\documentclass[reqno]{amsart} \usepackage{amssymb} \usepackage{graphicx} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 140, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/140\hfil Existence of periodic solution] {Existence of periodic solution for perturbed generalized Li\'enard equations} \author[I. Boussaada, A. R. Chouikha\hfil EJDE-2006/140\hfilneg] {Islam Boussaada, A. Raouf Chouikha} % in alphabetical order \address{Islam Boussaada \newline LMRS, UMR 6085, Universite de Rouen, Avenue de l'universit\'e, BP.12, 76801 Saint Etienne du Rouvray, France} \email{islam.boussaada@etu.univ-rouen.fr} \address{A. Raouf Chouikha \newline Universite Paris 13 LAGA, Villetaneuse 93430, France} \email{chouikha@math.univ-paris13.fr} \date{} \thanks{Submitted May 15, 2006. Published November 1, 2006.} \subjclass[2000]{34C25} \keywords{Perturbed systems; Li\'enard equation; periodic solution} \begin{abstract} Under conditions of Levinson-Smith type, we prove the existence of a $\tau$-periodic solution for the perturbed generalized Li\'enard equation $$ u''+\varphi(u,u')u'+\psi(u)=\epsilon\omega(\frac{t}{\tau},u,u') $$ with periodic forcing term. Also we deduce sufficient condition for existence of a periodic solution for the equation $$ u''+\sum_{k=0}^{2s+1} p_k(u){u'}^k=\epsilon\omega(\frac{t}{\tau},u,u'). $$ Our method can be applied also to the equation $$ u''+[u^2+(u+u')^2-1]u'+u=\epsilon\omega(\frac{t}{\tau},u,u'). $$ The results obtained are illustrated with numerical examples. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem*{remark}{Remark} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} Consider Li\'enard equation \[ u''+\varphi(u)u'+\psi(u)=0 \] where $u'=\frac{du}{dt}$, $u''=\frac{d^2u}{dt^2}$, $\varphi$ and $\psi$ are $C^{1}$. Studying the existence of periodic solution of period $\tau_0$ has been purpose of many authors: Farkas \cite{F1} presents some typical works on this subject, where the Poincar\'e-Bendixson theory plays a crucial role. In general, a periodic perturbation of the Li\'enard equation does not possess a periodic solution as described by Moser; see for example \cite{C}. Let us consider the perturbed Li\'enard equation \[ u''+\varphi(u)u'+\psi(u)=\epsilon\omega(\frac{t}{\tau},u,u') \] where $\omega$ is a \emph{controllably periodic perturbation} in the Farkas sense; i.e., it is periodic with a period $\tau$ which can be choosen appropriately. The existence of a non trivial periodic solution for (2) was studied by Chouikha \cite{C}. Under very mild conditions it is proved that to each small enough amplitude of the perturbation there belongs a one parameter family of periods $\tau$ such that the perturbed system has a unique periodic solution with this period. Let us consider now the following generalized Li\'enard equation, which is ``a more realistic assumption in modelling many real world phenomena'' as stated in \cite[page 105]{F1} \begin{equation}\label{e1} u''+\varphi(u,u')u'+\psi(u)=0. \end{equation} Where $\varphi$ and $\psi$ are $C^{1} $ and satisfy some assumptions that will be specified below. The leading work of investigation for the existence of periodic solution of generalized Li\'enard systems was established by Levinson-Smith \cite{L-S}. Let us define conditions $C_{LS}$. \smallskip \noindent {\bf Definition.