\documentclass[reqno]{amsart} \usepackage{amssymb} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 147, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/147\hfil Optimal regularization method] {Optimal regularization method for ill-posed Cauchy problems} \author[N. Boussetila, F. Rebbani\hfil EJDE-2006/147\hfilneg] {Nadjib Boussetila, Faouzia Rebbani} % in alphabetical order \address{Nadjib Boussetila \newline Applied Math Lab, University Badji Mokhtar-Annaba \\ P.O. Box 12, Annaba 23000, Algeria} \email{naboussetila@yahoo.fr} \address{Faouzia Rebbani \newline Applied Math Lab, University Badji Mokhtar-Annaba \\ P.O. Box 12, Annaba 23000, Algeria} \email{rebbani@wissal.dz} \thanks{Submitted February 28, 2006. Published November 27, 2006.} \subjclass[2000]{35K90, 47D06, 47A52, 35R25} \keywords{Ill-posed Cauchy problem; quasi-reversibility method; \hfill\break\indent nonlocal conditions; regularizing family} \begin{abstract} The goal of this paper is to give an optimal regularization method for an ill-posed Cauchy problem associated with an unbounded linear operator in a Hilbert space. Key point to our proof is the use of Yosida approximation and nonlocal conditions to construct a family of regularizing operators for the considered problem. We show the convergence of this approach, and we estimate the convergence rate under a priori regularity assumptions on the problem data. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \section{Introduction and motivation} Throughout this paper $H$ will denote a Hilbert space, endowed with the inner product $(\cdot,\cdot)$ and the norm $\|\cdot\|$, $\mathcal{L}(H)$ denotes the Banach algebra of bounded linear operators on $H$. Consider the backward Cauchy problem \begin{equation} u'(t)+Au(t)=0,\quad 00)$ self-adjoint $(A = A^{*})$, unbounded linear operator on $H$, and $\varphi \in H$. \begin{quote}The problem is to determine $u(t)$ for $0\leq t < T$ from the knowledge of the final value $u(T) = \varphi$. \end{quote} Such problems are not well-posed in the Hadamard sense \cite{hadamard}, that is, even if a unique solution exists on $[0,T]$ it need not depend continuously on the final value $\varphi$. Physically, problems of this nature arise in different contexts. Beyond their interest in connection with standard diffusion problems \cite{engel} (then $A$ is usually the Laplace operator $-\Delta$), they also appear, for instance, in some deconvolution problem, such as deblurring processes \cite{carasso1} ($A$ is often a fractional power of $-\Delta$), material sciences \cite{renardy}, hydrology \cite{hassanov,todd2} and also in many other practical applications of mathematical physics and engineering sciences. In the mathematical literature various methods have been proposed for solving backward Cauchy problems. We can notably mention the method of quasi-solution (Q.S.-method) of Tikhonov \cite{tikhonov}, the method of quasi-reversibility (Q.R.-method) of Latt\`{e}s and Lions \cite{lattes}, the method of logarithmic convexity \cite{agmon,carasso4,john,miller2,payne1}, the it iterative procedures of Kozlov and Maz'ya \cite{baumeis2,koz}, the quasi boundary value method (Q.B.V.-method) \cite{clark,denche,ivanov,showalter2} and the C-regularized semigroups technique \cite{ames2,delaubenfles1,delaubenfles2,melnikova1,melnikova2,piskarev}. In the method of quasi-reversibility, the main idea consists in replacing $A$ in \eqref{FVP} by $A_{\alpha}=g_{\alpha}(A)$. In the original method \cite{lattes} Latt\`{e}s and Lions have proposed $g_{\alpha}(A)= A-\alpha A^{2}$, to obtain a well-posed problem in the backward direction. Then, using the information from the solution of the perturbed problem and solving the original problem, we get another well-posed problem and this solution sometimes can be taken to be the approximate solution of the ill-posed problem \eqref{FVP}. Difficulties may arise when using the method of quasi-reversibility discussed above. The essential difficulty is that the order of the operator is replaced by an operator of second order, which produces serious difficulties on the numerical implementation, in addition, the error $(e(\alpha))$ introduced by small change in the final value $\varphi$ is of the order $ e^{\frac{T}{4\alpha}}$. In the Gajewski and Zaccharias quasi-reversibility method \cite{Gajewski} (see also \cite{boussetila,ewing,huang2,long,showalter1}, $g_{\alpha}(A) =A(I+\alpha A)^{-1}$. The advantage of this perturbation lies in the fact that this perturbation is bounded $(A_{\alpha}\in\mathcal{L}(H))$, which gives a well-posedness in the forward and backward direction for the perturbed problem, the second advantage is that, this perturbation produces a best and significant approximate solution by comparison with the method proposed by Latt\`{e}s and Lions. But the amplification factor of the error resulting from the approximated problem, remains always of the order $ e^{\frac{T}{\alpha}}$. In the method developed by G.W. Clark and S.F. Oppenheimer \cite{clark} (see also \cite{denche,ivanov,showalter2}, they approximate problem \eqref{FVP} by \begin{gather*} v_t(t)+Av(t)=0,\quad 00$. This method is called quasi-boundary value method (Q.B.V.