\documentclass[reqno]{amsart} \usepackage{amssymb,hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 21, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/21\hfil One-phase Stefan problems] {Existence and uniqueness for one-phase Stefan problems of non-classical heat equations with temperature boundary condition at a fixed face} \author[A. C. Briozzo, D. A. Tarzia\hfil EJDE-2006/21\hfilneg] {Adriana C. Briozzo, Domingo A. Tarzia} \address{Adriana C. Briozzo \hfill\break Departamento de Matem\'{a}tica \\ FCE, Universidad Austral \\ Paraguay 1950, S2000FZF Rosario, Argentina} \email{Adriana.Briozzo@fce.austral.edu.ar} \address{Domingo Alberto Tarzia \hfill\break Departamento de Matem\'{a}tica - CONICET\\ FCE, Universidad Austral \\ Paraguay 1950, S2000FZF Rosario, Argentina} \email{Domingo.Tarzia@fce.austral.edu.ar} \date{} \thanks{Submitted November 1, 2005. Published February 9, 2006.} \subjclass[2000]{35R35, 80A22, 35C05, 35K20, 35K55, 45G15, 35C15} \keywords{Stefan problem; non-classical heat equation; free boundary problem; \hfill\break\indent similarity solution; nonlinear heat sources; Volterra integral equations} \begin{abstract} We prove the existence and uniqueness, local in time, of a solution for a one-phase Stefan problem of a non-classical heat equation for a semi-infinite material with temperature boundary condition at the fixed face. We use the Friedman-Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} The one-phase Stefan problem for a semi-infinite material for the classical heat equation requires the determination of the temperature distribution $u$ of the liquid phase (melting problem) or of the solid phase (solidification problem), and the evolution of the free boundary $x=s(t).$ Phase-change problems appear frequently in industrial processes and other problems of technological interest \cite{AlSo,AMR,Ca,CaJa,ChRa,Cr,DHLV,FaPr,Lu,WrBr}. A large bibliography on the subject was given in \cite{Ta00}. Non-classical heat conduction problem for a semi-infinite material was studied in \cite{BeTaVi,CaYi,KePr,TaVi,Vi}, e.g. problems of the type \begin{equation} \begin{gathered} u_{t}-u_{xx}=-F(u_{x}(0,t)), \quad x>0,\;t>0, \\ u(0,t)=0, \quad t>0 \\ u(x,0)=h(x), \quad x>0 \end{gathered} \label{primero} \end{equation} where $h(x),x>0$, and $F(V),V\in \mathbb{R}$, are continuous functions. The function $F$, henceforth referred as control function, is assumed to satisfy the condition \begin{itemize} \item[(H1)] $F(0)=0$. \end{itemize} As observed in \cite{TaVi,Vi}, the heat flux $w(x,t)=u_{x}(x,t)$ for problem \eqref{primero} satisfies a classical heat conduction problem with a nonlinear convective condition at $x=0$, which can be written in the form \begin{equation} \begin{gathered} w_{t}-w_{xx}=0, \quad