\documentclass[reqno]{amsart} \usepackage{amsfonts} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 155, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/155\hfil Solving $p$-Laplacian equations] {Solving $p$-Laplacian equations on complete manifolds} \author[M. Benalili, Y. Maliki\hfil EJDE-2006/155\hfilneg] {Mohammed Benalili, Youssef Maliki} \address{Mohammed Benalili \\ Universit\'{e} Abou -Bekr Belka\"{\i}d, Facult\'{e} des sciences, \newline D\'{e}part. Mth\'{e}matiques, B.P. 119, Tlemcen, Algerie} \email{m\_benalili@mail.univ-tlemcen.dz} \address{Youssef Maliki \\ Universit\'{e} Abou -Bekr Belka\"{\i}d, Facult\'{e} des sciences, \newline D\'{e}part. Mth\'{e}matiques, B.P. 119, Tlemcen, Algerie} \email{malyouc@yahoo.fr} \thanks{Submitted June 28, 2005. Published December 14, 2006.} \subjclass[2000]{31C45, 53C21} \keywords{Differential geometry; nonlinear partial differential equations} \begin{abstract} Using a reduced version of the sub and super-solutions method, we prove that the equation $\Delta _{p}u+ku^{p-1}-Ku^{p^{\ast }-1}=0$ has a positive solution on a complete Riemannian manifold for appropriate functions $k,K:M\to \mathbb{R}$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}{Proposition} \section{Introduction} Let $(M,g)$ be an $n$-dimensional complete and connected Riemannian manifold $(n\geq 3)$ and let $p\in (1,n)$. We are interested in the existence of positive solutions $u\in H_{1,\mathrm{loc}}^{p}(M)$ (the standard Sobolev space of order $p$) of the equation \begin{equation} \Delta _{p}u+ku^{p-1}-Ku^{p^{\ast }-1}=0 \label{1} \end{equation} with $p^{\ast }=\frac{pn}{n-p}$ and $\Delta _{p}u=\mathop{\rm div}(| \nabla u| ^{p-2}\nabla u)$ is the $p$-Laplacian of $u$ . As usual $u\in H_{1,\mathrm{loc}}^{p}(M)$ is defined to be a weak solution of \eqref{1} if \begin{equation} \int_{M}-| \nabla u| ^{p-2}\nabla u \nabla v+(ku^{p-1}-Ku^{p^{\ast }-1})v=0 \label{2} \end{equation} for each $v\in C_{0}^{\infty }(M)$. A supersolution (respectively a subsolution) $u\in H_{1,\mathrm{loc}}^{p}(M)$ is defined in the same way by changing $=$ by $\leq $ (respect $\geq $) in equation(\ref{2}) and requiring that the test function $v\in C_{0}^{\infty }(M)$ to be non negative. Throughout this paper, we will assume that $k$ and $K$ are smooth real valued functions on $M $. Following the terminology in \cite{3}, this equation is referred to as the generalized scalar curvature type equation, it's an extension of the equation of prescribed scalar curvature. In the case of a compact manifold, the problem was considered in \cite{3}. One of the results obtained in this latter paper is the following theorem \begin{theorem} \label{thm1} Let $(M,g)$ be a compact Riemannian manifold with $n\geq 2$ and let $p\in (1,n)$. Let $k$ and $K$ be smooth real functions on $M$. If we assume that $k$ and $K$ are both positive, then \eqref{1} possesses a positive solution $u\in C^{1,\alpha }(M)$. \end{theorem} In this paper, we look for positive solutions of \eqref{1} on complete