-method). We note here that this method gives a better approximation than many other quasi-reversibility type methods and the error $(e(\beta))$ introduced by small change in the final value $\varphi$ is of the order $\frac{1}{\beta}$. In this paper, We combine the nice smoothing effect of Yosida approximation with advantages of quasi-boundary value method, to build an optimal approximation to problem \eqref{FVP}. \section{Preliminaries and basic results} In this section we present the notation and the functional setting which will be used in this paper and prepare some material which will be used in our analysis. If $B\in\mathcal{L}(H)$ we denote by $\mathcal{N}(B)$ the kernel of $B$ and by $\mathcal{R}(B)$ the range of $B$. We denote by $\{E_{\lambda},\; \lambda \geq \gamma >0\}$ the spectral resolution of the identity associated to $A$. We denote by $S(t)=e^{-tA}=\int_{\gamma}^{\infty}e^{-t\lambda}\,dE_{\lambda} \in \mathcal{L}(H)$, $t\geq 0$, the $C_0$-semigroup generated by $-A$. Some basic properties of are listed in the following theorem. \begin{theorem}[{\cite[Chap. 2, theorem 6.13]{Pazy}}] \label{sgth} For this family of operators we have: \begin{enumerate} \item $\|S(t)\|\leq 1$, for all $t \geq 0$; \item the function $t\longmapsto S(t)$, $t>0$, is analytic; \item for every real $r\geq 0$ and $t > 0$, the operator $S(t)\in \mathcal{L}(H,\mathcal{D}(A^{r}))$; \item for every integer $k \geq 0$ and $t >0$, $\|S^{(k)}(t)\|=\|A^{k}S(t)\|\leq c(k)t^{-k}$; \item for every $x \in \mathcal{D}(A^{r})$, $r\geq 0$ we have $S(t)A^{r}x =A^{r}S(t)x$. \end{enumerate} \end{theorem} \begin{definition} \label{def2.1} \rm We put $$ J_{\alpha}=(I+\alpha A)^{-1},\quad A_{\alpha}= A(I+\alpha A)^{-1}= \frac{1}{\alpha}(I-J_{\alpha}), \quad \alpha > 0, $$ and call $A_{\alpha}$ the Yosida approximation of $A$. \end{definition} Some basic properties of $A_{\alpha}$ are listed in the following theorem. \begin{theorem}[{\cite[chap. VII, p. 101-118]{brezis}}] \label{thm2.2} We have \begin{enumerate} \item $A_{\alpha}$ is positive and self-adjoint; \item $J_{\alpha}Ah=AJ_{\alpha}h$, for all $h\in\mathcal{D}(A)$; \item $J_{\alpha},\; A_{\alpha} \in \mathcal{L}(H)$, $\|J_{\alpha}\|\leq 1$, for all $\alpha > 0$; \item $\|A_{\alpha}h\| \leq \|Ah\|$, for all $\alpha > 0$, for all $h\in \mathcal{D}(A)$; \item for all $h \in H$, $\lim_{\alpha \to 0}J_{\alpha}h = h$; \item for all $h \in \mathcal{D}(A)$, $\lim_{\alpha \to 0}A_{\alpha}h = Ah$; \item for all $h\in H$, for all $t\geq 0$, $\lim_{\alpha\to 0}S_{\alpha}(t)h=\lim_{\alpha\to 0}e^{-tA_{\alpha}}h=S(t)h =e^{-tA}h$. \end{enumerate} \end{theorem} \begin{theorem}\label{cl} For $t > 0$, $S(t)$ is self-adjoint and one to one operator with dense range ($S(t)= S(t)^{*}$, $\mathcal{N}(S(t))=\{0\}$ and $\overline{\mathcal{R}(S(t))}=H$). \end{theorem} \begin{proof} $A$ is self-adjoint and since $S(t)^{*} = (e^{-tA})^{*}=e^{-tA^{*}} = e^{-tA}$, then we have $S(t)^{*} = S(t)$. Let $h\in\mathcal{N}(S(t_{0})),\; t_{0}>0$, then $S(t_0)h=0$, which implies that $S(t)S(t_0)h=S(t+t_0)h=0,\; t\geq 0$. Using analyticity, one obtains that $S(t)h =0,\; t\geq 0$. Strong continuity at $0$ now gives $h=0$. This shows that $\mathcal{N}(S(t_0))=\{0\}$. Thanks to $$ \overline{\mathcal{R}(S(t_0))} = \mathcal{N}(S(t_0))^{\perp} = \{0\}^{\perp} =H, $$ we conclude that $\mathcal{R}(S(t_0))$ is dense in $H$. \end{proof} For more details, we refer the reader to a general version of theorem \ref{cl} in the case of analytic semigroups in Banach spaces (Lemma 2.2, \cite{ioana}). \begin{remark}[Smoothing effect and irreversibility] \label{rmk2.1} \rm Thanks to Theorem \ref{sgth} and Theorem \ref{cl}, we observe that the solution of the direct Cauchy problem $$ u'(t)+Au(t)=0,\;\; 0< t \leq T, \quad u(0)=u_0,\label{IVP} $$ has the following smoothing effect: admitting the initial value $u(0)$ to belong only to $H$, then for all $t>0$, \[ \mathcal{R}(S(t))\subset \mathcal{C}^{\infty}(A) \overset{def}{=} \cap_{n=1}^{\infty}\mathcal{D}(A^{n}) \] (space more regular than $H$) (see \cite{Gorbachuk}). It follows that for the final value problem \eqref{FVP} to have a solution, we should have $u(T)\in \mathcal{C}(A)\subseteq \mathcal{R}(S(T))$, where $\mathcal{C}(A)$ is