such that %% \begin{equation} \label{3.13} |F(t)|\le c(K)\quad \hbox{for all } t\in[-K, K]. \end{equation} %% Choose $\varepsilon>0$ and consider the corresponding $K>0$ and $c(K)>0$ given by (\ref{3.12}) and (\ref{3.13}), respectively. Set %% \begin{equation} \label{3.14} \int_\Omega F(u_n)\frac{u_n}{\|u_n\|}\,dx =A_{K,n}+B_{K,n}+C_{K,n}+D_{K,n}+E_{K,n}, \end{equation} where \begin{gather*} A_{K,n}=\int_{\{x\in\Omega:|u_n(x)|\le K\}}F(u_n)\frac{u_n}{\|u_n\|}\,dx,\\ B_{K,n}=\int_{\{x\in\Omega:u_n(x)>K,v(x)>0\}}F(u_n)\frac{u_n}{\|u_n\|}\,dx, \\ C_{K,n}=\int_{\{x\in\Omega:u_n(x)>K,v(x)\le0\}}F(u_n)\frac{u_n}{\|u_n\|}\,dx,\\ D_{K,n}=\int_{\{x\in\Omega:u_n(x)<-K,v(x)<0\}}F(u_n)\frac{u_n}{\|u_n\|}\,dx, \\ E_{K,n}=\int_{\{x\in\Omega:u_n(x)<-K,v(x)\ge0\}}F(u_n)\frac{u_n}{\|u_n\|}\,dx. \end{gather*} Before estimating these integrals we claim that for any $K>0$ the following assertions are true, since that $\|u_n\|\to +\infty$ and $u_n/\|u_n\|\to v$ in $W_0^{1,p}(\Omega)$ as $n\to\infty$. %% \begin{gather} \lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)\le K,v(x)>0\}}v_n\,dx=0, \label{lim-1} \\ \lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)>K,v(x)\le0\}}v_n\,dx=0, \label{lim-2}\\ \lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)\ge -K,v(x)<0\}}v_n\,dx=0, \label{lim-3}\\ \lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)< -K,v(x)\ge0\}}v_n\,dx=0. \label{lim-4} \end{gather} %% In fact, for the first equality (\ref{lim-1}), we have \begin{align*} &\lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)\le K,v(x)>0\}}v_n\,dx\\ &= \lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)<-K,v(x)>0\}}v_n\,dx +\lim_{n\to \infty}\int_{\{x\in\Omega:-K\le u_n(x)\le K,v(x)>0\}}v_n\,dx \\ &= \lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)<-K,v(x)>0\}}v_n\,dx \le 0. \end{align*} Moreover, since $v_n\to v$ in $L^p(\Omega)$, it follows that \[ \int_{\{x\in\Omega:u_n(x)<-K,v(x)>0\}}|v_n-v|\,dx \le |\Omega|^{1-1/p}\|v_n-v\|_{L^p}\to 0, \quad\hbox{as }n\to \infty, \] which implies $$ 0\ge\lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)<-K,v(x)>0\}}v_n\,dx =\lim_{n\to \infty}\int_{\{x\in\Omega:u_n(x)<-K,v(x)>0\}}v\,dx \ge0, $$ and so proves the limit equality (\ref{lim-1}). For the other three equalities (\ref{lim-2})--(\ref{lim-4}), the proofs are similar and we omit the details. Furthermore, have \begin{gather*} |A_{K,n}|\le\frac{K c(K)|\Omega|}{\|u_n\|}\to 0, \\ \begin{aligned} B_{K,n}&\ge c_\varepsilon\Big(\int_{\{x\in\Omega:v(x)>0\}}v_n\,dx- \int_{\{x\in\Omega:u_n(x)\le K,v(x)>0\}}v_n\,dx\Big)\\ &\to c_\varepsilon\int_{\{x\in\Omega:v(x)>0\}}v\,dx, \end{aligned}\\ C_{K,n}\ge c_\varepsilon\int_{\{x\in\Omega:u_n(x)>K,v(x)\le0\}}v_n\,dx\to 0, \\ \begin{aligned} D_{K,n}&\ge d_\varepsilon\Big(\int_{\{x\in\Omega:v(x)<0\}}v_n\,dx- \int_{\{x\in\Omega:u_n(x)\ge -K,v(x)<0\}}v_n\,dx\Big) \\ &\to d_\varepsilon \int_{\{x\in\Omega:v(x)<0\}}v\,dx, \end{aligned}\\ E_{K,n}\ge d_\varepsilon \int_{\{x\in\Omega:u_n(x)< -K,v(x)\ge0\}}v_n\,dx\to 0. \end{gather*} Recalling (\ref{3.14}), for $\varepsilon>0$, we obtain %% \begin{align*} &\liminf\int_\Omega