\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 156, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/156\hfil Elasto-plastic torsion problem] {Elasto-plastic torsion problem as an infinity Laplace's equation} \author[A. Addou, A. Lidouh, B. Seddoug \hfil EJDE-2006/156\hfilneg] {Ahmed Addou, Abdeluaab Lidouh, Belkassem Seddoug} % in alphabetical order \address{Ahmed Addou \newline Universit\'{e} Mohammed premier, Facult\'{e} des sciences, Oujda, Maroc} \email{addou@sciences.univ-oujda.ac.ma} \address{Abdeluaab Lidouh \newline Universit\'{e} Mohammed premier, Facult\'{e} des sciences, Oujda, Maroc} \email{lidouh@sciences.univ-oujda.ac.ma} \address{Belkassem Seddoug \newline Universit\'{e} Mohammed premier, Facult\'{e} des sciences, Oujda, Maroc} \email{seddougbelkassem@yahoo.fr} \thanks{Submitted October 11, 2006. Published December 18, 2006.} \subjclass[2000]{35J70, 35J85, 74C05} \keywords{Infinity Laplace equation; elasto-plastic torsion problem; \hfill\break\indent variational inequality} \begin{abstract} In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with and operator $A$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Given a bounded open subset $\Omega $ of $\mathbb{R}^N$, $N\geq 1$, we consider the Dirichlet Problem \begin{equation} \begin{gathered} Au-\Delta _{\infty }u=f\quad \text{in }\Omega , \\ u=0\quad\text{on }\partial \Omega , \end{gathered} \label{Pinfty} \end{equation} where $\Delta _{\infty }u=u_{x_{i}}u_{x_{j}}u_{x_{i}x_{j}}$ (see \cite{BDM}), $f$ in $L^{1}(\Omega )$ or $W^{-1,p'}(\Omega )$ and $A$ is a Leray-Lions operator with no coercivity assumption, i.e. \begin{equation*} Av=-\mathop{\rm div}(a(x,\nabla v(x))) \end{equation*} where $a:\Omega \times \mathbb{R}^{N}\to \mathbb{R}^{N}$ is a Caratheodory function satisfying the following assumptions: For almost every $x\in \Omega $ and for all $\xi ,\eta \in \mathbb{R} ^{N}$, $(\xi \neq \eta )$, one has: \begin{gather} a(x,\xi )\xi \geq 0 , \label{coercivity}\\ \vert a(x,\xi ) \vert \leq \beta \big[ h(x)+ \vert \xi \vert ^{p-1} \big] , \label{croissance}\\ \big[ a(x,\xi )-a(x,\eta ) \big] ( \xi -\eta ) >0 \label{strictmonot} \end{gather} with $10$, $h\in L^{p'}(\Omega )$ ($p'$ denotes the conjugate exponent of $p$, i.e: $\frac{1}{p}+\frac{1}{p'}=1$). By a solution to \ref{Pinfty} we will mean a variational solution in the sense which extends that given in (\cite{BDM}) and (\cite{Rosset}), that is, a function $u$ which is the limit of the sequence $(u_{n})$ of solutions to the Dirichlet problems \begin{equation*} \begin{gathered} Au_{n}-\Delta _{n}u_{n}=f\quad\text{in }\Omega , \\ u_{n}=0\quad\text{on }\partial \Omega , \end{gathered} \end{equation*} as $n\to \infty $, where $\Delta _{n}$ is the $n$-Laplacian operator ($\Delta _{n}v=\mathop{\rm div}( \vert \nabla v \vert ^{n-2}\nabla v)$. We show that in the variational case ($f\in W^{-1,p'}(\Omega )$), the sequence $(u_{n})$ converges to the unique solution to the variational inequality \begin{gather*} \langle Au,v-u \rangle \geq \langle f,v-u \rangle ,\text{ for all }v\in \mathcal{K},\\ u\in \mathcal{K}. \end{gather*} Where $\mathcal{K}$ is the bounded convex cone of $W_{0}^{1,p}(\Omega )$ defined as: \begin{equation*} \mathcal{K}= \{ v\in W_{0}^{1,p}(\Omega ): \vert \nabla v(x) \vert \leq 1\text{ a.e. in }\Omega \} , \end{equation*} and in the case $f\in L^{1}(\Omega )$, the sequence $(u_{n})$ converges to the unique solution to the problem \begin{gather*} \langle Au,T_{k}(v-u) \rangle \geq \int_{\Omega } fT_{k}(v-u)dx ,\quad \text{ for all }v\in \mathcal{K}, \\ u\in \mathcal{K},\quad \text{ for all }k>0. \end{gather*} Where $T_{k}:\mathbb{R}\to\mathbb{R}$ is the cut function defined as \begin{equation*} T_{k}(s)= \begin{cases} s &\text{if } \vert s \vert \leq k \\ k\mathop{\rm sign}(s) &\text{if } \vert s \vert > k. \end{cases} \end{equation*} here $ \langle .,. \rangle $ denotes the duality pairing between $W^{-1,p'}(\Omega )$ and $W_{0}^{1,p}(\Omega )$. Our approach is also inscribed among the techniques of ``the increase of power'', first introduced by Boccardo and Murat in \cite{bocc1}, where they approached the problem \begin{gather*} \langle Au,v-u \rangle \geq \langle f,v-u \rangle ,\quad \text{for all }v\in \mathcal{K}_{0}, \\ u\in \mathcal{K}_{0}= \{ v\in W_{0}^{1,p}(\Omega ): \vert v(x) \vert \leq 1\text{ a.e. in }\Omega \} , \end{gather*} by the sequence of the Dirichlet equations \begin{gather*} Au_{n}- \vert u_{n} \vert ^{n-1}u_{n}=f\quad\text{in } D'(\Omega ), \\ u_{n}\in W_{0}^{1,p}(\Omega )\cap L^{n}(\Omega ), \end{gather*} where $f\in W^{-1,p'}(\Omega )$ and $A$ is modelled on the $ p$-Laplacian. Then in \cite{Dall}, Dall'Aglio and Orsina generalized this result by considering increasing powers depending of a certain Caratheodory function satisfying the sign condition and an integrability assumption. Then finally in \cite{Meskine} the authors extended this result to the case where increasing powers are multiplied by a quantity depending on the gradient and verifying adequate conditions, they examine the two cases, $f$ in $L^{1}(\Omega )$ and in $W^{-1,p'}(\Omega )$. In this paper we examine the case where the increasing powers carry on the gradients and not on quantities independent of the gradient. \section{The variational case} Let $f\in W^{-1,p'}(\Omega )$, $11 ] } \vert \nabla u_{n} \vert ^{p}dx, \] one deduces that \begin{equation*} \int_{\Omega } \vert \nabla u_{n} \vert ^{p}dx\leq \vert \Omega \vert +c [ \int_{\Omega } \vert \nabla u_{n} \vert ^{p}dx ] ^{\frac{1}{p}}\quad \text{for all }n\geq p \end{equation*} and so \begin{equation} \int_{\Omega } \vert \nabla u_{n} \vert ^{p}dx\leq c\quad \text{for all }n\geq p\,. \label{estim2} \end{equation} Thereafter, \begin{equation} \int_{\Omega } \vert \nabla u_{n} \vert ^{n}dx\leq c\quad \forall n\quad\text{and}\quad \int_{\Omega } \vert \nabla u_{n} \vert^{q}dx\leq c\quad \forall q,\;\forall n\geq q. \label{estim3} \end{equation} Therefore, one can construct a subsequence, still denoted by $(u_{n})_{n}$, such