} The functions $\varphi$ and $\psi$ satisfy the condition $C_{LS}$ if: $x\psi(x)>0$ for $|x|>0$, $$ \int_0^{x} \psi(s) ds =\Psi(x) \quad \text{and} \quad \lim_{x\to +\infty} \Psi(x) = + \infty , \quad \varphi(0,0) < 0. $$ Moreover, there exist some numbers $0 < x_0 < x_1$ and $M>0$ such that: \begin{gather*} \varphi(x,y) \geq 0 \quad \text{for } |x|\geq x_0,\\ \varphi(x,y)\geq -M \quad \text{for } |x|\leq x_0\\ x_1 > x_0,\quad \int_{x_0}^{x_1} \varphi(x,y(x))dx\geq 10 M x_0 \end{gather*} for every decreasing function $y(x)>0$. \begin{proposition}[Levinson-Smith \cite{L-S}] \label{prop1} When the functions $\varphi$ and $\psi$ are of class $C^1$ and satisfy condition $C_{LS}$ then the generalized Lienard equation \eqref{e1} has at least one non-constant $\tau_0$-periodic solution. \end{proposition} A non trivial solution will be denoted $u_0(t)$, and its period $\tau_0$. This proposition has many improvements (under weaker hypotheses) due to Zheng and Wax Ponzo; see \cite{F1}, among other authors. This article is organized as follows: At first, we prove the existence of a periodic solution for the perturbed generalized Li\'enard equation \begin{equation}\label{l1} u''+\varphi(u,u')u'+\psi(u)=\epsilon\omega(\frac{t}{\tau},u,u'), \end{equation} Where $t,\epsilon,\tau\in \mathbb{R}$ are such that $|\tau-\tau_0|<\tau_1<\tau_0$, $|\epsilon|<\epsilon_0$ with $\epsilon_0\in \mathbb{R}$ sufficient small and $\tau_1$ is a fixed real scalar. We will use the Farkas method which was effective for perturbed Li\'enard equation. In the third section, we will propose a criteria for the existence of periodic solution for \begin{equation}\label{l2} u''+\sum_{k=0}^{2s+1} p_k(u){u'}^k=\epsilon\omega(\frac{t}{\tau},u,u'), \end{equation} with $ s\in \mathbb{N} $ and $p_k$ are $C^1$ functions, for all $k\leq2s+1$. In the second part of the section, using a result of De Castro \cite{De} we will prove uniqueness of a periodic solution for the equation \begin{equation}\label{l4} u''+[u^2+(u+u')^2-1]u'+u=0. \end{equation} Sufficient condition for the existence of periodic solution to \begin{equation}\label{l3} u''+[u^2+(u+u')^2-1]u'+u=\epsilon\omega(\frac{t}{\tau},u,u'). \end{equation} will be found. At the end of the paper, some phase plane examples are given in order to illustrate the above results. In particular, we describe uniqueness of a solution for equation \eqref{l4} and the existence of a solution of equation \eqref{l3} for $\omega(\frac{t}{\tau},u,u') = (\sin 2t) \ u'$. \section{Periodic solution of perturbed generalized Lienard equation} In this part of this paper we prove the existence of periodic