F(u_n)\frac{u_n}{\|u_n\|}\,dx \\ &= \liminf(A_{K,n}+B_{K,n}+C_{K,n}+D_{K,n}+E_{K,n})\\ &\ge c_\varepsilon\int_{\{x\in\Omega:v(x)>0\}}v(x)\,dx +d_\varepsilon\int_{\{x\in\Omega:v(x)<0\}}v(x)\,dx. \end{align*} %% By the definition of $c_\varepsilon$ and $d_\varepsilon$ together with (\ref{3.11}) and the above inequality, we conclude that $$ (p-1)\int_\Omega h(x)v(x)\,dx\ge\underline{F(+\infty)}\int_\Omega v^+(x)\,dx +\overline{F(-\infty)}\int_\Omega v^-(x)\,dx, $$ clearly which contradicts \eqref{1-4}, and so we complete the proof of the boundedness of $\{u_n\}$. Since $\{u_n\}$ is bounded in $W^{1,p}_0(\Omega)$, then there exists $u\in W^{1,p}_0(\Omega)$, such that (passing to subsequences) %% \begin{equation} \label{aa} u_n\rightharpoonup u\quad\hbox{in }W^{1,p}_0(\Omega),\quad u_n\to u\quad\hbox{in }L^p(\Omega). \end{equation} Taking (\ref{3.2}) and \eqref{1-3} into account, it follows that %% \begin{align*} 0&=\lim\langle J'_\lambda(u_n),u_n-u\rangle\\ &=\lim\int_\Omega|\nabla u_n|^{p-2}\nabla u_n(\nabla u_n-\nabla u)\,dx-\lambda \int_\Omega|u_n|^{p-2}u_n(u_n-u)\,dx\\ &\quad -\int_\Omega g(u_n)(u_n-u)\,dx+\int_\Omega h(u_n-u)\,dx. \end{align*} Recalling \eqref{1-3} and combining with the continuity of $g(t)$, we have that for any $\varepsilon>0$, there exists $M>0$, such that $|g(u_n)|\le M+\varepsilon|u_n|^{p-1}$, which together with (\ref{aa}) yield that the last three terms goes to zero, and $$ \lim\int_{\Omega}|\nabla u_n|^{p-2}\nabla u_n(\nabla u_n-\nabla u)\,dx=0. $$ Similar to (\ref{3.7}), we obtain $\|u_n\|\to \|u\|$. The uniform convexity of $W^{1,p}_0(\Omega)$ then yields $u_n\to u$ in $W^{1,p}_0(\Omega)$, which complete the proof. \end{proof} Next, we prove the main theorem. As in \cite{1}, we divide it into three lemmas for different cases separately: $$ \lambda<\lambda_1, \quad \lambda_k<\lambda<\lambda_{k+1}, \quad \lambda=\lambda_k. $$ \begin{lemma} \label{Lem-2} Assume \eqref{1-3} holds, and $\lambda<\lambda_1$. Then \eqref{1-1} admits at least one weak solution. \end{lemma} \begin{proof} By the definition of $J_\lambda(u)$ and the assumption on $g(t)$, for any $\varepsilon>0$ we have %% \begin{align*} J_\lambda(u)&= \frac1p\int_\Omega|\nabla u|^p\,dx-\frac\lambda p\int_\Omega|u|^p\,dx -\int_\Omega G(u)\,dx+\int_\Omega h(x)u(x)\,dx \\ &\ge \frac{\lambda_1-\lambda} p\int_\Omega|u|^p\,dx -C\int_\Omega|u|\,dx-\frac{\varepsilon}{p}\int_\Omega|u|^p\,dx-\int_\Omega |h(x)u(x)|\,dx \\ &\ge \frac{\lambda_1-\lambda-\varepsilon} p\|u\|^p_{L^p(\Omega)}- C\|u\|_{L^1(\Omega)}-\|h\|_{L^{p'}}\|u\|_{L^p(\Omega)}, \end{align*} which implies that the functional $J_\lambda$ is bounded from below on $W_0^{1,p}(\Omega)$. Moreover, from Lemma \ref{Lem-1}, we have $J_\lambda$ satisfies the Palais-Smale condition. Hence $J_\lambda$ attains its global minimum on $W_0^{1,p}(\Omega)$. \end{proof} \begin{lemma} \label{Lem-3} Assume \eqref{1-3}, \eqref{1-4} (or \eqref{1-5}) hold, and there exists $k\in \mathbb N$ such that $\lambda_k<\lambda<\lambda_{k+1}$. Then \eqref{1-1} admits at least one weak solution. \end{lemma} \begin{proof} Let $m\in (\lambda_k, \lambda)$, and let $\mathcal