\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 139, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/139\hfil Hyperbolic hemivariational inequality] {On asymptotic behavior of global solutions for hyperbolic hemivariational inequalities} \author[J. Y. Park, S. H. Park\hfil EJDE-2006/139\hfilneg] {Jong Yeoul Park, Sun Hye Park} % in alphabetical order \address{Jong Yeoul Park \newline Department of Mathematics, Pusan National University, 30 Changjeon-dong, Keumjeong-ku, Busan, 609-735, South Korea} \email{jyepark@pusan.ac.kr} \address{Sun Hye Park \newline Department of Mathematics, Pusan National University, 30 Changjeon-dong, Keumjeong-ku, Busan, 609-735, South Korea} \email{sh-park@pusan.ac.kr} \date{} \thanks{Submitted March 31, 2006. Published October 31, 2006.} \thanks{Supported by a research grant from Pusan National University} \subjclass[2000]{35L85, 35B40} \keywords{Weak solutions; asymptotic behavior; hemivariational ineuqlity} \begin{abstract} In this paper we study the existence of global weak solutions for a hyperbolic differential inclusion with a discontinuous and nonlinear multi-valued term. Also we investigate the asymptotic behavior of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{remark}{Remark}[section] \section{Introduction} The main purpose of this paper is to investigate the initial boundary value problem for the hyperbolic differential inclusion \begin{gather} u''+A^2u+M(\|A^{1/2}u\|^2)Au+\varphi(u')\ni 0 \quad \text{in } (0,\infty)\times \Omega, \label{e1.1}\\ u(0)=u_0, u'(0)=u_1 \quad \text{in } \Omega, \label{e1.2} \end{gather} where $\varphi$ is a discontinuous and nonlinear set-valued mapping by filling in jumps a function $b\in L^{\infty}_{\rm loc}(\mathbb{R})$. The precise hypothesis on the above system will be given in the next section. Recently, a class of nonlinear Cauchy problems are studied by many authors \cite{m1,m2,n1,p1,r2} Medeiros \cite{m2} studied the equation \begin{equation*} u''+A^2u+M(\|A^{1/2}u\|^2)Au=0, \end{equation*} where $A$ is a linear operator in a Hilbert space $H$ and $M$ is a real function. Rivera \cite{r2} investigated the equation \begin{equation} \label{e1.3} u''+A^2u+M(\|A^{1/2}u\|^2)Au+g(u')=0, \end{equation} when the damping term is linear, i.e., $g(x)=\delta x$ and Patcheu \cite{p1} studied the existence and asymptotic behavior of the solutions of \eqref{e1.3} when $g$ is a nonlinear and nondecreasing continuous functions. Motivated by works of Patcheu \cite{p1}, we consider more generalized problem \eqref{e1.1} with a discontinuous and nonlinear multi-valued term $\varphi$. Thus, in this paper we shall deal with the existence and asymptotic behavior of the global weak solution of the hemivariational inequality \eqref{e1.1}-\eqref{e1.2}. The background of these variational problems are in physics, especially in continuum mechanics, where nonmonotone, multi-valued constitutive laws lead to the above-cited hemivariational inequalities. At this point it is important to mention that such hemivariational inequalities were studied by some authors \cite{m3,m4,r1}, but, in their works no decay rates were obtained as in this present paper. The plan of this paper as follows. In section 2, the assumptions and the main results are given. In section 3, the existence of a solution to the \eqref{e1.1}-\eqref{e1.2} is proved by using the Faedo-Galerkin method and finally in section 4, the decay of solutions is investigated. \section{Assumptions and main results } First we explain the notation used throughout this paper. Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with a smooth boundary $\partial \Omega$ and $Q=[0,T]\times\Omega$, where $T$ be any positive real number. Let $H=L^2(\Omega)$ with inner product and norm respectively denoted by $(\cdot, \cdot)$ and $\|\cdot\|$. Let $A$ be a linear operator in $H$, with domain $D(A)=V$ dense in $H$ and the graph norm denoted by $\|\cdot\|_V$. Let $V'$ be the dual of $V$ and let $\langle\cdot, \rangle$ denote the duality pairing between $V'$ and $V$. We assume that the imbedding $V\subset H$ is compact. Identifying $H$ and $H'$, it follows that $V\subset H\subset V'$ and the imbedding $H\subset V'$ is also compact. The following hypothesis will be used throughout this paper. \begin{itemize} \item[(H1)] $A$ is self-adjoint and positive, i.e., there is a constant $\mu_0>0$ such that \begin{equation} \label{e2.1} (Av,v)\geq \mu_0\|v\|^2, \quad \forall v \in V. \end{equation} Define $A^2 : V \to V'$ by $$ \langle A^2u,v\rangle =(Au,Av), \quad u,v\in V $$ with $W=D(A^2)=\{ u\in V | A^2u \in H \}$. \item[(H2)] $M(s)$ is a $C^1$ real function and there exist $\alpha, \beta >0$ such that \begin{equation} \label{e2.2}%2.3 M(s)\geq \alpha +\beta s, \quad M'(s)\geq 0. \end{equation} Let $\bar{M}(t)$ be defined by $$ \bar{M}(t)=\int^t_0M(s)ds. $$ %2.4 \item[(H3)] (1) $b\in L^{\infty}_{\rm loc}(\mathbb{R})$. \ (2) There exist $\mu_1, \mu_2 >0$ such that $b(s)s \geq \mu_1 |s|^2$ and $|b(s)|\leq \mu_2|s|$ for all $s\in \mathbb{R}$. \end{itemize} The multi-valued function $\varphi : \mathbb{R} \to 2^{\mathbb{R}}$ is obtained by filling in jumps of a function $b : \mathbb{R}\to \mathbb{R}$ by means of the functions $\underline{b}_{\epsilon}$, $\overline{b}_{\epsilon}$, $\underline{b}$, $\overline{b}$ from $\mathbb{R}$ to $\mathbb{R}$ as follows: \begin{gather*} \underline{b}_{\epsilon}(t)=\mathop{\rm ess\,inf}_{|s-t|\leq \epsilon} b(s), \quad \overline{b}_{\epsilon}(t)=\mathop{\rm ess\,sup}_{|s-t|\leq \epsilon} b(s) ; \\ \underline{b}(t)=\lim_{\epsilon \to 0^+}\underline{b}_{\epsilon}(t), \quad \overline{b}(t)=\lim_{\epsilon \to 0^+}\overline{b}_{\epsilon}(t); \quad \varphi(t)=[\underline{b}(t),\overline{b}(t)]. \end{gather*} We shall need a regularization of $b$ defined by \begin{equation*} b^m(t)=m\int^{\infty}_{-\infty}b(t-\tau)\rho(m\tau)d\tau, \end{equation*} where $\rho \in C_0^{\infty}((-1,1)), \rho \geq 0$ and $\int^1_{-1}\rho(\tau)d\tau=1$. It is easy to show that $b^m$ is continuous for all $m\in \mathbb{N}$ and $\underline{b}_{\epsilon},\overline{b}_{\epsilon},\underline{b}, \overline{b}, b^m$ satisfy the same condition (H3)(2) with a possibly different constant if $b$ satisfies (H3)(2). Now we are in a position to state our existence result. \begin{theorem} \label{thm2.1} Assume that the conditions (H1)-(H3) hold. Then given $u_0\in W$ and $u_1\in V$, there exist $\Xi \in L^{\infty}(0,T;H)$ and a function $u : [0,T]\times \Omega \to \mathbb{R}$ such that $$ u\in L^{\infty}(0,T;V), u' \in L^{\infty}(0,T;H), u'' \in L^{\infty}(0,T;V') $$ and \begin{gather} u''+A^2u+M(\|A^{1/2}u\|^2)Au+\Xi = 0 \quad\text{in } L^{\infty}(0,T;V'), \label{e2.5}\\ \Xi(t,x) \in \varphi(u'(t,x)) \quad\text{a.e. } (t,x)\in Q, \label{e2.6}\\ u(0)=u_0, \quad u'(0)=u_1. \label{e2.7} \end{gather} \end{theorem} Next, we establish the decay result. Let us define the energy of the system \eqref{e1.1}-\eqref{e1.2} as \begin{equation} \label{e} E(t)=\frac{1}{2}\big \{ \|u'(t)\|^2+\|Au(t)\|^2 +\bar{M}(\|A^{1/2}u(t)\|^2) \big \}. \end{equation} Then we have \begin{theorem} \label{thm2.2} Assume that the conditions of Theorem \ref{thm2.1} hold. Then given $u_0 \in W$ and $u_1\in V$, there exist $\Xi \in L^{\infty}(0,T;H)$ and a function $u : [0, \infty)\times \Omega \to \mathbb{R}$ such that \begin{gather*} u\in L^{\infty}(0,\infty;V), \quad u' \in L^{\infty}(0,T;H), \quad u'' \in L^{\infty}(0,T;V') , \\ u''+A^2u+M(\|A^{1/2}u\|^2)Au+\Xi = 0 \quad \text{in } L^{\infty}(0,\infty;V'), \\ \Xi(t,x) \in \varphi(u'(t,x)) \quad \text{a.e. } (t,x)\in (0,\infty) \times \Omega, \\ u(0)=u_0, \quad u'(0)=u_1 \end{gather*} and $u$ satisfies the decay property \begin{equation} \label{e2.9} E(t)\leq Ce^{-\gamma t}, \quad \forall t\geq 0 \end{equation} for some positive constants $C$ and $\gamma$. \end{theorem} \section{Proof of Theorem \ref{thm2.1}} The proof will be done by applying the Faedo-Galerkin method. \subsection*{Step 1 : A priori estimate I} Assume, for simplicity, $V=D(A)$ is separable, then there is a sequence $(w_j)_{j\geq 1}$ consisting of eigenfunctions of the operator $A$ corresponding to positive real eigenvalues $\lambda_j$ tending to $\infty$. Hence $Aw_j=\lambda_j w_j, j\geq 1$. Let us define $W_m=Span\{ w_1,w_2,\dots ,w_m \}$. Note that $(w_j)_{j\geq 1}$ is a basis of $H, V$ and $W$. \\ Consider a regularized Galerkin equation \begin{equation} \label{e3.1} (u_m''(t)+A^2u_m(t)+M(\|A^{1/2}u_m(t)\|^2)Au_m(t)+b^m(u_m'(t)),v) = 0, \quad \forall v\in W_m \end{equation} with the initial conditions \begin{gather} u_m(0)=u_{0m}=\sum^m_{j=1}(u_0,w_j)w_j, \quad u_{0m}\to u_0 \quad \text{in } W, \label{e3.2}\\ u'_m(0)=u_{1m}=\sum^m_{j=1}(u_1,w_j)w_j, \quad u_{1m}\to u_1 \quad \text{in } V. \label{e3.3} \end{gather} Substituting $u_m(t)=\sum^m_{j=1}g_{mj}(t)w_j$ in \eqref{e3.1} gives a second-order ordinary differential equations and its local solution $g_{mj}(t)$ exists on $[0, t_m), 00$, using the theorems of Lusin and Egoroff, we can choose a subset $\omega \subset Q$ such that $\mathop{\rm meas}(\omega)<\eta$, $u'\in L^{\infty}(Q\setminus \omega)$ and $u'_m\to u'$ uniformly on $Q\setminus \omega$. Thus, for each $\epsilon>0$, there is an $N>\frac{2}{\epsilon}$ such that \begin{equation*} |u'_m(t,x)-u'(t,x)|<\frac{\epsilon}{2}, \quad \forall (t,x)\in Q\setminus \omega. \end{equation*} Then, if $|u'_m(t,x)-s|<1/m$, we have $|u'(t,x)-s|<\epsilon $ for all $m>N$ and $(t,x)\in Q\setminus \omega$. Therefore we have \[ \underline{b}_{\epsilon}(u'(t,x))\leq b^m(u'_m(t,x)) \leq \overline{b}_{\epsilon}(u'(t,x)), \quad \forall m>N, (t,x)\in Q\setminus \omega. \] Let $\phi \in L^{\infty}(Q)$, $\phi \geq 0$. Then \begin{equation} \label{e3.32} \begin{aligned} \int_{Q\setminus \omega}\underline{b}_{\epsilon}(u'(t,x))\phi(t,x) \,dx\,dt & \leq \int_{Q\setminus \omega}b^m(u'_m(t,x))\phi(t,x) \,dx\,dt \\ & \leq \int_{Q\setminus \omega}\overline{b}_{\epsilon}(u'(t,x))\phi(t,x) \,dx\,dt. \end{aligned} \end{equation} Letting $m\to \infty$ in \eqref{e3.32} and using \eqref{e3.21}, we