solution of the perturbed generalized Lienard equation \eqref{l1} such that the unperturbed one \eqref{e1} has at least one periodic solution. The method of proof that we will employ was described in \cite{C,F1}. Consider the equation \eqref{e1} We assume that $\varphi$ and $\psi$ are $C^1$ and satisfy $C_{LS}$. Then by Proposition \ref{prop1} there exists at least a non trivial periodic solution denoted $u_0(t)$. Let the least positive period of the solution $u_0(t)$ be denoted by $\tau_0$ and $U$ be an open subset of $\mathbb{R}^2$ containing $(0,0)$. These notation will be used in the rest of the paper. \begin{theorem}\label{monpre} Let $\varphi$ and $\psi$ be $C^1$ and satisfy $C_{LS}$. Suppose $1$ is a simple characteristic multiplier of the variational system associated to \eqref{e1}. Then there are two real functions $\tau,h$ defined on $U\subset\mathbb{R}^2$ and constants $\tau_1<\tau_0 $ such that the periodic solution $\nu(t,\alpha,a+h(\epsilon,\alpha),\epsilon,\tau(\epsilon,\alpha))$ of the equation $$ u''+\varphi(u,u')u'+\psi(u)=\epsilon\omega(\frac{t}{\tau},u,u'), $$ exists for $(\epsilon,\alpha)\in U $, $|\tau-\tau_0|<\tau_1$, $\tau(0,0)=\tau_0$ and $h(0,0)=0$. \end{theorem} We point out that the characteristic multipliers are the eigenvalues of the characteristic matrix which is the fundamental matrix in the time $\tau_0$. \begin{proof}[Proof of Theorem \ref{monpre}] Following the method used in \cite{F1}, we set $x_2=u$ , $x_1=\frac{du}{dt}=u'$ and note $x=\mathop{\rm col}(x_1,x_2)= \mathop{\rm col}(u',u)$. The plane equivalent system of \eqref{e1} is \begin{equation}\label{l5} x'=f(x)\Longleftrightarrow \left\{\begin{array}{l} x'_1=-\varphi(x_2,x_1)x_1-\psi(x_2)\\ x'_2=x_1 \end{array}\right. \end{equation} with $$ f(x)=\mathop{\rm col}(-\varphi(x_2,x_1)x_1-\psi(x_2),x_1). $$ Then the system (\ref{l5}) has the periodic solution $q(t)$ with period $\tau_0$. We define $$ q(t)=\mathop{\rm col}({u_0}'(t),u_0(t)) $$ and therefore $$ q'(t)=\mathop{\rm col}(-\varphi(u_0(t),{u_0}'(t)){u_0}'(t)-\psi(u_0(t)),{u_0}'(t)) . $$ The variational system associated with (\ref{l5}) is \begin{equation}\label{l6} y'={f_x}'(q(t))y, \end{equation} Without loss of generality, we take the initial conditions $$ t=0 ,\quad u_0(0)=a <0 \quad\text{and}\quad u_0'(0)=0 $$ Hence ${f_x}'(q(t))$ is the matrix \[\begin{pmatrix} -{\varphi'}_{x_1}(u_0(t),{u_0}'(t)){u_0}'(t) -\varphi(u_0(t),{u_0}'(t)) &-{\varphi'}_{x_2}(u_0(t),{u_0}'(t)){u_0}'(t)-\psi'(u_0(t))\\ 1&0\end{pmatrix} \] Notice that $q'(t)=\mathop{\rm col}(-\varphi(u_0(t),{u_0}'(t)){u_0}'(t)-\psi(u_0(t), {u_0}'(t))$ is the first solution of the variational system. Now we calculate the second one, denoted by $\widehat{y}(t)=\mathop{\rm col}(\widehat{y}_1(t),\widehat{y}_2(t))$ and linearly independent with $q'(t)=y(t)$, in order to write the fundamental matrix. Consider $$ I(s)=\exp\Big[-\int_0^s({\varphi'}_{x_1}(u_0(\rho),{u_0}'(\rho)){u_0}'(\rho)+ \varphi(u_0(\rho),{u_0}'(\rho)))d\rho\Big] $$ and \begin{align*} \pi(t)&=-\int_0^t \big(\varphi(u_0(\rho),{u_0}'(\rho)){u_0}'(\rho) +\psi(u_0(\rho))\big)^{-2} \big({\varphi'}_{x_2}(u_0(t),{u_0}'(t)){u_0}'(t)\\ &\quad +\psi'(u_0(t))\big)I(\rho)d\rho \end{align*} We then obtain \begin{gather*} \widehat{y}_1(t)=-[\varphi(u_0(t),{u_0}'(t)){u_0}'(t)+\psi(u_0(t)]\pi(t),\\ \widehat{y}_2(t)={u_0}'(t)\pi(t)+\pi'(t) \frac{\varphi(u_0(t),{u_0}'(t)){u_0}'(t)+\psi(u_0(t)} {{\varphi'}_{x_2}(u_0(t),{u_0}'(t)){u_0}'(t)+\psi'(u_0(t))} \end{gather*} It is known, \cite{C,F1}, that the fundamental matrix satisfying $\Phi(0)=Id_2 $ is $\Phi(t)$ equals to \[ \begin{pmatrix} \frac{\varphi(u_0(t),{u_0}'(t)){u_0}'(t)+\psi(u_0(t))}{\psi(a)} &\psi(a)\pi(t)[\varphi(u_0(t),{u_0}'(t)){u_0}'(t)+\psi(u_0(t)] \\ -\frac{{u_0}'(t)}{\psi(a)}&-\psi(a)u'_0(t)\pi(t)-\psi(a)\pi'(t) \frac{\varphi(u_0(t),{u_0}'(t)){u_0}'(t)+\psi(u_0(t))} {{\varphi'}_{x_2}(u_0(t),{u_0}'(t)){u_0}'(t)+\psi'(u_0(t))} \end{pmatrix} \] Thus, $$ \Phi(\tau_0)= \begin{pmatrix}1&{\psi(a)}^2 \pi(\tau_0)\\ 0&\rho_2\end{pmatrix}. $$ We use the Liouville's formula $$ \det\Phi(t)=\det\Phi(0)\exp\int_0^t \mathop{\rm Tr} ({f_x}'(q(\tau)))d\tau. $$ Since $\det(\Phi(0))=1$, we deduce the characteristic multipliers associated with (\ref{l6}): $\rho_1=1$ and $\rho_2=I(\tau_0)=\exp\Big[-\int_0^{\tau_0}({\varphi'}_{x_1}(u_0(\rho), {u_0}'(\rho)){u_0}'(\rho)+ \varphi(u_0(\rho),{u_0}'(\rho)))d\rho\Big]$. From \cite{F1}, we have: $$ J(\tau_0)=-Id_2+\begin{bmatrix}-\psi(a)&0 \\0&0\end{bmatrix}+\Phi(\tau_0) $$ Hence we obtain the jacobian matrix $$ J(\tau_0)=\left(\begin{array}{cc}-\psi(a)&{\psi(a)}^2 \pi(\tau_0)\\ 0&\rho_2-1\end{array}\right), $$ Since $1$ is a simple characteristic multiplier $(\rho_2\neq1)$, $\det J(0,0,0,\tau_0)\neq 0 $. We define the periodicity condition \begin{equation}\label{lz} z(\alpha,h,\epsilon,\tau) :=\nu(\alpha+\tau,a+h,\epsilon,\tau)-(a+h)=0. \end{equation} By the Implicit Function Theorem there are ${\epsilon}_0>0$ and ${\alpha}_0>0$ and uniquely determined functions $\tau$ and $h$ defined on $U=\{(\alpha,\epsilon)\in{\mathbb{R}}^{2}:|\epsilon|< \epsilon_0,|\alpha|<{\alpha}_0\}$ such that: $\tau,h\in C^1$, $\tau(0,0)=T_0,h(0,0)=0$ and $z(\alpha,h,\epsilon,\tau)\equiv0$. Because of (\ref{lz}), the periodic solution of \eqref{l1} has period $\tau(\epsilon,\alpha)$ near $T_0$ and has path near the path of the unperturbed solution. \end{proof} In particular if $\rho_2<1$, the periodic solution is orbitally asymptotically stable i.e. stable in the Liapunov sense and it is attractive see \cite[page 346]{F1}. Thus, the following inequality is a criteria of the existence of orbital asymptotical stable periodic solution of the equation \eqref{l1}. \begin{equation}\label{l7} \rho_2<1\Longleftrightarrow \int_0^{\tau_0}({\varphi'}_{x_1}(u_0(\rho),{u_0}'(\rho)){u_0}'(\rho)+ \varphi(u_0(\rho),{u_0}'(\rho)))d\rho>0. \end{equation} Using Proposition \ref{prop1}, we conclude the existence of non trivial periodic solution