A\in \mathcal F_k$, such that $\sup\limits_{u\in \mathcal A} R(u)\le m$. Then for all $u\in\mathcal A$, $t>0$ and all $\varepsilon>0$, by \eqref{1-3} there exists $c>0$, such that %% \begin{align*} J_\lambda(tu) &= \frac 1p t^p\Big(\int_\Omega|\nabla u|^p\,dx- \lambda\int_\Omega|u|^p\,dx\Big)-\int_\Omega G(tu)\,dx +t\int_\Omega h(x)u(x)\,dx\\ &\le \frac 1p t^p(m-\lambda)\|u\|^p_{L^p(\Omega)}+ct\|u\|_{L^1(\Omega)}+ \frac\varepsilon p t^p\|u\|^p_{L^p(\Omega)} +t\|h\|_{L^{p'}(\Omega)}\|u\|_{L^p(\Omega)}\\ &= \frac 1p t^p(m-\lambda+\varepsilon)\|u\|^p_{L^p(\Omega)} +t(c\|u\|_{L^1(\Omega)}+ \|h\|_{L^{p'}(\Omega)}\|u\|_{L^p(\Omega)}). \end{align*} Clearly, %% \begin{equation} \label{3-1} \lim_{t\to+\infty}J_\lambda(tu)= -\infty \quad \text{uniformly for any } \ u\in \mathcal A. \end{equation} %% Now let $$ \varepsilon_{k+1}:=\{u\in W_0^{1,p}(\Omega); \int_{\Omega}|\nabla u|^p\,dx\ge \lambda_{k+1}\int_\Omega|u|^p\,dx\}. $$ By noting that for all $u\in \varepsilon_{k+1}$, and all $\varepsilon>0$, there exists $c>0$, such that $$ J_\lambda(u)\ge \frac 1p(\lambda_{k+1}-\lambda-\varepsilon)\|u\|^p_{L^p(\Omega)} -c\|u\|_{L^1(\Omega)}-\|h\|_{L^{p'}(\Omega)}\|u\|_{L^p(\Omega)}. $$ Hence $J_\lambda(u)$ is bounded from below in $\varepsilon_{k+1}$. Let %% \begin{equation}\label{3-2} \alpha=\inf_{u\in \varepsilon_{k+1}}J_\lambda(u). \end{equation} From (\ref{3-1}) and (\ref{3-2}), we see that there exists $T>0$ such that $$ \gamma:=\max\{J_\lambda(tu); \ u\in\mathcal A,\ t\ge T\}< \alpha. $$ Define \begin{gather*} T\mathcal A:=\{tu\in W_0^{1,p}(\Omega); \ u\in\mathcal A, \ t\ge T\}, \\ \Gamma:=\{h\in C^0(B_k,W_0^{1,p}(\Omega)); \ h|_{\mathcal{S}_{k-1}} \to T\mathcal A \text { is an odd map}\}, \end{gather*} where $B_k$ is a unit ball centered at the origin in $\mathbb{R}^k$. Then we see that $\Gamma$ is nonempty. In fact, recalling the definition of $\mathcal F_k$, we see that there exists a continuous odd surjection $h: \mathcal{S}_{k-1}\to \mathcal A$. Define \begin{gather*} \overline h: B_k\to W_0^{1,p}(\Omega), \\ \overline h(tx)=tTh(x) \quad \text{for } x\in\mathcal{S}_{k-1},\; t\in [0,1]. \end{gather*} Obviously, $\overline h\in\Gamma$. Furthermore, if $h\in\Gamma$, then %% \begin{equation} \label{3-3} h(B_k)\cap\varepsilon_{k+1}\not=\phi. \end{equation} %% In fact, if $0\in h(B_k)$, then (\ref{3-3}) holds clearly. Otherwise, considering the mapping $\widetilde h: \mathcal{S}_{k}\to \mathcal{S},$ \[ \widetilde h(x_1,\dots, x_{k+1})= \begin{cases} \pi\cdot h(x_1,\dots, x_{k}), & x_{k+1}\ge 0, \\ -\pi\cdot h(-x_1,\dots, -x_{k}), & x_{k+1}< 0, \end{cases} \] where $\pi$ represents radial projection onto $\mathcal{S}$ in $W_0^{1,p}(\Omega)\backslash\{0\}$, clearly, we have $\widetilde h(\mathcal{S}_k)\in \mathcal F_{k+1}$. From the definition of $\lambda_{k+1}$, we see that $$ \sup_{u\in\widetilde h(\mathcal{S}_k)} R(u)\ge\lambda_{k+1}, $$ which implies that there exists $u=\pi\cdot h(x)\in\widetilde h(\mathcal{S}_k)$ such that $R(u)\ge \lambda_{k+1}$. That is $u=\pi\cdot h(x)\in \varepsilon_{k+1}$, which also implies that $h(\bar x)\in \varepsilon_{k+1}$, where $\bar