an admissible class for which the \eqref{FVP} is solvable. This shows that the \eqref{FVP} is irreversible in the sense: $$ S(T-t): H \to \mathcal{R}(S(T-t))\subset \mathcal{C}^{\infty}(A)\subsetneq H,\quad 0\leq t 0,\; r>0, \\ \|A^{r}h\|^{2}=\int_{\gamma}^{+\infty}\big(\frac{\lambda^{r}} {e^{\theta T\lambda}}\big)^{2}e^{2\theta T\lambda}\,d\|E_{\lambda}h\|^{2}\leq c(\theta,r,T)\|h\|_{C_\theta}^{2} \end{gather*} where $c(\theta,r,T)=(\frac{\theta T}{r})^{2\theta T}e^{-2r}$. For $\lambda \geq \gamma$, we introduce the functions: $$ H_{\sigma}(\lambda)=F_{\sigma}(\lambda)+G_{\sigma}(\lambda), $$ where \begin{gather*} F_{\sigma}(\lambda)=\frac{\beta} {\beta+e^{-\frac{T\lambda}{1+\alpha\lambda}}},\quad G_{\sigma}(\lambda)= \frac{e^{-\frac{T\lambda}{1+\alpha\lambda}}-e^{-T\lambda}} {\beta+e^{-\frac{T\lambda}{1+\alpha\lambda}}}, \\ F_{\sigma,\theta}(\lambda)=F_{\sigma}(\lambda)e^{-T\theta\lambda},\quad G_{\sigma,\theta}(\lambda)=G_{\sigma}(\lambda)e^{-T\theta\lambda},\quad \theta >0, \\ K_{\beta}(\lambda)=\frac{\beta}{\beta+e^{-T\lambda}},\quad M_{\theta}(\lambda)=\lambda^{2}e^{-\theta T\lambda},\quad \theta >0, \\ F_{\sigma_1,\sigma_2}(\lambda)=\frac{|\beta_1 -\beta_2|}{\big(\beta_1 +e^{-\frac{T\lambda}{1+\alpha_1\lambda}}\big) \big(\beta_2+e^{-\frac{T\lambda}{1+\alpha_2\lambda}}\big)}, \\ G_{\sigma_1,\sigma_2}(\lambda)= \frac{|e^{-\frac{T\lambda}{1+\alpha_1\lambda}}-e^{-\frac{T\lambda}{1+\alpha_2\lambda}}|} {\big(\beta_1 +e^{-\frac{T\lambda}{1+\alpha_1\lambda}}\big) \big(\beta_2 +e^{-\frac{T\lambda}{1+\alpha_2\lambda}}\big)}. \end{gather*} By simple differential calculus and elementary estimates, we show that \begin{gather} 00$, $\beta >0$ and $\sigma =(\alpha,\beta)$. \textbf{Step 2} We use the initial value $$ \varphi_{\sigma} = v_{\sigma}(0) = \big(\beta+S_{\alpha}(T)\big)^{-1}\varphi, $$ in the problem \begin{equation} u_{\sigma}'(t)+Au_{\sigma}(t)=0,\quad 00$. Choose $N$ so that $\int_{N}^{+\infty}d\|E_{\lambda}\varphi\|^{2} <\frac{\varepsilon}{8}$. Thus \begin{gather*} I_{1,\sigma}\leq \int_{\gamma}^{N}F_{\sigma}(\lambda)^{2} \,d\|E_{\lambda}\varphi\|^{2}+ \int_{N}^{+\infty}F_{\sigma}(\lambda)^{2}\,d\|E_{\lambda}\varphi\|^{2}, \\ I_{2,\sigma}\leq \int_{\gamma}^{N}G_{\sigma}(\lambda)^{2} \,d\|E_{\lambda}\varphi\|^{2}+ \int_{N}^{+\infty}G_{\sigma}(\lambda)^{2}\,d\|E_{\lambda}\varphi\|^{2}. \end{gather*} Using inequalities \eqref{e1} and \eqref{e2}, we derive \begin{gather*} I_{1,\sigma}\leq \frac{\varepsilon}{8}+\beta^{2}e^{2TN}\|\varphi\|^{2},\\ I_{2,\sigma}\leq \frac{\varepsilon}{8}+\alpha^{2}T^{2}N^{4}\|\varphi\|^{2}. \end{gather*} So by taking $\sigma$ such that $$ |\sigma|^{2}=\beta^{2}+\alpha^{2}\leq \frac{1}{\|\varphi\|^{2}} \big(\frac{1}{T^{2}N^{4}}+\frac{1}{e^{2TN}}\big)\frac{\varepsilon}{4}, $$ we complete the proof. \end{proof} Note that we do not have a convergence rate here. \begin{theorem}\label{thm4} If $\varphi\in \mathcal{C}_{\theta}(A)$, $0 < \theta <1$, then we have \begin{equation} \|u_{\sigma}(T)-\varphi\|^{2}\leq 2\left(c_{1}^{2}(\theta)\beta^{2\theta}+c_{2}^{2} (\theta,T)\alpha^{2}\right)\|\varphi\|_{\mathcal{C}_{\theta}}^{2}. \label{9a} \end{equation} Moreover, if $\theta \geq 1$, then we have \begin{equation} \|u_{\sigma}(T)-\varphi\|^{2}\leq 2\left(\beta^{2}+c_{2}^{2}(\theta,T)\alpha^{2}\right) \|\varphi\|_{\mathcal{C}_{\theta}}^{2},\label{9b} \end{equation} where $c_{1}(\theta)=(1-\theta)^{1-\theta}\theta^{\theta}\leq 1$ and $c_{2}(\theta,T)=T^{-1}\theta^{-2}$. \end{theorem} \begin{proof} By doing computation, we have \begin{align*} \|u_{\sigma}(T)-\varphi\|^{2} &= \int_{\gamma}^{+\infty} H_{\sigma}^{2}(\lambda)e^{-2\theta T\lambda}e^{2\theta T\lambda}\,d\|E_{\lambda}\varphi\|^{2}\\ & \leq 2\int_{\gamma}^{+\infty} F_{\sigma,\theta}^{2}(\lambda)e^{2\theta T\lambda}\,d\|E_{\lambda}\varphi\|^{2}+2\int_{\gamma}^{+\infty} G_{\sigma,\theta}^{2}(\lambda)e^{2\theta T\lambda}\,d\|E_{\lambda}\varphi\|^{2} \\ &\leq 2\left(F_{\sigma,\theta,\infty}^{2}+ G_{\sigma,\theta,\infty}^{2}\right)\|\varphi\|_{\mathcal{C}_{\theta}}^{2} \end{align*} and by virtue of inequalities \eqref{e4}, \eqref{e5} we obtain the desired estimates. \end{proof} We define $$ \mathcal{F}: \mathbb{R}^{+}\times\mathbb{R}^{+}\to H,\quad \sigma=(\alpha,\beta)\mapsto \mathcal{F}(\sigma) =\begin{cases} u_{\sigma}(0)=\varphi_{\sigma}, & \sigma\neq (0,0),\\ u(0)=\varphi_{0}, & \sigma = (0,0). \end{cases} $$ \begin{theorem}\label{thm5} For all $\varphi\in H$, \eqref{FVP} has a solution $u$ if and only if the function $\mathcal{F}$ is continuous at $(0,0)$. Furthermore, we have that $u_{\sigma}(t)$ converges to $u(t)$ as $|\sigma|$ tends to zero uniformly in $t$. \end{theorem} \begin{proof} Assume that $\lim_{|\sigma|\to 0}\varphi_{\sigma} = \varphi_{0}$ and $\|\varphi_{0}\|<+\infty$. Let $w(t)=S(t)\varphi_{0}$. We compute $$ \|w(t)-u_{\sigma}(t)\| = \|S(t)\varphi_{0} - S(t)\varphi_{\sigma}\|\\ = \|S(t)(\varphi_{0} - \varphi_{\sigma})\| \\ \leq \|\varphi_{0} - \varphi_{\sigma}\|. $$ Which implies $$ \sup_{0 \leq t \leq T}\|w(t)-u_{\sigma}(t)\| \leq \|\varphi_{0} - \varphi_{\sigma}\| \to 0,\quad \text{as } |\sigma| \to 0. $$ Since $\lim_{|\sigma|\to 0}u_{\sigma}(T)=\varphi$ and $\lim_{|\sigma|\to 0}u_{\sigma}(T)=w(T)$, we infer that $w(T)=\varphi$. Thus, $w(t)=S(t)\varphi_{0}$ solves \eqref{FVP} and satisfies the condition $w(T)=\varphi$. Now, let us assume that $u(t)$ is the solution to \eqref{FVP}. From lemma \ref{lmmecle} we have $u(0)=S(-T)\varphi\in H$, i.e., \[ \|u(0)\|^{2}=\|\varphi\|_{\mathcal{C}_1}^{2}= \int_{\gamma}^{+\infty}e^{2T\lambda}\,d\|E_{\lambda}\varphi\|^{2}< \infty. \] Let $N>0$ and $\varepsilon >0$ such that $\int_{N}^{+\infty}e^{2T\lambda}\,d\|E_{\lambda}\varphi\|^{2}< \frac{\varepsilon}{8}$. Let $\sigma_{i}=(\alpha_i,\beta_i),\; i=1,2$. Then \begin{equation} \begin{aligned} \|u_{\sigma_1}(0)-u_{\sigma_2}(0)\|^{2} &= \int_{\gamma}^{+\infty}\big( (\beta_1+e^{\frac{-T\lambda}{1+\alpha_1 \lambda}})^{-1}-(\beta_2+e^{\frac{-T\lambda}{1+\alpha_2 \lambda}})^{-1} \big)^{2}\,d\|E_{\lambda}\varphi\|^{2} \\ & \leq 2\int_{\gamma}^{+\infty} F_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2}+2\int_{\gamma}^{+\infty} G_{\sigma_1,\sigma_2}^{2}(\lambda)\,d\|E_{\lambda}\varphi\|^{2}. \end{aligned}\label{10} \end{equation} By using \eqref{e6} and \eqref{e7}, the right hand sand of \eqref{10} can be estimated as follows \begin{align*} \int_{\gamma}^{+\infty} F_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2} & \leq \int_{\gamma}^{N} F_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2}+\int_{N}^{+\infty} F_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2} \\ & \leq (\beta_2-\beta_1)^{2}e^{2TN}\|\varphi\|_{\mathcal{C}_1}^{2}+ \frac{\varepsilon}{8}, \end{align*} \begin{align*} \int_{\gamma}^{+\infty} G_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2} & \leq \int_{\gamma}^{N} G_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2}+\int_{N}^{+\infty} G_{\sigma_1,\sigma_2}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2} \\ & \leq (\alpha_2-\alpha_1)^{2}T^{2}N^{4}\|\varphi\|_{\mathcal{C}_1}^{2}+ \frac{\varepsilon}{8}. \end{align*} Now if we choose $\sigma=(\alpha,\beta)$ so that \[ |\sigma|^{2}=\alpha^{2}+\beta^{2}\leq \frac{1}{\|\varphi\|_{\mathcal{C}_1}^{2}} \Big(\frac{1}{T^{2}N^{4}}+\frac{1}{e^{2TN}}\Big)\frac{\varepsilon}{4} \] and $\sigma_{0} =(0,0)$, then we have $\|u_{\sigma}(0)-u_{\sigma_{0}}(0)\|^{2}=\|\varphi_{\sigma}-\varphi_{0}\|^{2}\leq \varepsilon$. This shows that the function $\mathcal{F}$ is continuous at $(0,0)$. \end{proof} \begin{remark} \label{rmk4.2} \rm If we suppose that $\varphi\in \mathcal{C}_{1}(A)$, then by the equality $$ \|u_{\sigma}(0)-u(0)\|^{2}= \|u_{\sigma}(T)-\varphi\|_{\mathcal{C}_1}^{2} $$ and theorem \ref{thm3}, we have $$ \|u_{\sigma}(0)-u(0)\|^{2}\to 0,\;\; \text{as}\;\;|\sigma|\to 0. $$ \end{remark} \begin{theorem}\label{thm6} If $\varphi\in \mathcal{C}_{1+\theta}(A)$, $0 < \theta <1$, we have \begin{equation} \|u_{\sigma}(0)-u(0)\|^{2}\leq 2\left(c_{1}^{2}(\theta)\beta^{2\theta}+c_{2}^{2} (\theta,T)\alpha^{2}\right)\|\varphi\|_{\mathcal{C}_{1+\theta}}^{2}. \label{11a} \end{equation} Moreover, if $\theta \geq 1$, we have \begin{equation} \|u_{\sigma}(0)-u(0)\|^{2}\leq 2\left(\beta^{2}+c_{2}^{2}(\theta,T)\alpha^{2}\right) \|\varphi\|_{\mathcal{C}_{1+\theta}}^{2}.\label{11b} \end{equation} \end{theorem} \begin{proof} By similar calculations to those used in Theorem \ref{thm4} and \ref{thm5}, we have \begin{align*} &\|u_{\sigma}(0)-u(0)\|^{2}\\ & = \int_{\gamma}^{+\infty}H_{\sigma}(\lambda)^{2}e^{-2\theta T\lambda}e^{2(1+\theta)T\lambda} \,d\|E_{\lambda}\varphi\|^{2} \\ &\leq 2\int_{\gamma}^{+\infty} F_{\sigma,\theta}(\lambda)^{2}e^{2(1+\theta)T\lambda} \,d\|E_{\lambda}\varphi\|^{2} + 2\int_{\gamma}^{+\infty}G_{\sigma,\theta}(\lambda)^{2}e^{2(1+\theta)T\lambda} \,d\|E_{\lambda}\varphi\|^{2}\\ &\leq 2\left(F_{\sigma,\theta,\infty}^{2}+ G_{\sigma,\theta,\infty}^{2}\right)\|\varphi\|_{\mathcal{C}_{1+\theta}}^{2} \end{align*} and by \eqref{e4}, \eqref{e5} we obtain the desired estimates. \end{proof} From Theorem \ref{thm5} and \ref{thm6}, we have the following result. \begin{corollary} \label{coro4.1} If $\varphi\in \mathcal{C}_{1+\theta}(A)$, $0<\theta<1$, then an upper bound of the rate of convergence of the method is given by $$ \sup_{0\leq t\leq T}\|u_{\sigma}(t)-u(t)\|^{2}\leq\|u_{\sigma}(0)-u(0)\|^{2}\leq 2\left(c_{1}^{2}(\theta)\beta^{2\theta}+c_{2}^{2} (\theta,T)\alpha^{2}\right)\|\varphi\|_{\mathcal{C}_{1+\theta}}^{2}. %\label{12a} $$ Moreover, if $\theta \geq 1$, then we have $$ \sup_{0\leq t\leq T}\|u_{\sigma}(t)-u(t)\|^{2}\leq\|u_{\sigma}(0)-u(0)\|^{2}\leq 2\left(\beta^{2}+c_{2}^{2}(\theta,T)\alpha^{2}\right) \|\varphi\|_{\mathcal{C}_{1+\theta}}^{2}. %\label{12b} $$ \end{corollary} \begin{remark} \label{rmk4.3} \rm If $\varphi\in \mathcal{D}(A^{2})$, then with the help of \eqref{e1} and \eqref{e2}, $\|u_{\sigma}(T)-\varphi\|^{2}$ can be estimated as follows: \begin{align*} \|u_{\sigma}(T)-\varphi\|^{2} &\leq 2\int_{\gamma}^{+\infty} F_{\sigma}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2}+2\int_{\gamma}^{+\infty} G_{\sigma}^{2} (\lambda)\,d\|E_{\lambda}\varphi\|^{2} \\ &\leq 2\big(\frac{\beta}{\beta+e^{\frac{-T}{\alpha}}} \big)^{2}\int_{\gamma}^{+\infty} \,d\|E_{\lambda}\varphi\|^{2}+2T^{2}\alpha^{2}\int_{\gamma}^{+\infty} \lambda^{4}\,d\|E_{\lambda}\varphi\|^{2}. \end{align*} Choosing $\alpha =\frac{T}{(1-r)\ln(\frac{1}{\beta})}$, $0 < r<1$, we obtain $$ \|u_{\sigma}(T)-\varphi\|^{2}\leq 2\Big( \beta^{2r}\|\varphi\|^{2}+ \frac{T^{4}}{(1-r)^{2}\ln^{2} (\frac{1}{\beta})}\|A^{2}\varphi\|^{2}\Big).%\label{13} $$ \end{remark} \begin{theorem}\label{thm4.7} Assuming that $\varphi\in \mathcal{D}(A)$ and letting $\alpha =\frac{T}{(1-r)\ln(\frac{1}{\beta})}$, $0 < r<1$, the expression $\|u_{\sigma}(T)-\varphi\|^{2}$ can be estimated as follows $$ \|u_{\sigma}(T)-\varphi\|^{2}\leq \beta^{2r}\|\varphi\|^{2}+ \frac{4T}{(1-r)\ln (\frac{1}{\beta})}\|A\varphi\|^{2}.%\label{14} $$ \end{theorem} \begin{proof} We have \begin{gather} u_{\sigma}'(t)+Au_{\sigma}(t)=0,\label{E1}\\ v_{\sigma}'(t)+Av_{\sigma}(t)=(A-A_{\alpha})v_{\sigma}(t)= \alpha J_{\alpha}A^{2}v_{\sigma}(t),\label{E2}\\ u_{\sigma}(0)-v_{\sigma}(0)=0, \label{C1}\\ \beta v_{\sigma}(0)+v_{\sigma}(T)=\varphi.\label{C2} \end{gather} If we put $x_{\sigma}(t)=v_{\sigma}(t)-u_{\sigma}(t)$, then $x_{\sigma}(t)$ satisfies the equation \begin{equation} x_{\sigma}'(t)+Ax_{\sigma}(t)= \alpha J_{\alpha}A^{2}u(t).\label{E3} \end{equation} Applying the operator $\mathcal{M}(t)=e^{(t-T)A}$ to \eqref{E1}, \eqref{E2} and \eqref{E3}, we obtain \begin{gather} \frac{d}{dt}\left(\mathcal{M}(t)u_{\sigma}(t)\right)=0,\label{E1'}\\ \frac{d}{dt}\left(\mathcal{M}(t)v_{\sigma}(t)\right)= \alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t),\label{E2'}\\ \frac{d}{dt}\left(\mathcal{M}(t)x_{\sigma}(t)\right)= \alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t).\label{E3'} \end{gather} Multiplying \eqref{E3'} by $\mathcal{M}(t)x_{\sigma}$ and integrating the obtained result over $(0,\tau)$, we get \begin{align*} \int_{0}^{\tau}\frac{d}{dt}\|\mathcal{M}(t)x_{\sigma}(t)\|^{2} &= \|\mathcal{M}(\tau)x_{\sigma}(\tau)\|^{2}- \|\mathcal{M}(0)x_{\sigma}(0)\|^{2}=\|\mathcal{M}(\tau)x_{\sigma}(\tau)\|^{2}\\ & = 2 \int_{0}^{\tau}Re(\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t), \mathcal{M}(t)x_{\sigma})\,dt\\ &\leq 2T \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt +\frac{1}{2T}\int_{0}^{T}\|\mathcal{M}(t)x_{\sigma}(t)\|^{2}\\ &\leq 2T \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt+\frac{1}{2} \sup_{0\leq t\leq T}\|\mathcal{M}(t)x_{\sigma}(t)\|^{2}. \end{align*} This implies $$ \frac{1}{2} \sup_{0\leq t\leq T}\|\mathcal{M}(t)x_{\sigma}(t)\|^{2}\leq 2T \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt. $$ In particulary for $t=T$ we have \begin{equation} \|\mathcal{M}(T)x_{\sigma}(T)\|^{2}=\|u_{\sigma}(T)-v_{\sigma}(T)\|^{2}\leq 4T \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt.\label{15} \end{equation} From \eqref{15} we can write \begin{align*} \|u_{\sigma}(T)-v_{\sigma}(T)\|^{2} & = \|(u_{\sigma}(T)-\varphi)+ (\varphi-v_{\sigma}(T))\|^{2} \\ &= \|(u_{\sigma}(T)-\varphi)+\beta v_{\sigma}(0)\|^{2}\\ &= \|u_{\sigma}(T)-\varphi\|^{2}+\|\beta v_{\sigma}(0)\|^{2}+ 2Re(u_{\sigma}(T)-\varphi,\beta v_{\sigma}(0))\\ & \leq 4T \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt. \end{align*} This last inequality implies \begin{equation} \|u_{\sigma}(T)-\varphi\|^{2}\leq 8T \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt+2\|\beta v_{\sigma}(0)\|^{2}.