that \begin{equation} u_{n} \rightharpoonup u \quad \text{weakly in $W_{0}^{1,q}(\Omega)$ and uniformly in $\bar{\Omega}$}, \label{weakcv} \end{equation} for some $u\in W_{0}^{1,q}(\Omega )\cap L^{\infty }(\Omega )$, for all $q>1$. More precisely, we have \begin{equation} u\in W_{0}^{1,\infty }(\Omega )\quad \text{and}\quad \Vert \nabla u \Vert_{\infty }\leq 1. \label{u_prop} \end{equation} Indeed, from (\ref{estim3}) and (\ref{weakcv}), one has \[ \Vert \nabla u \Vert _{\infty } =\lim_{q \to \infty } \Vert \nabla u \Vert _{q} \leq \lim_{q \to \infty } \big( \liminf_{n\to \infty } \Vert \nabla u_{n} \Vert _{q} \big) \\ \leq \lim_{q \to \infty }c^{\frac{1}{q}}=1. \] \subsection*{Almost everywhere convergence of gradients} With $v=u_{n}-u$, as a test function in (\ref{Pn2}), and using the fact that \[ \nabla u_{n} ( \nabla u_{n}-\nabla u ) \geq 0 \] in the set $ \{ \vert \nabla u_{n} \vert \geq \vert \nabla u \vert \}$, one has \begin{equation} \langle Au_{n},u_{n}-u \rangle +\int_{ \{ \vert \nabla u_{n} \vert < \vert \nabla u \vert \} } \vert \nabla u_{n} \vert ^{n-2}\nabla u_{n} ( \nabla u_{n}-\nabla u ) dx\leq \varepsilon _{n}, \label{ineg1} \end{equation} We will denote by $\varepsilon _{n}$ any quantity which converges to zero as $n$ tends to infinity. Let $\varepsilon >0$, for the second term on the left in (\ref{ineg1}), one puts \begin{equation*} A_{1}= \{ \vert \nabla u_{n} \vert < \vert \nabla u \vert \text{ and } \vert \nabla u_{n} \vert \leq 1-\varepsilon \} ,\quad A_{2}= \{ 1-\varepsilon < \vert \nabla u_{n} \vert < \vert \nabla u \vert \} \end{equation*} and so we have \begin{equation} \int_{A_{1}} \vert \nabla u_{n} \vert ^{n-2}\nabla u_{n} ( \nabla u_{n}-\nabla u ) dx=\sigma _{n,\varepsilon}, \label{ineg2} \end{equation} where $\sigma _{n,\varepsilon}$ denotes a quantity depending on $n$ and $\varepsilon$, such that, for any fixed $\varepsilon >0$, $\sigma _{n,\varepsilon} \to 0$, as $n \to \infty$, and which may change from line to line. Also \begin{equation} \begin{aligned} &\int_{A_{2}} \vert \nabla u_{n} \vert ^{n-2}\nabla u_{n} ( \nabla u_{n}-\nabla u ) dx \\ &=\int_{A_{2}} \vert \nabla u_{n} \vert ^{n-2} ( \vert \nabla u_{n} \vert ^{2}- \vert \nabla u \vert ^{2} ) dx +\int_{A_{2}} \vert \nabla u_{n} \vert ^{n-2}\nabla u ( \nabla u-\nabla u_{n} ) dx \\ &= q_{n}+I_{n}, \end{aligned}\label{ineg3} \end{equation} where the quantity $I_{n}$ is nonnegative, and $q_{n}\in [-2\varepsilon|\Omega|,0]$. Combining (\ref{ineg1}), (\ref{ineg2}) and (\ref{ineg3}), one gets \begin{equation*} \langle Au_{n},u_{n}-u \rangle \leq \sigma_{n,\varepsilon}+2\varepsilon|\Omega|,\forall \varepsilon > 0 \end{equation*} On the other hand, $\langle Au,u_{n}-u \rangle \to 0$, as $n \to \infty $, so that \begin{equation*} 0\leq \langle Au_{n}-Au,u_{n}-u \rangle \leq \sigma_{n,\varepsilon}+2\varepsilon|\Omega|,\forall \varepsilon > 0. \end{equation*} Passing to the limit as $n \to \infty$, for any fixed $\varepsilon$, one has \begin{equation*} 0\leq \liminf_{n \to\infty}\langle