for perturbed generalized Li\'enard equation. \section{Results on the periodic solutions} \subsection*{Special case} Let us now consider the equation \begin{equation}\label{l8} u''+\sum_{k=0}^{2s+1} p_k(u){u'}^k=0. \end{equation} Let $p_k$ be $C^1$ function, for all$ k\leq2s+1$ for $ s\in \mathbb{N} $. This is a special case of Li\'enard equation with $p_0(u)=\psi(u)$ and $$ \varphi(u,u')=\sum_{k=1}^{2s+1} p_k(u){u'}^{k-1} . $$ We will suppose $\varphi$ and $\psi$ verify $C_{LS}$ conditions. Let $U $ be an open subset of $ \mathbb{R}^2$ containing $(0,0)$. The associated perturbed equation, as denoted previously (\ref{l2}), is equation $$ u''+\sum_{k=0}^{2s+1} p_k(u){u'}^k=\epsilon\omega(\frac{t}{\tau},u,u'). $$ \begin{remark} \rm The last non-zero term of the finite sum $\sum_{k=0}^{2s+1} p_k(u){u'}^k$ has an odd index. Then it is necessary to have the element $x_0 \neq 0$ in the $C_{LS}$ conditions. \end{remark} \begin{theorem}\label{monsec} Let $\varphi$ and $\psi$ be $C^1$ and satisfy $C_{LS}$. If $1$ is a simple characteristic multiplier of the variational system associated to (\ref{l8}) then there are two functions $\tau,h :U\to R$ and constants $\tau_1<\tau_0 $ such that the periodic solution $\nu(t,\alpha,a+h(\epsilon,\alpha),\epsilon,\tau(\epsilon,\alpha))$ of the equation $$ u''+\sum_{k=0}^{n} p_k(u){u'}^k=\epsilon\omega(\frac{t}{\tau},u,u') $$ exists for $(\epsilon,\alpha)\in U $ with $|\tau-\tau_0|<\tau_1$, $\tau(0,0)=\tau_0$ and $h(0,0)=0$. \end{theorem} \begin{proof} We will use the same method as in the existence theorem for non-trivial periodic solution of the perturbed system. Consider the unperturbed equation to compute some useful elements. First we assume that $2s+1=n$, to simplify notation. Let $x_2=u$ and $x_1=\frac{du}{dt}=u'$. The equivalent plane system of (\ref{l8}) is \begin{equation}\label{l9} x'=f(x)\Longleftrightarrow\left\{\begin{array} {l}x'_1=-\sum_{k=0}^{n} p_k(x_2){x_1}^k\\ x'_2=x_1 \end{array}\right. \end{equation} with $$ f(x)=\mathop{\rm col}(-\sum_{k=0}^{n} p_k(x_2){x_1}^k,x_1). $$ Let $q(t)=\mathop{\rm col}(u'_0(t),u_0(t))$ the periodic solution of (\ref{l9}). The variational system associated to (\ref{l9}) is $$ y'=f'_x(q(t))y $$ with the periodic solution $$ q'(t)=\mathop{\rm col}(-\sum_{k=0}^{n} p_k(u_0)(t){u_0'}^k(t) , u'_0(t)), $$ hence $$ f'_x(q(t))=\begin{pmatrix} -\sum_{k=1}^{n} k p_k(u_0(t)){u'_0(t)}^{k-1} &-\sum_{k=0}^{n} p'_k(u_0(t)){u_0'(t)}^k\\ 1&0\end{pmatrix}. $$ We assume the initial values: $$ t=0 ,\quad u_0(0)=a <0\quad\text{and}\quad {u_0}'(0)=0. $$ Then $q(0)=\mathop{\rm col}(0,a)$ and $q'(0)=\mathop{\rm col}(-\psi(a),0)$. In same way as the previous section we compute the fundamental matrix associated with (\ref{l9}), denoted $ \Phi(t)$. Determine the second vector solution (linearly independent with $q'(t)=y(t)$). A trivial calculation described in \cite{C,F1} gives us the second solution denoted $\widehat{y}(t)$, hence $\Phi(t)=(\frac{y(t)}{y(0)},y(0)\widehat{y}(t))$. For