Riemannian manifolds. To achieve this task, we use a recent result obtained by the authors in \cite{2}. Before quoting this result we recall some definitions. A nonnegative and smooth function $K$ on a complete manifold is said \textit{essentially positive} if there exists an exhaustion by compact domains $\{ \Omega _{i}\} _{i\geq 0}$ such that $M= \cup_{i\geq 0}\Omega _{i} $ and $K|_{\partial \Omega _{j}}>0$ for any $j\geq 0$. Moreover, if there is a positive supersolution $u\in H_{1}^{p}(\Omega _{i})\cap C^{0}(\Omega _{i})$ on each $\Omega _{i}$ of \eqref{1} the essentially positive function $K$ is said to be \textit{permissible}. With this terminology the following theorem has been established in \cite{2} \begin{theorem} \label{thm2} Let $(M,g)$ be a complete non compact Riemannian manifold of dimension $n\geq 3$ and $k,K$ be smooth real valued functions on $M$. Suppose that $K$ is permissible and $k\leq K$. If there exists a positive subsolution $u_{-}\in H_{1,\rm loc}^{p}(M)\cap L^{\infty }(M)\cap C^{0}(M)$ of \eqref{1} on $M$, then \eqref{1} has a positive and maximal weak solution $u\in H_{1}^{p}(M)$. Moreover $u\in C^{1,\alpha }(\Omega _{i})$ on each compact $\Omega _{i}$ for some $\alpha \in (0,1)$. \end{theorem} The Riemannian manifold $M$ will be said of bounded geometry if the Ricci curvature of $M$ is bounded from below and the injectivity radius is strictly positive everywhere. We formulate our main result as follows: \begin{theorem} \label{thm3} Let $(M,g)$ be a complete non compact Riemannian manifold of dimension $n\geq 3$ and $k,K$ be smooth real valued functions on $M$. Suppose that \begin{itemize} \item[(a)] the function $K$ is permissible and $K\geq c_{o}>0$ where $c_{o}$ is a real constant, $k$ is bounded and satisfies $k\leq K$, and $\int_{\Omega_{i}}k=0$, on each compact domain $\Omega _{i}$ of the exhaustion of $M$. \item[(b)] $M$ is of bounded geometry. \end{itemize} Then \eqref{1} has a weak positive maximal solution $u\in H_{1}^{p}(M)$. Moreover $u\in C_{loc}^{1,\alpha }(M)$ for some $\alpha \in (0,1)$. \end{theorem} Our paper is organized as follows: In the first section we construct a supersolution of \eqref{1} on each compact subset of $M$. In the second section, we show the existence of a positive eigenfunction of the nonlinear operator $L_{p}u=-\Delta _{p}u-ku^{p-1}$ on $M$ which we will use next to construct a global subsolution of our equation. First, we establish the following result. \begin{lemma} \label{lem1} Let $\Omega $ be a compact domain of $M$ and $f$ be a $C^{\infty }$ function on $\Omega $. The equation \begin{equation} \begin{gathered} -\Delta _{p}\phi =f\quad \text{in }\Omega -\partial \Omega \\ \phi =0\quad \text{on }\partial \Omega \end{gathered} \label{3} \end{equation} admits a solution $\phi \in C^{1,\alpha }(\Omega )$. \end{lemma} \begin{proof} Letting $A=\{\phi \in H_{1,0}^{p}(\Omega ):\int_{\Omega }f\phi =1\}$, we put \begin{equation*} \mu =\inf_{\phi \in K}\int_{\Omega }|\nabla \phi |^{p}. \end{equation*}% The set $A$ is non empty since it contains the function $\phi =\frac{\mathop{\rm sgn}(f)|f|^{p-1}}{\int_{\Omega }|f|^{p}}$. Let $(\phi_{i})_{i\in \mathbb{N}}$ be a minimizing sequence in $A$, that is, \begin{equation*} \lim_{i\to \infty }\int_{\Omega }| \nabla \phi_{i}| ^{p}=\mu . \end{equation*} Then, if $\lambda _{1,p}$ denotes the first nonvanishing eigenvalue of the $p $-Laplacian operator, we have \begin{equation*} \lambda _{1,p}\leq \frac{\int_{\Omega }| \nabla \phi _{i}| ^{p}}{% \int_{\Omega }| \phi _{i}| ^{p}} \end{equation*} so \begin{equation*} \int_{\Omega }| \phi _{i}| ^{p}\leq \lambda _{1,p}^{-1}\int_{\Omega }| \nabla \phi _{i}| ^{p}<\frac{ \mu }{\lambda _{1,p}}+1. \end{equation*} The sequence $(\phi _{i})_{i\in \mathbb{N}}$ is bounded in $H_{1}^{p}(\Omega)$, hence by the reflexivity of the space $H_{1}^{p}(\Omega)$ and the Rellich-Kondrakov theorem, there exists a subsequence of $(\phi_{i})_{i\in \mathbb{N}}$ still denoted $(\phi _{i})$ such that \begin{itemize} \item[(a)] $(\phi _{i})_{i\in \mathbb{N}}$ converges weakly to $\phi \in H_{1}^{p}(\Omega )$ \item[(b)] $(\phi _{i})_{i\in \mathbb{N}}$ converges strongly to $\phi \in L^{p}(\Omega )$. \end{itemize} From (b) we deduce that $\phi _{i}\longrightarrow \phi $ in $L^{1}(\Omega )$ then $\phi \in A$ and from (a) we get \begin{equation*} \| \phi \| _{H_{1}^{p}(\Omega )}\leq \lim_{i\to +\infty }\inf \| \phi _{i}\| _{H_{1}^{p}(\Omega )}. \end{equation*} Taking into account of (b) again, we obtain \begin{equation*} \int_{\Omega }|\nabla \phi |^{p}\leq \liminf_{i\to +\infty } \int_{\Omega }|\nabla \phi _{i}|^{p}=\mu\,. \end{equation*} Since $\phi \in A$, we get \begin{equation*} \int_{\Omega }| \nabla \phi | ^{p}=\mu =\inf_{\psi \in K}\int_{\Omega }| \nabla \psi | ^{p}. \end{equation*} The Lagrange multiplier theorem allows us to say that $\phi $ is a weak solution of (\ref{3}). \end{proof} The regularity of $\phi $ follows from the next proposition, with the following notation \begin{equation*} W^{1,p}(\Omega )= \begin{cases} H_{1}^{p}(\Omega ) & \text{if }\partial \Omega =\phi \\ H_{1,0}^{p}(\Omega ) & \text{if }\partial \Omega \neq \phi \, . \end{cases} \end{equation*} \begin{proposition} \label{p1} Let $h\in C^{o}(\Omega \times R)$ be such that, for any $(x,r)\in \Omega \times R$, $| h(x,r)| \leq C|r| ^{p^{\ast }-1}+D$. If $u\in W^{1,p}(\Omega )$ is a solution of $-\Delta _{p}u+h(x,u)=0$, then $u\in C^{1,\alpha }(\Omega )$. \end{proposition} The above proposition was proved in (\cite{3}), in the context of compact Riemannian manifolds without boundary. The proof is in its essence based on the Sobolev inequality and since this latter is also valid in $\mathaccent"7017 {H}_{1}^{p}(\Omega )$ as in $H_{1}^{p}(\Omega )$, it follows that proposition (\ref{p1}) remains true in the case of compact Riemannian manifolds with boundary. \section{Existence of a supersolution} In this section we construct a positive supersolution of \eqref{1} on each compact domain of $M$. \begin{theorem} \label{thm4} Let $\Omega $ be a compact