Au_{n}-Au,u_{n}-u \rangle \leq \limsup_{n \to\infty}\langle Au_{n}-Au,u_{n}-u \rangle \leq 2\varepsilon|\Omega|\quad \forall \varepsilon > 0. \end{equation*} By the arbitrariness of $\varepsilon$ (and since $\langle Au_{n}-Au,u_{n}-u \rangle$ does not depend on $\varepsilon$) it follows that \begin{equation} \langle Au_{n}-Au,u_{n}-u \rangle \to 0\quad \text{as }n\to \infty . \end{equation} Which implies, thanks to \eqref{strictmonot}, that (for a subsequence), \begin{equation*} ( a(x,\nabla u_{n})-a(x,\nabla u) ) ( \nabla u_{n}-\nabla u ) \to 0\text{ a.e. in }\Omega . \end{equation*} For a fixed $k>1$, we put \begin{equation*} X=\bigcap_{q\in \mathbb{N}}\bigcup_{n\geq q} \{ \vert \nabla u_{n} \vert \geq k \} ,\text{ and its complement }Y=\bigcup_{q\in \mathbb{N}}\bigcap_{n\geq q} \{ \vert \nabla u_{n} \vert N)$ designates the solution to the problem \eqref{Pn}, then the sequence $(u_{n})$ converges strongly in $W_{0}^{1,p}(\Omega )$, to the unique solution $u$ to the problem \begin{equation} \begin{gathered} \langle Au,T_{k}(v-u) \rangle \geq \int_{\Omega } fT_{k}(v-u)dx \quad \text{ for all }v\in \mathcal{K}, \\ u\in \mathcal{K},\quad \text{for all }k>0. \end{gathered}\label{P'} \end{equation} \end{theorem} \subsection*{Proof of Theorem \ref{theorem2}} According to the previous section, it is clear that the estimate \eqref{estim3} permits to show that the sequence $(u_{n})$ converges in $W_{0}^{1,p}(\Omega )$ and uniformly in $\bar{\Omega}$ (for a subsequence) to $u$ satisfying (\ref{u_prop}). We are going to prove (\ref{estim3}) and the fact that $u$ is the solution to \eqref{P'}. \subsection*{A priori estimate} With $u_{n}$ $(n>N)$ as a test function in (\ref{Pn2}), we get \[ \int_{\Omega }a(x,\nabla u_{n})\nabla u_{n}dx+\int_{\Omega } \vert \nabla u_{n} \vert ^{n}dx = \int_{\Omega }fu_{n}dx \leq \Vert f \Vert _{1} \Vert u_{n} \Vert_{\infty } \] Let $q>N$ (fixed), by splitting $\int_{\Omega } \vert \nabla u_{n} \vert ^{q}dx$ as \begin{equation*} \int_{\Omega } \vert \nabla u_{n} \vert ^{q}dx=\int_{ \{ \vert \nabla u_{n} \vert <1 \} } \vert \nabla u_{n} \vert ^{q}dx+\int_{ \{ \vert \nabla u_{n} \vert \geq 1 \} } \vert \nabla u_{n} \vert ^{q}dx \end{equation*} and using Sobolev's inequality \cite{Adams}, one has \begin{equation} \int_{\Omega } \vert \nabla u_{n} \vert ^{q}dx\leq c\quad \forall n\geq q; \label{estim4} \end{equation} therefore, \begin{equation*} \int_{\Omega } \vert \nabla u_{n} \vert ^{n}dx\leq c\quad \forall n>N\,. \end{equation*} It follows that the estimate (\ref{estim4}) holds for all $q>1$, what leads to the estimate (\ref{estim3}). \subsection*{The function $u$ is solution to problem \eqref{P'}} Let $v\in \mathcal{K}$ and $0<\theta <1$, taking $z=T_{k}(u_{n}-\theta v)$ as a test function in (\ref{Pn2}), one gets \begin{equation*} \langle Au_{n},z \rangle +\int_{\Omega } \vert \nabla u_{n} \vert ^{n-2}\nabla u_{n}\nabla zdx=\int_{\Omega } fzdx \end{equation*} While noticing that \begin{equation*} \int_{ \{ \vert \nabla u_{n} \vert \geq \theta \vert \nabla v \vert \} } \vert \nabla u_{n} \vert ^{n-2}\nabla u_{n}\nabla T_{k}(u_{n}-\theta v)dx\geq 0 \end{equation*} one has \begin{equation*} \langle Au_{n},z \rangle +\int_{ \{ \vert \nabla u_{n} \vert <\theta \vert \nabla v \vert \} } \vert \nabla u_{n} \vert ^{n-2}\nabla u_{n}\nabla zdx\leq \int_{\Omega } fz\,dx \end{equation*} Passing to the limit as $n\to \infty $, one gets \begin{equation*} \langle Au,T_{k}(u-\theta v) \rangle \leq \int_{\Omega } fT_{k}(u-\theta v)\,dx \end{equation*} The result is obtained when passing to the limit as $\theta \to 1$. \begin{remark} \label{rmk3.2} \rm Since $u \in W_{0}^{1,\infty}(\Omega)$, the problem can be formulated in this space by choosing $\mathcal{K}= \{ v\in W_{0}^{1,\infty}(\Omega ): \| \nabla v(x) \|_{\infty} \leq 1 \}$, what permits to write the problem \eqref{P'} without truncation operator, and simplify the proof of the step \textit{The function u is solution to the problem }\eqref{P'}. But traditionally (see for example \cite{Kind}), the elasto-plastic torsion problem is written with $\mathcal{K}= \{ v\in W_{0}^{1,p}(\Omega ): \vert \nabla v(x) \vert \leq 1\text{ a.e. in }\Omega \}$, it's why we have done this choice. \end{remark} \subsection*{Acknowledgement} The authors would like to thank the anonymous referee for his/her interesting remarks. \begin{thebibliography}{9} \bibitem{Adams} R. Adams. \emph{Sobolev spaces}. Academic Press, New York, 1975. \bibitem{Meskine} A. Benkirane, A. EL Mahi, D. Meskine. \emph{On the limit of some penalized problems involving increasing powers}. Asymptotic Analysis, Volume 36, Numbers 3--4 (2003), pp. 303--317. \bibitem{BDM} T. Bhattacharya, E. DiBenedetto, J. Manfredi. \emph{Limits as $p \to \infty $ of $\Delta _{p}(u)=f$ and related extremal problems}. Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale Nonlinear PDE's, (1989), 15--68. \bibitem{bocc1} L. Boccardo, F. Murat. \emph{Increase of power leads to bilateral problems}. Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell' Antonio. eds., World Scientific, Singapore, 1995, pp. 113--123. \bibitem{Dall} A. Dall'Aglio, L. Orsina. \emph{On the limit of some nonlinear elliptic equations involving increasing powers}. Asympt. Anal., \textbf{14} (1997), 49--71. \bibitem{Kind} D. Kinderlehrer, G. Stampacchia. \emph{An introduction to variational inequalities and their applications}. Academic Press, New York, 1980. \bibitem{Lions1} L. Leray, J. L. Lions. \emph{Quelques r\'{e}sultats de Visik sur les probl\`{e}mes non lin\'{e}aires par les m\'{e}thodes de Minty-Browder}. Bull. Soc. Math. France, \textbf{93} (1965), 97--107. \bibitem{Lions2} J. L. Lions. \emph{Quelques m\'{e}thodes de r\'{e}solution des probl\`{e}mes aux limites non lin\'{e}aires}. Dunod et Gauthiers-Villars (1969). \bibitem{Rosset} E. Rosset. \emph{Symmetry and convexity of level sets of solutions to the infinity Laplace's equation}. Electron. J. Differential Equations, vol. 1998, (1998) No. 34, pp. 1--12. \end{thebibliography} \end{document}