\label{16} \end{equation} To estimate the integral in the right-hand side, we take the inner product of \eqref{E2'} with $\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)$ and integrate over $(0,T)$: \begin{align*} &\int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt\\ & = \frac{1}{2}\int_{0}^{T} \mathop{\rm Re}(\frac{d}{dt}\left(\mathcal{M}(t)v_{\sigma}(t)\right), \alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t))\,dt \\ &= \frac{1}{2}\int_{0}^{T}\frac{d}{dt} \|\alpha J_{\alpha}A\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt +\frac{1}{2}\int_{0}^{T}\frac{d}{dt} \|\alpha^{2} J_{\alpha}A^{3/2}\mathcal{M}(t)v_{\sigma}(t)\|^{2}\,dt \\ &\leq \frac{1}{2}\left(\|\alpha J_{\alpha}Av_{\sigma}(T)\|^{2}+\|\alpha^{2} J_{\alpha}A^{3/2}v_{\sigma}(T)\|^{2}\right). \end{align*}%\label{17} By virtue of $$ \|v_{\sigma}(T)\|=\|S_{\alpha}(T)\big(\beta+ S_{\alpha}(T)\big)^{-1}\varphi\| \leq\|\varphi\| $$ and $$ \|A\varphi\|^{2}=\|(I+\alpha A)J_{\alpha}A\varphi\|^{2} =\|J_{\alpha}A\varphi\|^{2}+ 2\alpha\|J_{\alpha}A^{3/2}\varphi\|^{2}+ \alpha^{2}\| J_{\alpha}A^{2}\varphi\|^{2}, $$ we derive \[ \int_{0}^{T}\|\alpha J_{\alpha}A^{2}\mathcal{M}(t)v_{\sigma}(t)\|^{2} \leq \frac{1}{2}\left(\|\alpha J_{\alpha}A\varphi\|^{2}+\|\alpha^{2} J_{\alpha}A^{3/2}\varphi\|^{2}\right) \leq \frac{1}{2}\alpha\|A\varphi\|^{2}. \] %\label{18} Combining this inequality and \eqref{16}, we obtain \begin{equation} \begin{aligned} \|u_{\sigma}(T)-\varphi\|^{2} & \leq 4T\alpha\|A\varphi\|^{2}+ \|\beta v_{\sigma}(0)\|^{2} \\ & \leq 4T\alpha\|A\varphi\|^{2}+ \big(\frac{\beta}{\beta+e^{\frac{-T}{\alpha}}}\big)^{2}\|\varphi\|^{2}. \end{aligned}\label{19} \end{equation} If we choose $\alpha =\frac{T}{(1-r)\ln(\frac{1}{\beta})}$, $0 < r<1$, then \eqref{19} becomes \[ \|u_{\sigma}(T)-\varphi\|^{2}\leq \beta^{2r}\|\varphi\|^{2}+ \frac{4T}{(1-r)\ln (\frac{1}{\beta})}\|A\varphi\|^{2}. \]%\label{20} \end{proof} \begin{theorem}\label{thm8} Assuming that $\varphi\in \mathcal{D}(A)$ and $\gamma \geq1$, then $\|u_{\sigma}(T)-\varphi\|^{2}$ can be estimated as follows \[ \|u_{\sigma}(T)-\varphi\|^{2}\leq 2\Big(\big(\frac{T}{1+\ln(\frac{\gamma T}{\beta})}\big)^{2}+T\alpha\Big) \|A\varphi\|^{2}. \]%\label{21} \end{theorem} \begin{proof} We have \[ \|u_{\sigma}(T)-\varphi\|^{2} = \int_{\gamma}^{+\infty} H_{\sigma}(\lambda)^{2}\,d \|E_{\lambda}\varphi\|^{2} \leq 2(I_{1,\sigma}+I_{2,\sigma}), \] %\label{22} where \begin{gather*} I_{1,\sigma} =\int_{\gamma}^{+\infty} F_{\sigma}(\lambda)^{2}\lambda^{-2}\lambda^{2}\,d\|E_{\lambda}\varphi\|^{2},\\ I_{2,\sigma} =\int_{\gamma}^{+\infty} G_{\sigma}(\lambda)^{2}\,d\|E_{\lambda}\varphi\|^{2}. \end{gather*} Using \eqref{e8} and \eqref{e9}, we obtain \begin{gather} I_{1,\sigma}\leq \Big(\sup_{\lambda\geq\gamma}F_{\sigma}(\lambda) \lambda^{-1}\Big)^{2} \|A\varphi\|^{2}\leq \Big(\frac{T}{1+\ln(\frac{\gamma T}{\beta})}\Big)^{2}\|A\varphi\|^{2},\label{23} \\ I_{2,\sigma}\leq T\alpha \|A\varphi\|^{2}.\label{24} \end{gather} Combining \eqref{23} and \eqref{24} we obtain the desired estimate. \end{proof} \begin{theorem}\label{thm9} Assume that $\|Au(0)\|^{2}=\int_{\gamma}^{+\infty} \lambda^{2}e^{2T\lambda}\,d\|E_{\lambda}\varphi\|^{2} < \infty$, i.e., $u(0)\in \mathcal{D}(A)$, and that $\gamma \geq 1$. Then $\|u_{\sigma}(0)-u(0)\|^{2}$ can be estimated as follows \[ \|u_{\sigma}(0)-u(0)\|^{2}\leq 2\big(\big(\frac{T}{1+\ln(\frac{\gamma T}{\beta})}\big)^{2}+T\alpha\big) \|Au(0)\|^{2}. \]%\label{25} \end{theorem} \begin{proof} By a computation, \[ \|u_{\sigma}(0)-u(0)\|^{2} = \int_{\gamma}^{+\infty} H_{\sigma}(\lambda)^{2}e^{2T\lambda}\,d\|E_{\lambda}\varphi\|^{2} \\ \leq 2(I_{1,\sigma}+I_{2,\sigma}),\\ \] %\label{26} where \begin{gather*} I_{1,\sigma} =\int_{\gamma}^{+\infty} F_{\sigma}(\lambda)^{2}\lambda^{-2}\lambda^{2}e^{2T\lambda} \,d\|E_{\lambda}\varphi\|^{2},\\ I_{2,\sigma} =\int_{\gamma}^{+\infty} G_{\sigma}(\lambda)^{2}e^{2T\lambda}\,d\|E_{\lambda}\varphi\|^{2}. \end{gather*} Using \eqref{e8} and \eqref{e9} we obtain \begin{gather*} I_{1,\sigma}\leq \Big(\sup_{\lambda\geq\gamma}F_{\sigma}(\lambda)\Big)^{2} \|Au(0)\|^{2}\leq \Big(\frac{T}{1+\ln(\frac{\gamma T}{\beta})}\Big)^{2}\|Au(0)\|^{2},\\ I_{2,\sigma}\leq T\alpha \|Au(0)\|^{2}. \end{gather*} Combining the two inequalities above, we obtain the desired estimate. \end{proof} We conclude this paper by constructing a family of regularizing operators to \eqref{FVP}. \begin{definition}\label{def4.2} \rm A family $\{R_{\sigma}(t),\; \sigma >0,\; t\in[0,T]\} \subset \mathcal{L}(H)$ is called a family of regularizing operators for the problem \eqref{FVP} if for each solution $u(t)$, $0\leq t\leq T$ of \eqref{FVP} with final element $\varphi$, and for any $\eta >0$, there exists $\sigma(\eta)>0$, such that \begin{gather} \sigma(\eta)\to 0,\quad \eta \to 0,\label{R1}\\ \|R_{\sigma(\eta)}(t)\varphi_{\eta}-u(t)\|\to 0,\quad \eta \to 0, \label{R2} \end{gather} for each $t\in[0,T]$ provided that $\varphi_{\eta}$ satisfies $\|\varphi_{\eta}-\varphi\|\leq \eta$. \end{definition} Define $R_{\sigma}(t)= S(t)\big(\beta+S_{\alpha}(T)\big)^{-1}$, $t \geq 0$, $\sigma > 0$; it is clear that $R_{\sigma}(t)\in \mathcal{L}(H)$. In the following we will show that $R_{\sigma}(t)$ is a family of regularizing operators for \eqref{FVP}. \begin{theorem}\label{thm7} Under the assumption $\varphi\in \mathcal{C}_{1}(A)$, the