domain of $M$. If $K$ is a smooth function such that $K\geq c_{0}>0$ and $k$ is a smooth function with $k\leq K$ , then there exists a positive supersolution of \eqref{1} in $\Omega $. \end{theorem} \begin{proof} Letting $u=e^{v}$ where $v\in H_{1}^{p}(\Omega )$ is a function which will be precise later and $\ q=p^{\ast }-1$, then we get for every $\phi \in H_{1}^{p}(\Omega )$ with $\phi \geq 0$ \begin{equation*} \int_{\Omega }\Delta _{p}u\phi =\int_{\Omega }e^{(p-1)v}(\Delta _{p}v+(p-1)|\nabla v|^{p})\phi \end{equation*}% and \begin{equation*} \int_{\Omega }(\Delta _{p}u+ku^{p-1}-Ku^{q})\phi =\int_{\Omega }e^{(p-1)v}(\Delta _{p}v+(p-1)|\nabla v|^{p}+k-Ke^{(q-p+1)v})\phi \text{.} \end{equation*}% So it suffices to show the existence of $v$ such that \begin{equation} \int_{\Omega }e^{(p-1)v}(\Delta _{p}v+(p-1)|\nabla v|^{p}+k-Ke^{(q-p+1)v}).\phi \leq 0 \label{4} \end{equation}% Let $b>0$ be a constant and consider the solution of $\Delta _{p}h=-b^{1-p}k$ \ which is guaranteed by Lemma \ref{lem1}. Now putting $v=bh+t$ where $t$ is a real constant to be chosen later. The inequality (\ref{4}) becomes \begin{equation*} \int_{\Omega }e^{(p-1)(bh+t)}(b^{p-1}\Delta _{p}h+(p-1)b^{p}| \nabla h| ^{p}+k-Ke^{(q-p+1)(bh+t)})\phi \leq 0 \end{equation*} If we choose $t$ such that $e^{(q-p+1)t}=b^{p-1}$, we will find that \begin{align*} &\int_{\Omega }e^{(p-1)(bh+t)}((p-1)b| \nabla h| ^{p}-Ke^{(q-p+1)bh})\phi \\ &\leq \int_{\Omega }e^{(p-1)(bh+t)}((p-1)b| \nabla h| ^{p}-Km_{o})\phi \leq 0 \end{align*} where $m_{o}=\min_{x\in \Omega }e^{(q-p+1)bh(x)}$ and since the function $K$ $\geq c_{o}>0$, we choose $b$ small enough so that \begin{equation*} | \nabla h| ^{p}\leq \frac{c_{o}m_{o}}{b(p-1)} \end{equation*} we get the desired result. \end{proof} \section{Existence of a subsolution} The operator $L_{p}u=-\Delta _{p}u-ku^{p-1}$ under Dirichlet conditions has a first eigenvalue $\lambda _{1,p}^{\Omega }$ on each open and bounded domain $\Omega \subset M$ which is variationally defined as \begin{equation} \lambda _{1,p}^{\Omega }=\inf (\int_{\Omega }|\nabla \phi |^{p}-k|\phi |^{p}) \label{5} \end{equation}% where the infimum is extended to the set \begin{equation*} A=\{\phi \in H_{1,0}^{p}(\Omega ):\int_{\Omega }|\phi |^{p}=1\}. \end{equation*}% Since $|\nabla \phi |=|\nabla |\phi ||$, we can assume that $\phi \geq 0$. The corresponding positive eigenfunction is solution of the Dirichlet problem \begin{equation} \begin{gathered} \Delta _{p}\phi +k\phi ^{p-1}=-\lambda _{1,p}^{\Omega }\phi ^{p-1} \quad \text{in }\Omega \\ \phi >0 \quad \text{in }\Omega \\ \phi =0 \quad \text{on }\partial \Omega \end{gathered} \label{6} \end{equation}% Let $\{\Omega _{i}\}_{i\geq 0}$ be an exhaustion of $M$ by compact domains with smooth boundary such that $\Omega _{i}\subset \mathaccent"7017{\Omega }_{i+1}$ \begin{lemma} \label{lem2} If $k$ is bounded function, then the sequence $\lambda_{1,p}^{\Omega _{i}}$ defined by \eqref{5} converges. \end{lemma} \begin{proof} By definition, $\lambda _{1,p}^{\Omega _{i}}$ is a decreasing sequence. Let $\lambda _{1,p}$ its limit, since the function $k$ is bounded, there exists a constant $c>0$ such that $-k+c\geq 1$, then \begin{align*} \int_{\Omega }| \nabla \phi | ^{p}+(c-k)\phi ^{p} &\geq \int_{\Omega }| \nabla \phi | ^{p}+\phi ^{p} \\ &\geq 2^{1-p}((\int_{\Omega }| \nabla \phi | ^{p})^{1/p}+(\int_{\Omega }\phi ^{p})^{1/p})^{p} \\ &=2^{1-p}\Vert \phi \Vert _{H_{1}^{p}(\Omega )}^{p} \end{align*} so the operator $L_{p}u=-\Delta _{p}u+(c-k)u^{p-1}$ is coercive and we have, for $\phi _{i}$ any eigenfunction corresponding to $\lambda _{1,p}^{\Omega_{i}}$, \begin{align*} \lambda _{1,p}^{\Omega _{i}} &=\int_{\Omega _{i}}| \nabla \phi _{i}| ^{p}-k\phi _{i}^{p} \\ &\geq -c+2^{1-p}\Vert \phi _{i}\Vert _{H_{1}^{p}(\Omega )}^{p} \\ &\geq -c+2^{1-p}\geq -c+2^{1-n}\,. \end{align*} Then $\lambda _{1,p}>-\infty$. \end{proof} \begin{lemma} \label{lem3} If $k$ is bounded, then the eigenfunction problem \begin{equation} \begin{gathered} \Delta _{p}\phi +k\phi ^{p-1}=-\lambda _{1,p}\phi ^{p-1}\quad \text{in }M \\ \phi >0\quad \text{in }M \end{gathered} \label{7} \end{equation} has a positive solution $\phi \in C_{loc}^{1,\alpha }(M)$. \end{lemma} \begin{proof} Letting $(\Omega _{i})_{i\geq 1}$ be an exhaustive covering of the complete manifold $M$ by compact subsets and $(\phi _{i})$ be the sequence of the first nonvanishing eigenfonctions (positive) of the operator $L_{p}u=-\Delta _{p}u-ku^{p-1}$ on each $\Omega _{i}$. Multiplying \eqref{7} by $\phi _{i}$ and integrating over $\Omega _{i}$, we get \begin{equation*} \int_{\Omega _{i}}|\nabla \phi _{i}|^{p}-k\phi _{i}^{p}=\lambda _{1,p}^{\Omega _{i}}\int_{\Omega _{i}}\phi _{i}^{p}=\lambda _{1,p}^{\Omega _{i}}\leq \lambda _{1,p}^{\Omega _{1}} \end{equation*}% so that \begin{equation*} \int_{\Omega _{i}}|\nabla \phi _{i}|^{p}\leq \max_{x\in M}|k|+\lambda _{1,p}^{\Omega _{1}}<\infty . \end{equation*}% On the other hand, \begin{equation} \begin{aligned} \Big(\Big(\int_{\Omega _{i}}| \nabla \phi _{i}| ^{p}\Big)^{1/p}+\Big(\int_{\Omega _{i}}\phi _{i}^{p}\Big)^{1/p}\Big)^{p} &\leq 2^{p-1}(\int_{\Omega _{i}}|\nabla \phi _{i}| ^{p}+\phi _{i}^{p})\\ &\leq 2^{p-1}\Big(1+\max_{x\in M}| k| +\lambda _{1,p}^{\Omega _{1}}\Big) <\infty \end{aligned} \label{8} \end{equation}% and by the reflexivity of the space $H_{1}^{p}(M)$, we deduce that \begin{equation*} \phi _{i}\rightarrow \phi \text{ weakly in }H_{1}^{p}(M) \end{equation*}% and \begin{equation} \Vert \phi \Vert _{H_{1}^{p}(M)}^{p}\leq \liminf \Vert \phi _{i}\Vert _{H_{1}^{p}(M)}^{p}. \label{9} \end{equation}% Now since $\int_{M}\phi _{i}^{p}=1$, for every $\varepsilon >0$ there exists a compact domain $K_{i}\subset M$ such that $\int_{M\backslash K_{i}}\phi _{i}^{p}<\frac{\varepsilon }{2^{i}}$, let $K=\cap _{i=1}^{\infty }K_{i}$ and \begin{equation*} \int_{M\backslash K}\phi _{i}^{p}=\int_{\cup _{i=1}^{\infty }(M\backslash K_{i})}\phi _{i}^{p}\leq \sum_{i=1}^{\infty }\int_{M\backslash K_{i}}\phi _{i}^{p}<\epsilon . \end{equation*}% From (\ref{8}) we obtain by