that consider $$ I(s)=\exp\Big[-\int_0^s(\sum_{k=1}^{n} k p_k(u_0(\rho)){u'_0(\rho)}^{k-1})d\rho\Big], $$ and denote as in the previous section $$ \pi(t)=-\int_0^t(\sum_{k=0}^{n} p_k(u_0)(\rho){u_0'}(\rho)^k)^{-2}(\sum_{k=0}^{n} p'_k(u(t)){u'}^k(t))I(\rho)d\rho. $$ Sine $\widehat{y}(t)=\mathop{\rm col}(\widehat{y}_1(t),\widehat{y}_2(t))$, where \begin{gather*} \widehat{y}_1(t)=-(\sum_{k=0}^{n} p_k(u_0)(t){u_0'}(t)^k)\pi(t),\\ \widehat{y}_2(t)=u'_0(t)\pi(t)+\pi'(t)\frac{\sum_{k=0}^{n} p_k(u_0)(t){u_0'}^k(t)} {\sum_{k=0}^{n} p'_k(u_0(t)){u'_0(t)}^k}. \end{gather*} Hence the fundamental matrix associated with our variational system is $$ \Phi(t)=\begin{pmatrix} \frac{\sum_{k=0}^{n}p_k(u_0)(t){u_0'}^k(t)}{\psi(a)} &\psi(a)(\sum_{k=0}^{n} p_k(u_0)(t){u_0'}(t)^k)\pi(t) \\ -\frac{{u_0}'(t)}{\psi(a)}&-\psi(a)u'_0(t)\pi(t)-\psi(a)\pi'(t) \frac{\sum_{k=0}^{n} p_k(u_0)(t){u_0'(t)}^k} {\sum_{k=0}^{n} p'_k(u_0(t)){u_0'(t)}^k} \end{pmatrix}. $$ We deduce the principal matrix (the fundamental one with $t=\tau_0$). $$ \Phi(\tau_0)= \begin{pmatrix} 1&{\psi(a)}^2 \pi(\tau_0)\\ 0&\rho_2\end{pmatrix}. $$ By the Liouville's formula, we have the characteristic multipliers $\rho_1=1$ and \begin{align*} \rho_2&=\det(\Phi(\tau_0))\\ &=\exp\Big(\int_{0}^{\tau_0} (Tr{f_x}'(q(\tau))d\tau\Big)\\ &= \exp\Big(-\int_{0}^{\tau_0}\sum_{k=1}^{n} k p_k(u_0(\tau)){u'_0(\tau)}^{k-1} )d\tau\Big) \end{align*} Then we define the equivalence (\ref{l7}): \begin{equation}\label{la} \rho_2 <1\Longleftrightarrow \int_{0}^{\tau_0}\Big(\sum_{k=1}^{n} k p_k(u_0(\tau)){u'_0(\tau)}^{k-1} \Big) d\tau>0 \end{equation} and the associated Jacobian matrix is $$ J(\tau_0)=\begin{pmatrix}-\psi(a)&{\psi(a)}^2 \pi(\tau_0)\\ 0&\rho_2-1\end{pmatrix}. $$ \end{proof} \subsection*{Uniqueness of the periodic solution for an unperturbed equation} Let us consider now equation \eqref{l4}: $$ u''+[u^2+(u+u')^2-1]u'+u=0, $$ which is a special case of generalized Li\'enard equation with $$ \varphi(u,u')=(u^2+(u'+u)^2-1)\ and \ \psi(u)=u. $$ We will prove existence and uniqueness of non trivial periodic solution for equation \eqref{l4}. Existence will be ensured by $C_{LS}$ conditions and for proving uniqueness we use a De Castro's result \cite{R-S-C} (see also \cite{De}). \begin{proposition}[De Castro \cite{C}] \label{prop2} Suppose the following system has at least one periodic orbit \begin{gather*} y'=-\varphi(x,y)y-\psi(x)\\ x'=y. \end{gather*} Then under the following two assumptions: \begin{itemize} \item[(a)] $\psi(x)=x$; \item[(b)] $\varphi(x,y)$ increases, when $|x|$ or $|y|$ or the both increase \end{itemize} this periodic orbit is unique. \end{proposition} Let us verify that \eqref{l4} satisfies the above assumptions: Equation \eqref{l4} is satisfied if and only if \begin{equation}\label{lb} \begin{gathered} u''+\sum_{k=0}^{3} p_k(u){u'}^k=0,\\ p_0(u)=\psi(u)=u, \quad p_1(u)=2u^2-1, \quad p_2(u)=2u, \quad p_3(u)=1. \end{gathered} \end{equation} Also if and only if \begin{equation}\label{lc} \begin{gathered} u''+\varphi(u,u')u'+\psi(u)=0,\\ \varphi(u,u')=(u^2+(u'+u)^2-1), \quad \psi(u)=u. \end{gathered} \end{equation} Clearly, the assumptions of Proposition \ref{prop2} are satisfied. In the following, we firstly verify conditions $C_{LS}$. In that case the equation $$ u''+\varphi(u,u')u'+\psi(u)=0$$ has at least a non trivial periodic solution. It is easy to see that $\psi(u)=u$ satisfies \begin{gather*} x \psi(x)>0\quad \text{for } |x|>0,\\ \int_0^{x} \psi(s) ds =\Psi(x) ,\quad lim_{x\to +\infty} \Psi(x) = + \infty \end{gather*} Now we have $\varphi(0,0)=-1<0$. By taking $x_0=1$, $M=1$, we have \begin{gather*} \varphi(x,y)\geq 0 \quad\text{for } |x|\geq x_0,\\ \varphi(x,y)\geq -M \quad \text{for } |x|\leq x_0\,. \end{gather*} The following calculation gives us the optimal value of $x_1>x_0 $. Let \begin{align*} H&=\int_{x_0}^{x_1} \varphi(x,y) dx \\ &= \int_{1}^{x_1}[x^2+(x+y)^2-1]dx\\ &=\int_{1}^{x_1}[2x^2+2xy+y^2-1]dx \\ &=\Big[\frac{2}{3}x^3+x^2y+x(y^2-1)\Big]_{1}^{x_1}\\ &=(x_1-1)(\frac{{x_1}^2-2x_1+1}{6} +2(\frac{x_1+1}{2})^2+2y(\frac{x_1+1}{2})+(y^2-1))\\ &=(x_1-1)\Big(\frac{{x_1}^2-2x_1+1}{6} +\varphi(\frac{x_1+1}{2},y)\Big) \end{align*} Since $\frac{x_1+1}{2}\geqslant x_0=1$, using the inequality $\varphi(x,y)\geq 0$ for $|x|\geq x_0$, we obtain $H\geqslant\frac{(x_1-1)^3}{6}$. Hence, if $\frac{(x_1-1)^3}{6}=10Mx_0=10$, then $x_1=1+(60)^\frac{1}{3}$ which satisfies $$ x_1 > x_0 ,\quad \int_{x_0}^{x_1} \varphi(x,y) \, dx \geq 10 M x_0 , $$ for every decreasing function $y(x)>0$. \subsection*{Existence of periodic solution for perturbed equation satisfying $C_{LS}$} In the following we are dealing with the existence of periodic solution for the equation (\ref{l3}). We assume the initial values: $$ t=0 ,\quad u_0(0)=a <0, \quad {u_0}'(0)=0. $$ \begin{theorem}\label{montro} \label{thm3} Suppose $1$ is a simple characteristic multiplier of the variational system associated to \eqref{l4}. Then there are two functions $\tau,h :U\to R$ and constants $\tau_1<\tau_0 $ such that the periodic solution $\nu(t,\alpha,a+h(\epsilon,\alpha),\epsilon,\tau(\epsilon,\alpha))$ of the equation $$ u''+{u'}^3+2u{u'}^2+(2u^2-1)u'+u=\epsilon\omega(\frac{t}{\tau},u,u'), $$ exists for $(\epsilon,\alpha)\in U $ with $|\tau-\tau_0|<\tau_1$, $\tau(0,0)=\tau_0$ and $h(0,0)=0$. \end{theorem} \begin{proof} We proceed similarly as in the proof of Theorem \ref{monsec}. We substitute the fundamental matrix, the second characteristic multiplier is $ \rho_2$. The following holds for equation \eqref{l4}, $$ \rho_2<1\Longleftrightarrow \int_{0}^{\tau_0}(\sum_{k=1}^{3} k p_k(u_0(\tau)){u'_0(\tau)}^{k-1} )d\tau>0, $$ then $$ \rho_2 <1\Longleftrightarrow \int_{0}^{\tau_0}[2{u_0}^2(\tau)+4u_0(\tau)u'_0(\tau) +3{u'_0(\tau)}^{2}-1]d\tau>0. $$ It ensures that $1$ is a simple characteristic multiplier of the variational system associated to \eqref{l4} it implies $J(\tau_0)\neq 0$. Then a periodic solution for the perturbed