x= x/\|x\|$. Thus $h(B_k)\cap\varepsilon_{k+1}\not=\phi$. Moreover, recalling the Deformation Lemma, we see that $$ C=\inf_{h\in\Gamma}\sup_{x\in B_k}J_\lambda (h(x)) $$ is a critical value of $J_\lambda$. In fact, we assume by contradiction that $C$ is a regular value of $J_\lambda$, from $h(B_k)\cap \varepsilon_{k+1}\not=\phi$, it is easy to see that $C\ge \alpha>\gamma$. Let $\overline\varepsilon$ be an arbitrary given constant in $(0,C-\gamma)$. By the definition of $C$, for any $\varepsilon\in (0,\overline\varepsilon)$, there exists a corresponding $h\in\Gamma$, such that $$ \sup_{x\in B_k}J_\lambda (h(x))0, \end{align*} %% which is a contradiction. The following argument is completely parallel to Step 1, so we omit it. In the following, we focus on the case of $k>1$. Let $\{\mu_n\}$ be a sequence in $(\lambda_{k-1},\lambda_k)$ with $\mu_n\nearrow\lambda_k$. We can find a sequence $\{u_n\}$ of critical points associated with the functional $\{J_{\mu_n}\}$ such that $C_n=J_{\mu_n}(u_n)$ is decreasing. Then we obtain that $\{u_n\}$ is bounded. Suppose, by contradiction, $\|u_n\|\to \infty$, then there exists $v\in \ker (-\Delta_p-\lambda_k)\backslash\{0\}$ such that (up to subsequence) $\frac{u_n}{\|u_n\|}\to v$, and %% \begin{align*} 0&\ge \limsup\frac {pC_n}{\|u_n\|}\\ &\ge\liminf\frac {pC_n}{\|u_n\|} \\ &= \liminf\frac{pJ_{\mu_n}(u_n)-\langle J_{\mu_n}'(u_n), u_n\rangle}{\|u_n\|} \\ &= \liminf\Big(-\frac{p\int_\Omega G(u_n)\,dx-\int_{\Omega}g(u_n)u_n\,dx}{\|u_n\|} +(p-1)\int_{\Omega}h\frac{u_n}{\|u_n\|}\,dx\Big) \\ &= -\limsup\Big(\frac{p\int_\Omega G(u_n)\,dx-\int_{\Omega}g(u_n)u_n\,dx}{\|u_n\|} \Big)+(p-1)\int_{\Omega}hv\,dx \\ &= -\limsup\Big(\int_\Omega F(u_n)\frac{u_n}{\|u_n\|}\,dx\Big)+(p-1) \int_{\Omega}hv\,dx>0, \end{align*} %% which is a contradiction. The remaining argument is quite simple, similar to the above discussion, and so we omit it here. \end{proof} \begin{proof}[Proof of Theorem \ref{1.1}] Combining Lemma \ref{Lem-2} -- Lemma \ref{lem-4}, Theorem \ref{1.1} holds clearly. The proof is complete. \end{proof} \begin{thebibliography}{99} \bibitem{1} J.~Bouchala; {\sl Strong resonance problems for the one-dimensional p-Laplacian}, Elec. J. Diff. Equ. {\bf 2005} (2005), 1--10. \bibitem{2} P.~Dr$\acute{a}$bek, S.~B.~Robinson; {\sl Resonance problems for the one-dimensional p-Laplacian}, Pro. Amer. Math. Soc. {\bf 128} (1999), 755--765. \bibitem{3} P.~Dr\'abek, S.~B.~Robinson; {\sl Resonance problems for the p-Laplacian}, J. Func. Anal. {\bf 169} (1999), 189--200. \bibitem{4} W.~Walter; {\sl Sturm-Liouville theory for the radial $\Delta_p$-operator}, Math. Z. {\bf 227} (1998), 175--185. \bibitem{5} J.~Bouchala, P.~Dr$\acute{a}$bek; {\sl Strong Resonance for Some Quasilinear Elliptic Equations}, J. Math. Anal. Appl. {\bf 245} (2000), 7--19. \bibitem{6} B.~ Xuan; {\sl The eigenvalue problem for a singular quasilinear elliptic equation}, Elec. J. Diff. Equ. {\bf 2004} (2004), 1--11. \bibitem{7} M.~Struwe; {\sl ``Variational Methods; Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems"}, Springer-Verlag, New York, 1990. \end{thebibliography} \end{document}