Rellich-Kondrakov theorem that \begin{equation*} \phi _{i}\rightarrow \phi \text{ strongly in }L^{p}(K). \end{equation*}% We claim that \begin{equation} \int_{M}\phi ^{p}=1; \label{10} \end{equation}% since, if it is not the case we have by (\ref{9}) \begin{equation*} 1-\int_{M}\phi ^{p}>0, \end{equation*}% consequently \begin{equation*} 1=\lim_{i\rightarrow \infty }\int_{M}\phi _{i}^{p}\leq \varepsilon +\lim_{i\rightarrow \infty }\int_{K}\phi _{i}^{p}=\varepsilon +\int_{K}\phi ^{p} \end{equation*}% and hence $\varepsilon \geq 1-\int_{M}\phi ^{p}$. A contradiction with the fact that $\varepsilon $ is arbitrary fixed. Now from (\ref{9}) and (\ref{10}) we get \begin{equation*} \int_{M}| \nabla \phi | ^{p}\leq \lim \inf \int_{M}| \nabla \phi _{i}| ^{p} \end{equation*} hence \begin{equation*} \int_{M}|\nabla \phi |^{p}-k\phi ^{p}\leq \lim \inf ( \int_{M}|\nabla \phi _{i}|^{p}-k\phi _{i}^{p}) \end{equation*} which by lemma\ref{lem2} goes to $\lambda _{1,p}$, and since $\int_{M}\phi^{p}=1$, we obtain \begin{equation*} \int_{M}| \nabla \phi | ^{p}-k\phi ^{p}=\lambda _{1,p}. \end{equation*} So $\phi $ is a weak solution of the equation \begin{equation*} \Delta _{p}\phi +k\phi ^{p-1}=-\lambda _{1,p}\phi ^{p-1} \end{equation*} From proposition \ref{p1}, we deduce that $\phi \in C_{loc}^{1,\alpha }(M)$. It remains to show that $\phi $ is positive, which is deduced from the next proposition. \begin{proposition}[Druet \cite{3}]\label{p2} Let $(\Omega ,g)$ be a compact Riemannian $n$-manifold $n\geq 2$, $10. \end{gather*} If $u\geq 0$ on $\Omega $ and $u$ does not vanish identically, then $u>0$ on $\Omega $. \end{proposition} \end{proof} If $\lambda $ is an eigenvalue of the operator \begin{equation*} L_{p}u=-\Delta _{p}\phi -k|\phi |^{p-2}\phi , \end{equation*}% so is $\lambda +c$ for the operator \begin{equation*} L_{c}u=-\Delta _{p}\phi -(k-c)|\phi |^{p-2}\phi \end{equation*}% where $c$ is a constant and since $k$ is bounded function we choose $c$ such that $c-k>0$, and then we get \begin{equation*} -\Delta _{p}\phi +h(x,\phi )\geq 0 \end{equation*}% where \begin{equation*} h(x,\phi )=(c-k(x))\phi ^{p-1}. \end{equation*}% Obviously the function $h$ satisfies the assumptions of proposition \ref{p2} and we have $\phi >0$. Now we establish the following lemma which will be used later. \begin{lemma}\label{lem4} Let $M$ be a Riemannian manifold of bounded geometry. Suppose that $a(x)$ is a bounded smooth function on $M$ and $u\in H_{1}^{p}(M)$ be a weak solution of the equation \begin{equation} \Delta _{p}u+a(x)u^{p-1}=0 \label{11} \end{equation} then $u\in L^{\infty }(M)$. \end{lemma} \begin{proof} We are going to use Moser's iteration scheme. Let $k\geq 1$ be any real and $t=k+p-1$. Multiplying (\ref{11}) by $u^{k}$ ($k>1$) and integrating over $M$, we get \begin{equation} -k\int_{M}|\nabla u|^{p}u^{k-1}+\int_{M}a(x)u^{p+k-1}=0. \label{12} \end{equation}% Using Sobolev's inequality, we get for any fixed $\varepsilon >0$ \begin{equation} \begin{aligned} \| u^{\frac{t}{p}}\| _{p^{\ast }}^{p} &=\|u\| _{t\frac{p^{\ast }}{p}}^{t}\\ &\leq (K(n,p)^{p}+\varepsilon)\| \nabla u^{\frac{t}{p}}\| _{p}^{p}+B\| u\| _{t}^{t} \\ &=(K(n,p)^{p}+\varepsilon )(\frac{t}{p})^{p}\| u^{\frac{t }{p}-1}\nabla u\| _{p}^{p}+B\| u\| _{t}^{t} \end{aligned} \label{13} \end{equation}% where $K(n,p)$ is the best constant in the Sobolev's embedding $H_{1}^{p}(R^{n})\subset L^{p\ast }(R^{n})$ (see Aubin \cite{1} or Talenti \cite{4}) and $B$ a positive constant depending on $\epsilon $; since \begin{equation*} \Vert u^{\frac{t}{p}-1}\nabla u\Vert _{p}^{p}=\int u^{t-p}|\nabla u|^{p} \end{equation*}% and taking account of (\ref{12}) we get \begin{equation*} \int u^{k}\Delta _{p}u=-k\int u^{k-1}|\nabla u|^{p}\leq \Vert a\Vert _{\infty }\Vert u\Vert _{t}^{t}\,. \end{equation*}% Then (\ref{13}) becomes \begin{equation*} \Vert u\Vert _{t\frac{p^{\ast }}{p}}^{t}\leq (K(n,p)^{p}+\varepsilon ) (\frac{t}{p})^{p}\frac{1}{k}(\Vert a\Vert _{\infty }+B)\Vert u\Vert _{t}^{t} \end{equation*}% so that \begin{equation} \Vert u\Vert _{t\frac{p^{\ast }}{p}}\leq \Big((K(n,p)^{p}+\varepsilon ) \big(\frac{t}{p}\big)^{p}\frac{1}{k}(\Vert a\Vert _{\infty }+B)\Big) ^{\frac{1}{t}}\Vert u\Vert _{t}\,. \label{14} \end{equation} Putting \begin{equation*} \frac{t}{p}=\beta ^{i} \end{equation*} where $i$ is a positive integer and $\beta =\frac{p^{\ast }}{p}=\frac{n}{n-p} $, (\ref{14}) becomes \begin{equation} \Vert u\Vert _{p\beta ^{i+1}}\leq ((K(n,p)^{p}+\varepsilon )\beta ^{pi}(\Vert a\Vert _{\infty }+B))^{\frac{1}{_{_{p\beta ^{i}}}}}\Vert u\Vert _{_{p\beta ^{i}}}\,. \label{15} \end{equation} Recurrently, we obtain \begin{equation} \ \Vert u\Vert _{p\beta ^{i+1}}\leq (K(n,p)^{p}+\varepsilon )^{\frac{1}{p} (\sum_{j=0}^{i}\frac{1}{\beta ^{j}})}\beta ^{\sum_{j=0}^{i}\frac{j}{\beta ^{j}}}(\Vert a\Vert _{\infty }+B)^{\frac{1}{p}(\sum_{j=0}^{i}\frac{1}{\beta ^{j}})}\Vert u\Vert _{p}. \label{16} \end{equation} Now, since \begin{equation*} \sum_{j=0}^{\infty }\frac{1}{\beta ^{j}}=\frac{\beta }{\beta -1}=\frac{n}{p} \end{equation*}% and \begin{align*} \sum_{j=0}^{\infty }\frac{j}{\beta ^{j}}& =\sum_{j=1}^{\infty }\frac{j}{% (1+\pi )^{j}} \\ & \leq \sum_{j=1}^{\infty }\frac{j}{\sum_{p=0}^{j}C_{j}^{p}\pi ^{p}}% =\sum_{j=1}^{\infty }\frac{1}{\pi \sum_{p=0}^{j-1}C_{j}^{p}\pi ^{p}} \\ & =\frac{1}{\pi }\sum_{j=1}^{\infty }\frac{1}{(1+\pi )^{j-1}}=\frac{1}{\pi } \sum_{j=0}^{\infty }\frac{1}{(1+\pi )^{j}} \\ & =\frac{n-p}{p}\sum_{j=0}^{\infty }\frac{1}{\beta ^{j}}=\frac{n(n-p)}{p^{2}} \,, \end{align*} it follows by letting $j\rightarrow \infty $ in (\ref{16}) that $u\in L^{\infty }(M)$. \end{proof} \begin{theorem} \label{thm5} Let $(M,g)$ be a complete noncompact Riemannian manifold of dimension $n\geq 3$ with bounded geometry. Suppose that $k\in C^{\infty }(M)\cap L^{\infty}(M)$; then there exists a positive subsolution of the equation $\Delta_{p}u+ku^{p-1}-Ku^{p^{\ast }-1}=0$ on $M$. \end{theorem} \begin{proof} Since $k\in L^{\infty }(M)$, there exists a positive constant $c>0$ such that the operator $L_{c}u=-\Delta _{p}\phi +(c-k)\phi ^{p-1}$ is coercive, so by lemma \ref{lem3} its first non vanishing eigenvalue $\lambda _{1,p}+c>0 $. If $\phi $ denotes the corresponding positive eigenfunction to $\lambda_{1,p},$by lemma \ref{lem4} we may assume that $\phi <1$. For $r>0$ we consider \begin{equation*} u_{-}=\big(e^{r^{2}}-\phi ^{r^{3}}\big)^{\frac{1}{r}+1} \end{equation*} and by a direct computations we obtain in the sense of distribution \begin{gather*} \nabla u_{-}=-r^{2}(r+1)(e^{r^{2}}-\phi ^{r^{3})^{\frac{1}{r}}}\phi ^{r^{3}-1}\nabla \phi, \\ \begin{aligned} \Delta _{p}u_{-}&=\left[ r^{2}(r+1)(e^{r^{2}}-\phi ^{r^{3})^{1/r}} \phi ^{r^{3}-1}\right] ^{p-1}\\ &\quad\times \big[ -\Delta _{p}\phi +(p-1) \big(\frac{1-r^{3}}{\phi }+\frac{ r^{2}\phi ^{r^{3}-1}}{e^{r^{2}}-\phi ^{r^{3}}}\big)| \nabla \phi| ^{p}\big] . \end{aligned} \end{gather*} Hence \begin{align*} &\Delta _{p}u_{-}+ku_{-}^{p-1}-Ku_{-}^{q} \\ &=\big[ r^{2}(r+1)(e^{r^{2}}-\phi ^{r^{3})^{\frac{1}{r}}}\phi ^{r^{3}}\big] ^{p-1} \\ &\quad \times \Big[ -\Delta _{p}\phi +(p-1)\big(\frac{1-r^{3}}{\phi }+\frac{ r^{2}\phi ^{r^{3}-1}}{e^{r^{2}}-\phi ^{r^{3}}}\big)| \nabla \phi | ^{p}+k% \big(\frac{e^{r^{2}}-\phi ^{r^{3}}}{r^{2}(r+1)\phi ^{r^{3}}}\big)^{p-1}\phi ^{p-1} \\ &\quad -K\big(\frac{e^{r^{2}}-\phi ^{r^{3}}}{r^{2}(r+1)\phi ^{r^{3}}} \big) ^{p-1}(e^{r^{2}}-\phi ^{r^{3}})^{(q-p+1) (1+\frac{1}{r})}\phi ^{p-1}\Big] \\ &=\big[ r^{2}(r+1)(e^{r^{2}}-\phi ^{r^{3})^{\frac{1}{r}}}\phi ^{r^{3}-1} \big] ^{p-1} \\ &\quad\times \Big[ \lambda _{1,p}+(p-1)\frac{1}{\phi ^{p}} \big(1-r^{3}+ \frac{r^{2}\phi ^{r^{3}}}{e^{r^{2}}-\phi ^{r^{3}}}\big)| \nabla \phi |^{p} +k \Big(\big(\frac{e^{r^{2}}-\phi ^{r^{3}}}{r^{2}(r+1)\phi ^{r^{3}}} \big) ^{p-1}+1\Big) \\ &\quad -K\big(\frac{e^{r^{2}}-\phi ^{r^{3}}}{r^{2}(r+1)\phi ^{r^{3}}} \big) ^{p-1}(e^{r^{2}}-\phi ^{r^{3}})^{(q-p+1) (1+\frac{1}{r})}\Big] . \end{align*} Now since \begin{equation*} \lim_{r\to 0}(e^{r^{2}}-\phi ^{r^{3}})^{1+\frac{1 }{r}}=0 \end{equation*} and \begin{equation*} \lim_{r\to 0}\frac{r^{2}}{e^{r^{2}}-\phi ^{r^{3}}}=1\,, \end{equation*} we deduce that \begin{equation*} u_{-}=(e^{r^{2}}-\phi ^{r^{3}})^{1+\frac{1}{r}}\in H_{1,\mathrm{loc}}^{p}(M) \end{equation*} is a subsolution of \eqref{1} and clearly $u_{-}\in C^{o}(M)\cap L^{\infty }(M)$. The main theorem (Theorem \ref{thm3}) is a consequence of theorem \ref{thm4} and theorem \ref{thm5}. \end{proof} \begin{thebibliography}{9} \bibitem{1} Aubin.T, probl\`{e}mes isop\'{e}rim\'{e}triques et espaces de Sobolev. J. Diff. G\'{e}om 11 (1976), 573-598. \bibitem{2} M. Benalili, Y Maliki, Reduction method for proving the existence of solutions to elliptic equations involving the p-Laplacian. Electr.Journal of Differential Equations 106 (2003) 10pp. \bibitem{3} O. Druet, Generalized scalar curvature type equations on compact Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A130 (2000) No 4, 767-788. \bibitem{4} E. Hebey, Introduction \`{a} l'analyse non lin\'{e}aire sur les vari\'{e}t\'{e}s. Ed. Diderot (1997). \end{thebibliography} \end{document}