obtain \begin{equation} \label{e3.33} \begin{aligned} \int_{Q\setminus \omega}\underline{b}_{\epsilon}(u'(t,x))\phi(t,x) \,dx\,dt & \leq \int_{Q\setminus \omega}\Xi(t,x) \phi(t,x) \,dx\,dt \\ & \leq \int_{Q\setminus \omega}\overline{b}_{\epsilon}(u'(t,x))\phi(t,x) \,dx\,dt. \end{aligned} \end{equation} Letting $\epsilon \to 0^+$ in \eqref{e3.33}, we infer that $$ \Xi(t,x)\in \varphi(u'(t,x))\quad \text{a.e. in } Q\setminus \omega, $$ and letting $\eta \to 0^+$, we obtain $$ \Xi(t,x)\in \varphi(u'(t,x)) \quad\text{a.e. in} Q. $$ Therefore, the proof of Theorem \ref{thm2.1} is complete. \begin{remark} \label{rmk3.1} \rm Even if we replace the condition (H3)(2) by the weaker linear growth condition: $$ |b(s)|\leq \mu_2(1+|s|), \quad \forall s\in \mathbb{R}, $$ we obtain the same results as in Theorem \ref{thm2.1}. \end{remark} \begin{remark} \label{rmk3.2} \rm If in Theorem \ref{thm2.1} we impose the condition that $b$ is nondecreasing, then we obtain the stronger results. In other words, the solution $u$ of \eqref{e2.5}-\eqref{e2.7} satisfies $$ u\in W^{1,\infty}(0,T;V)\cap W^{2,\infty}(0,T;H). $$ Since the proof of this result is similar to that of \cite[Theorem 1.1]{p1}, we omit it here. \end{remark} \section{Energy decay of solutions} In this section we shall prove Theorem \ref{thm2.2} by applying the following lemma by Nakao \cite{n1}. \begin{lemma} \label{lem4.1} Let $\phi : \mathbb{R}^+\to \mathbb{R}$ be a bounded nonnegative function for which there exist constant $\delta>0$ such that $$ \sup_{t\leq s\leq t+1}\phi(s)\leq \delta(\phi(t)-\phi(t+1)), \quad \forall t\ge 0. $$ Then there exist positive constants $C$ and $\gamma$ such that $$ \phi(t)\leq Ce^{-\gamma t}, \quad \forall t\ge 0. $$ \end{lemma} \begin{proof}[Proof of Theorem \ref{thm2.2}] The existence part of solution of Theorem \ref{thm2.2} is a consequence of the proof of Theorem \ref{thm2.1}. To prove the decay property, we first obtain uniform estimates for the approximated energy, \begin{equation} \label{e4.1} E_m(t)=\frac{1}{2}\big( \|u'_m(t)\|^2+\|Au_m(t)\|^2 +\bar{M}(\|A^{1/2}u_m\|^2) \big) \end{equation} and then pass to the limit. Note that $E_m(t)$ is non-negative and uniformly bounded. Let us fix an arbitrary $t>0$. From the approximated problem \eqref{e3.1} with $v=u'_m(t)$, by (H3)(2) we have \begin{equation} \label{e4.2} \frac{d}{dt}E_m(t)=-(b^m(u'_m(t)),u'_m(t))\leq -\mu_1\|u'_m(t)\|^2. \end{equation} This implies that $E_m(t)$ is a non-increasing function. Setting $F^2_m(t)=E_m(t)-E_m(t+1)$ and integrating \eqref{e4.2} over $(t,t+1)$ we have \begin{equation} \label{e4.3} F^2_m(t)\geq \mu_1 \int^{t+1}_t\|u'_m(s)\|^2ds. \end{equation} By applying the mean value theorem, there exist $t_1\in [t,t+\frac{1}{4}]$ and $t_2\in [t+\frac{3}{4},t+1]$ such that \begin{equation} \label{e4.4} \|u'_m(t_i)\|\leq \frac{2}{\sqrt {\mu_1}}F_m(t), \quad i=1,2. \end{equation} Now, replacing $v$ by $u_m(t)$ in the approximated problem we have \begin{equation} \label{e4.5} \begin{aligned} &(A^2u_m(t),u_m(t))+(M(\|A^{1/2}u_m(t)\|^2)Au_m(t),u_m(t)) \\ &=-(u''_m(t),u_m(t))-(b^m(u'_m(t)),u_m(t)). \end{aligned} \end{equation} Integrating \eqref{e4.5} over $(t_1,t_2)$ and using (H3)(2), we obtain \begin{equation} \label{e4.6} \begin{aligned} &\int^{t_2}_{t_1}\|Au_m(s)\|^2+M(\|A^{1/2}u_m\|^2)\|A^{1/2}u_m(s)\|^2 ds \\ &=-(u'_m(t_2),u_m(t_2))+(u'_m(t_1),u_m(t_1)) \\ &\quad +\int^{t_2}_{t_1}\|u'_m(s)\|^2ds-\int^{t_2}_{t_1} \int_{\Omega}b^m(u'_m(s,x))u_m(s,x)\,dx\,ds \\ &\leq \|u'_m(t_2)\| \|u_m(t_2)\|+\|u'_m(t_1)\| \|u_m(t_1)\| \\ &\quad +\int^{t_2}_{t_1}\|u'_m(s)\|^2ds +\mu_2\int^{t_2}_{t_1}\|u'_m(s)\| \|u_m(s)\|ds. \end{aligned} \end{equation} Using H\"{o}lder's inequality and \eqref{e2.1}, from \eqref{e4.3}, \eqref{e4.4} and \eqref{e4.6}, we have \begin{equation} \label{e4.7} \begin{aligned} & \int^{t_2}_{t_1}E_m(s)ds \\ & \leq \frac{3}{2\mu_1}F^2_m(t)+\frac{2}{\mu_0 \sqrt{\mu_1}}F_m(t)\|Au_m(t_2)\| \\ & \quad +\frac{2}{\mu_0 \sqrt{\mu_1}}F_m(t)\|Au_m(t_1)\| +\frac{\mu_2}{\mu_0} \big( \int^{t_2}_{t_1}\|u'_m(s)\|^2ds \big)^{1/2} \sup_{t_1\leq s\leq t_2}\|Au_m(s)\| \end{aligned} \end{equation} and then we have \begin{equation} \label{e4.8} \int^{t_2}_{t_1}E_m(s)ds\leq C_1F^2_m(t)+C_2F_m(t)E_m(t)^{1/2}, \end{equation} where $C_1,C_2$ are a generic positive constant independent of $m$. Noting that $E_m(t+1)\leq 2\int^{t_2}_{t_1}E_m(s)ds$ and $E_m(t+1)=E_m(t)-F^2_m(t)$, from \eqref{e4.8} we have \begin{equation} \label{e4.9} \begin{aligned} E_m(t) & \leq 2\int^{t_2}_{t_1}E_m(s)ds+F^2_m(t) \\ & \leq (2C_1+1)F_m^2(t)+2C_2F_m(t)E_m(t)^{1/2}. \end{aligned} \end{equation} Young's inequality implies \begin{equation} \label{e4.10} E_m(t)\leq C_3F^2_m(t) \end{equation} for some positive constant $C_3$. Since $E_m$ is non-increasing, from \eqref{e4.10}, we have \[ \sup_{t\leq s\leq t+1}E_m(s)\leq C_3(E_m(t)-E_m(t+1)), \quad \forall t\geq 0. \] Applying Lemma \ref{lem4.1}, there exist positive constants $C$ and $\gamma$ such that \[ E_m(t)\leq Ce^{-\gamma t}, \forall t\ge 0. \] Passing to the limit $m\to \infty$, we get \eqref{e2.9}. This completes the proof of Theorem~\ref{thm2.2}. \end{proof} \begin{thebibliography}{00} \bibitem{l1} J. L. Lions; \emph{Quelques m\'ethodes de r\'esolution des probl\'emes aux limites non lin\'eaires}, Dunod-Gauthier Villars, Paris 1969. \bibitem{m1} T. F. Ma, J. A. Soriano; \emph{On weak solutions for an evolution equation with exponential nonlinearities,} Nonlinear Anal. 37 (1999), 1029-1038 \bibitem{m2} L. A. Medeiros; \emph{On a new class of nonlinear wave equations,} J. Math. Anal. Appl. 69 (1979), 252-262. \bibitem{m3} M. Miettinen; \emph{A parabolic hemivariational inequality,} Nonlinear Anal. 26 (1996), 725-734. \bibitem{m4} M. Miettinen, P. D. Panagiotopoulos; \emph{On parabolic hemivariational inequalities and applications,} Nonlinear Anal. 35 (1999), 885-915. \bibitem{n1} M. Nakao; \emph{Energy decay for the quasilinear wave equation with viscosity,} Math. Z. 219 (1995), 289-299. \bibitem{p1} S. K. Patcheu; \emph{On a global and asymptotic behavior for the generalized damped extensible beam equation,} J. Differential Equations 135 (1997), 299-314. \bibitem{r1} J. Rauch; \emph{Discontinuous semilinear differential equations and multiple valued maps,} Proc. Amer. Math. Soc. 64 (1977), 277-282. \bibitem{r2} P. H. Rivera Rodriguez; \emph{On local strong solutions of a non-linear partial differential equation,} Appl. Anal. 8 (1980), 93-104. \bibitem{z1} K. C. Zhang, Y. C. Lin; \emph{A course of functinal analysis}, Peking Univ. Press, Peking, 1987. \bibitem{z2} M. Q. Zhou; \emph{Real variables functions}, Peking Univ. Press, Peking, 1985. \end{thebibliography} \end{document}