condition \eqref{R2} holds. \end{theorem} \begin{proof} We have \[\Delta_{\sigma}(t)=\|R_{\sigma}(t)\varphi_{\eta}-u(t)\| \leq \|R_{\sigma}(t)(\varphi_{\eta}-\varphi)\|+ \|R_{\sigma}(t)\varphi-u(t)\| = \Delta_1(t)+\Delta_2(t), \]%\label{29} where \begin{gather*} \Delta_1(t) = \|R_{\sigma}(t)(\varphi_{\eta}-\varphi)\|\leq \Big(\frac{1}{\beta+e^{\frac{-T}{\alpha}}}\Big)\eta, \\ %\label{30} \Delta_2(t) = \|R_{\sigma}(t)f-u(t)\|. \end{gather*} %\label{31} We observe that $$ \Delta_1(t)\leq\frac{\eta}{\beta},\quad \Delta_1(t)\leq \eta e^{\frac{T}{\alpha}}. $$ Choose $\beta =\sqrt{\eta}$ and $\alpha =\frac{2T}{\ln(\frac{1}{\eta})}$, then $\sigma(\eta)=(\alpha(\eta),\beta(\eta))\to (0,0)$, $\eta\to 0$, and \begin{equation} \Delta_1(t) \leq \sqrt{\eta} \to 0,\quad \text{as } \eta \to 0.\label{32} \end{equation} Now, by Theorem \ref{thm5} we have \begin{equation} \Delta_2(t)= \|u_{\sigma(\eta)}(t)-u(t)\| \to 0, \quad \text{as } \eta \to 0,\label{33} \end{equation} uniformly in $t$. Combining \eqref{32} and \eqref{33} we obtain \[ \sup_{0\leq t \leq T}\|R_{\sigma}(t)\varphi_{\eta}-\varphi\| \to 0, \;\text{as}\;\eta \to 0. \]%\label{34} This shows that $R_{\sigma}(t)$ is a family of regularizing operators for \eqref{FVP}. \end{proof} \subsection*{Concluding remarks} \textbf{1.} Note that the error factor $e(\sigma)$ introduced by small changes in the final value $\varphi$ is of order $\frac{1}{\beta+e^{\frac{-T}{\alpha}}}$. \noindent\textbf{2.} When $\alpha =\frac{T}{(1-r)\ln(\frac{1}{\beta})}$, $0 < r<1$, then $$ e(\sigma)=e(\beta)=\frac{1}{\beta+\beta^{1-r}}\leq (\frac{1}{\beta})^{1-r}. $$ \textbf{3.} In \cite{clark} (resp. \cite{Gajewski,lattes}) the error factor $e(\beta)$ (resp. $e(\alpha)$ is of order $ \frac{1}{\beta}$ (resp. $ e^{\frac{T}{\alpha}}$). Observe that \[ \frac{1}{\beta+e^{\frac{-T}{\alpha}}}\leq \frac{1}{\beta}, \quad \frac{1}{\beta+e^{\frac{-T}{\alpha}}}\leq e^{\frac{T}{\alpha}}. \] This shows that our approach has a nice regularizing effect and gives a better approximation with comparison to the methods developed in \cite{clark,Gajewski,lattes}. In this study we have achieved a better results than those established in \cite{clark,Gajewski,lattes}. The error resulting from approximation and the rate of convergence of the method are optimal. \subsection*{Acknowledgments} The authors give their cordial thanks to the anonymous referees for their valuable comments and suggestions which improved the quality of the paper. \begin{thebibliography}{99} \bibitem{agmon} S. Agmon, L. Nirenberg; \emph{Properties of solutions of ordinary differential equations in Banach spaces}, Comm. Pure Appl. Math., \textbf{16} (1963), 121-139. \bibitem{ames1} K. A. Ames, L. E. Payne; \emph{Continuous dependence on modeling for some well-posed perturbations of the backward heat equation}, J. Inequal. Appl., Vol. \textbf{3} (1999), 51-64. \bibitem{ames2} K. A. Ames, R. J. Hughes; \emph{Structural Stability for Ill-Posed Problems in Banach Space}, Semigroup Forum, Vol. \textbf{70} (2005), N0 1, 127-145. \bibitem{brezis} H. Brezis; \emph{Analyse fonctionelle, Th\'eorie et application}, Masson (1993). \bibitem{baumeis2} J. Baumeister, A. Leitao; \emph{On iterative methods for solving ill-posed problems modled by partial differential equations}, J. Inv. Ill-Posed Problems, Vol. \textbf{9.1} (2001), 1-17. \bibitem{boussetila} N. Boussetila, F. Rebbani; \emph{The modified quasi-reversibility method for ill-posed evolution problems with two-dimensional time}, Analytic Methods of Analysis and Differential Equations (AMADE-2003), 15-23, Cambridge Scientific publishers 2005. \bibitem{carasso1} A. S. Carraso, J. Sanderson and J. Hyman; \emph{Digital removal of random media image degradations by solving the diffusion equation backwards in time}, SIAM J. Numer. Anal., \textbf{15} (1978), 344-367. \bibitem{carasso4} A. S. Carraso; \emph{Logarithmic convexity and the ``slow evolution'' constraint in ill-posed initial value problems}, SIAM J. Math. Anal., Vol. \textbf{30} (1999), No. 3, 479-496. \bibitem{clark} G. W. Clark, S. F. Oppenheimer; \emph{Quasireversibility methods for non-well posed problems}, Elect. J. Diff. Eqns., \textbf{1994} (1994) no. 8, 1-9. \bibitem{delaubenfles1} R. deLaubenfles; \emph{C-semigroups and the abstract Cauchy problem}, J. Functional Analysis, \textbf{111} (1993), 44-61. \bibitem{ioana} I. Cioranescu, V. Keyantuo; \emph{Entire regularizations of strongly continuous groups and products of analytic semigroups}, Proc. Math. Soc., Vol. \textbf{128} (2000), No. 12, 3587-3593. \bibitem{delaubenfles2} R. deLaubenfles, G. Sun and S. Wang; \emph{Regularized semigroups, existence families and the abstract Cauchy problem}, J. Diff. and