equation (\ref{l3}) exists. \end{proof} Using Scilab we will describe the phase plane of equation \eqref{l4} $u''+[u^2+(u+u')^2-1]u'+u=0$. We take $x_0=u_0(0)=a=-0.7548829$, $y_0={u_0}'(0)=0$ and the step time of integration $(step=.0001)$. Recall that the periodic orbit is unique. \begin{figure}[ht] \begin{center} \includegraphics[width=0.45\textwidth]{fig1a} \includegraphics[width=0.45\textwidth]{fig1b} \end{center} \caption{ (A) The unique periodic orbit for $u''+[u^2+(u+u')^2-1]u'+u=0$. (B) Zoom on the periodic orbit ($\times20$)} \end{figure} We take $\epsilon\omega(\frac{t}{\tau},u,u')=\epsilon sin(2t)u'$. Some illustrations of the phase portrait for the perturbed equation (\ref{l3}), those can explain existence of a bound $\epsilon_0$, from which periodicity of the orbit will be not insured. In order to localize $\epsilon_0$, we have taken several values of $\epsilon$. \begin{figure}[ht] \begin{center} \includegraphics[width=0.45\textwidth]{fig2c} \includegraphics[width=0.45\textwidth]{fig2d} \end{center} \caption{(C) The periodic orbit for $u''+[u^2+(u+u')^2-1]u'+u=\epsilon\omega(\frac{t}{\tau},u,u')$, $\epsilon=0.001$. (D) Zoom on the periodic orbit ($\times20$)} \end{figure} \begin{figure}[ht] \begin{center} \includegraphics[width=0.45\textwidth]{fig3e} \includegraphics[width=0.45\textwidth]{fig3f} \end{center} \caption{(E) Orbit for $u''+[u^2+(u+u')^2-1]u'+u =\epsilon\omega(\frac{t}{\tau},u,u')$, $\epsilon=0.01$. (F) Zoom on the orbit ($\times10$) and loss of periodicity.} \end{figure} We see that from the range of $\epsilon=0.01$ the orbit loses the periodicity. \begin{table}[ht] \caption{Period $\tau$ for some values of $\epsilon$} \begin{center} \begin{tabular}{|c|c|c|c|c|c|} \hline $\epsilon$ & 0 & 1/1000 & 1/900 & 1/800 & 1/700\\ \hline $\tau$ & 5.4296 & 5.4287 & 5.4286 &5.4285 &5.4283 \\ \hline\hline $\epsilon$ & 1/600 & 1/500 & 1/400 & 1/300 & 1/200 \\ \hline $\tau$ & 5.4281 & 5.4278 & 5.4274 & 5.4267 & 5.4252\\ \hline \end{tabular} \end{center} \end{table} \subsection*{Acknowledgements} We thank Professors Miklos Farkas and Jean Marie Strelcyn for their helpful discussions; also the referees for their suggestions. \begin{thebibliography}{0} \bibitem{C} A. R. Chouikha, \emph{Periodic perturbation of non-conservative second order differential equations}, Electron. J. Qual. Theory. Differ. Equ, 49 (2002), 122-136. \bibitem{De} A. De Castro, \emph{Sull'esistenza ed unicita delle soluzioni periodiche dell'equazione $\ddot x+f(x,\dot x)\dot x+g(x)=0$}, Boll. Un. Mat. Ital, (3) 9 (1954). 369--372. \bibitem{F1} M. Farkas, \emph{Periodic motions}, Springer-Verlag, (1994). \bibitem{L-S} N. Levinson and O. K. Smith, \emph{General equation for relaxation oscillations}, Duke. Math. Journal., No 9 (1942), 382-403. \bibitem{R-S-C} R. Reissig G. Sansonne R. Conti; \emph{Qualitative theorie nichtlinearer differentialgleichungen}, Publicazioni del\'l instituto di alta matematica, (1963). \end{thebibliography} \end{document}