Int. Eqns. \textbf{8} (1995), 1477-1496. \bibitem{denche} M. Denche, K. Bessila; \emph{A modified quasi-boundary value method for ill-posed problems}, J. Math. Anal. Appl., \textbf{301} (2005), 419-426. \bibitem{ewing} R.E. Ewing; \emph{The approximation of certain parabolic equations backward in time by Sobolev equations}, SIAM J. Math. Anal., Vol. \textbf{6} (1975), No. 2, 283-294. \bibitem{engel} H. W. Engel, W. Rundel, eds., \emph{Inverse problems in diffusion processes}, SIAM, Philadelphia, 1995. \bibitem{Gorbachuk} V.I. Gorbachuk; \emph{Spases of infinitely differentiable vectors of a nonnegative selfadjoint operator}, Ukr. Math. J., \textbf{35} (1983), 531-535. \bibitem{Gajewski} H. Gajewski, K. Zaccharias; \emph{Zur regularisierung einer klass nichtkorrekter probleme bei evolutiongleichungen}, J. Math. Anal. Appl., Vol. \textbf{38} (1972), 784-789. \bibitem{hadamard} J. Hadamard; \emph{Lecture note on Cauchy's problem in linear partial differential equations},Yale Uni Press, New Haven, 1923. \bibitem{hassanov}A. Hassanov, J.L. Mueller; \emph{A numerical method for backward parabolic problems with non-selfadjoint elliptic operator}, Applied Numerical Mathematics, \textbf{37} (2001), 55-78. \bibitem{huang2}Y. Huang, Q. Zhneg; \emph{Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups}, J. Differential Equations, Vol. \textbf{203} (2004), No. 1, 38-54. \bibitem{huang3} Y. Huang, Q. Zhneg; \emph{Regularization for a class of ill-posed Cauchy problems}, Proc. Amer. Math. Soc. \textbf{133} (2005), 3005-3012. \bibitem{ivanov} V. K. Ivanov, I. V. Mel'nikova, and F. M. Filinkov; \emph{Differential-Operator Equations and Ill-Posed problems}, Nauka, Moscow, 1995 (Russian). \bibitem{john} F. John; \emph{Continuous dependence on data for solutions of partial differential equations with a prescribed bound}, Comm. Pure Appl. Math, \textbf{13} (1960), 551-585. \bibitem{koz} V. A. Kozlov, V. G. Maz'ya; \emph{On the iterative method for solving ill-posed boundary value problems that preserve differential equations}, Leningrad Math. J., \textbf{1} (1990), No. 5, 1207-1228. \bibitem{lattes} R. Latt\`{e}s, J.-L. Lions; \emph{M\'ethode de Quasi-r\'eversibilit\'e et Applications}, Dunod, Paris, 1967. \bibitem{miller2} K. Miller; \emph{Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems}, Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, \textbf{316} (1973), Springer-Verlag, Berlin , 161-176. \bibitem{melnikova1} I. V. Mel'nikova, Q. Zheng and J. Zheng; \emph{Regularization of weakly ill-posed Cauchy problem}, J. Inv. Ill-posed Problems, Vol. \textbf{10} (2002), No. 5, 385-393. \bibitem{melnikova2} I. V. Mel'nikova, S. V. Bochkareva; \emph{C-semigroups and regularization of an ill-posed Cauchy problem}, Dok. Akad. Nauk., \textbf{329} (1993), 270-273. \bibitem{melnikova3} I. V. Mel'nikova, A. I. Filinkov; \emph{The Cauchy problem. Three approaches}, Monograph and Surveys in Pure and Applied Mathematics, \textbf{120}, London-New York: Chapman \& Hall, 2001. \bibitem{long}N.T. Long, A.P.Ngoc. Ding; \emph{Approximation of a parabolic non-linear evolution equation backwards in time}, Inv. Problems, \textbf{10} (1994), 905-914. \bibitem{payne1} L. E. Payne; \emph{Some general remarks on improperly posed problems for partial differential equations}, Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, \textbf{316} (1973), Springer-Verlag, Berlin, 1-30. \bibitem{payne2} L. E. Payne; \emph{Imprperely Posed Problems in Partial Differential Equations}, SIAM, Philadelphia, PA, 1975. \bibitem{Pazy} A. Pazy; \emph{Semigroups of linear operators and application to partial differential equations}, Springer-Verlag, 1983. \bibitem{piskarev} S. Piskarev; \emph{Estimates for the rate of convergence in the solution of ill-posed problems for evolution equations}, Izv. Akad. Nauk SSSR Ser. Mat., \textbf{51} (1987), 676-687. \bibitem{renardy} M. Renardy, W. J. Hursa and J. A. Nohel; \emph{Mathematical Problems in Viscoelasticity}, Wiley, New York, 1987. \bibitem{showalter1} R.E. Showalter; \emph{The final value problem for evolution equations}, J. Math. Anal. Appl, \textbf{47} (1974), 563-572. \bibitem{showalter2} R. E. Showalter; \emph{Cauchy problem for hyper-parabolic partial differential equations}, in Trends in the Theory and Practice of Non-Linear Analysis, Elsevier 1983. \bibitem{todd2} Todd H. Skaggs, Z. J. Kabala; \emph{Recouvering the release history of a ground water contaminant plume: Method of quasi-reversibiliry}, Water Resources Research, Vol. \textbf{31} (1995), No. 11, 2969-2973. \bibitem{tikhonov} A. N. Tikhonov, V. Y. Arsenin; \emph{Solution of ill-posed problems}, V. H. Winstond \& Sons, Washington, DC, 1977. \end{thebibliography} \end{document}