x>0,\;t>0, \\ w_{x}(0,t)=F(w(0,t)), \quad t>0, \\ w(x,0)=h'(x)\geq 0, \quad x>0. \end{gathered} \label{segundo} \end{equation} The literature concerning problem \eqref{segundo} has increased rapidly since the publication of the papers \cite{MaWo,OlHa,RoMa}. Related problems have been also studied; see for example \cite{AfCa,GlSp,HaOl}. In \cite{Ta01}, a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material was presented. There the free boundary problem consists in determining the temperature $u=u(x,t)$ and the free boundary $x=s(t)$ with a control function $F$ which depends on the evolution of the heat flux at the extremum $x=0$ is given by the conditions \begin{equation} \begin{gathered} u_{t}-u_{xx}=-F(u_{x}(0,t)), \quad 00). \end{gathered} \label{Stefan} \end{equation} The goal in this paper is to prove the existence and uniqueness, local in time, of a solution to the one-phase Stefan problem \eqref{Stefan} for a non-classical heat equation with temperature boundary condition at the fixed face $x=0$. First, we prove that problem \eqref{Stefan} is equivalent to a system of two Volterra integral equations \eqref{ecintegral}-(\ref{ecintegral2}) following the Friedman-Rubinstein's method given in \cite{Fr,Ru}. Then, we prove that the problem \eqref{ecintegral}-(\ref{ecintegral2}) has a unique local solution by using the Banach contraction theorem. \section{Existence and Uniqueness of Solutions} We have the following equivalence for the existence of solutions to the non-classical free boundary problem \eqref{Stefan}. \begin{theorem} \label{thm1} The solution of the free-boundary problem \eqref{Stefan} is \begin{gather} \begin{aligned} u(x,t) &=\int_{0}^{b}G(x,t;\xi ,0)h(\xi )d\xi +\int_{0}^{t}G_{\xi}(x,t;0,\tau )f(\tau )\, d\tau \\ &\quad+\int_{0}^{t}G(x,t;s(\tau ),\tau )v(\tau )\, d\tau -\iint_{D(t)}G(x,t;\xi ,\tau )F(V(\tau ))d\xi \, d\tau , \end{aligned} \label{u} \\ s(t)=b-\int_{0}^{t}v(\tau )\, d\tau \,, \label{s} \end{gather} where $D(t)=\{ (x,\tau ): 0\tau \\ 0 & t\leq \tau\,, \end{cases} \end{gather*} where $s(t)$ is given by \eqref{s}, \end{theorem} \begin{proof} Let $u(x,t)$ be the solution to \eqref{Stefan}. We integrate, on the domain $D_{t,\varepsilon }=\{ (\xi ,\tau ): 0<\xi 0$) and we let $\varepsilon \to 0$ we obtain that \begin{align*} u(x,t)&=\int_{0}^{b}G(x,t;\xi ,0)h(\xi )d\xi +\int_{0}^{t}G(x,t;s(\tau ),\tau )v(\tau )\, d\tau \\ &\quad +\int_{0}^{t}\psi (\tau )[G_{x}(x,t;s(\tau ),\tau )-G(x,t;s(\tau ),\tau )v(\tau )]\, d\tau \\ &\quad +\int_{0}^{t}G_{\xi }(x,t;0,\tau )f(\tau )\, d\tau -\iint_{D(t)}G(x,t;\xi ,\tau )F(V(\tau ))d\xi \, d\tau . \end{align*} Then, if we compare this last expression with \eqref{u}, we deduce that \begin{equation} M(x,t)=\int_{0}^{t}\psi (\tau )[ G_{x}(x,t;s(\tau ),\tau )-G(x,t;s(\tau ),\tau )v(\tau )]\, d\tau \equiv 0 \label{M} \end{equation} for $00,\; t>\tau ,\; n\in \mathbb{N}. \label{exp} \end{equation} \begin{lemma} \label{lem3} Let $\sigma \leq 1$, $M\geq 1$, $f\in C^{1}[0,T)$, $h\in C^{1}[0,b]$, $F$ a Lipschitz function over $C^{0}[0,T]$. Under the hypothesis of Lemma \ref{lem2}, we have the following properties: \begin{gather} \int_{0}^{t}|N(s(t),t,0,\tau )| |\dot {f}(\tau )| \, d\tau \leq \|\dot {f}\|_{t}C_{1}(b) t \label{i} \\ \int_{0}^{t}|G_{x}(s(t),t,s(\tau ),\tau )| |v(\tau )| \, d\tau \leq M^{2}C_{2}(b)\sqrt{t} \label{ii} \\ \int_{0}^{b}|N(s(t),t,\xi ,0)| |h'(\xi )| d\xi \leq \|h'\|\label{iii} \\ \int_{0}^{t}|N(s(t),t,s(\tau ),\tau )-N(s(t),t,0,\tau )| | F(V(\tau ))| \, d\tau \leq C_{4}(L)M\sqrt{t} \label{iv} \\ \int_{0}^{b}|N(0,t,\xi ,0)| |h'(\xi )| d\xi \leq \|h'\|\label{v} \\ \int_{0}^{t}|N(0,t,0,\tau )| |\dot {f}(\tau )| \, d\tau \leq \frac{2\|\dot {f}\|_{\sigma }}{\sqrt{ \pi }}\sqrt{t} \label{vi} \\ \int_{0}^{t}|G_{x}(0,t,s(\tau ),\tau )| |v(\tau )| \, d\tau \leq C_{3}(b)Mt \label{vii} \\ \int_{0}^{t}|N(0,t,s(\tau ),\tau )-N(0,t,0,\tau )| | F(V(\tau ))| \, d\tau \leq C_{4}(L)M\sqrt{t} \label{viii} \end{gather} where $L$ is the Lipschitz constant of $F$ and \begin{equation} \label{constantes} \begin{gathered} C_{1}(b)=(\frac{8}{eb^{2}})^{1/2} \frac{1}{\sqrt{\pi }},\quad C_{2}(b)=\frac{1}{2\sqrt{\pi }}+\frac{3b}{4\sqrt{\pi }}(\frac{2}{3eb^{2}})^{3/2} \\ C_{3}(b) =\frac{3b}{8\sqrt{\pi }}(\frac{24}{eb^{2}})^{3/2},\quad C_{4}(L)=\frac{4L}{\sqrt{\pi }}\;. \end{gathered} \end{equation} \end{lemma} \begin{proof} To prove \eqref{i}, we have \begin{align*} |N(s(t),t,0,\tau )| &=|K(s(t),t,0,\tau )+K(-s(t),t,0,\tau )| =2K(s(t),t,0,\tau )\\ &=\exp \big(\frac{-s^{2}(t)}{4(t-\tau )}\big)\frac{(t-\tau ) ^{-1/2}}{\sqrt{\pi }}\\ &\leq \exp \big(\frac{-b^{2}}{16(t-\tau )}\big) \frac{(t-\tau )^{-1/2}}{\sqrt{\pi }} \\ &\leq (\frac{8}{eb^{2}})^{1/2}\frac{1}{\sqrt{\pi }}=C_{1}(b) \end{align*} then \eqref{i} holds. To prove \eqref{ii}, we have \begin{align*} |G_{x}(s(t),t,s(\tau ),\tau )| & =\big|K_{x}(s(t),t,s(\tau ),\tau )+K_{x}(-s(t),t,s(\tau ),\tau )\big| \\ &=\frac{(t-\tau )^{-3/2}}{4\sqrt{\pi }} \Big|(s(t)-s(\tau ))\exp \big(\frac{-(s(t)-s(\tau ))^{2}}{4(t-\tau)}\big)\\ &\quad -(s(t)+s(\tau ))\exp \big(\frac{-(s(t)+s(\tau ))^{2}}{4(t-\tau )} \big)\Big| \\ &\leq \frac{(t-\tau )^{-3/2}}{4\sqrt{\pi }} \Big(M(t-\tau )+3b\exp \big(\frac{-9b^{2}}{4(t-\tau )}\big)\Big) \\ &\leq \frac{1}{4\sqrt{\pi }} \Big(M(t-\tau )^{-1/2}+3b\big(\frac{2}{3eb^{2}}\big)^{3/2}\Big)\,. \end{align*} Then \begin{align*} \int_{0}^{t}|G_{x}(s(t),t,s(\tau ),\tau )| |v(\tau )| \, d\tau &\leq \frac{M}{4\sqrt{\pi }}\Big(2M\sqrt{t}+3b(\frac{2}{3eb^{2}}) ^{3/2}t\Big) \\ &\leq M^{2}\sqrt{t}\big(\frac{1}{2\sqrt{\pi }}+\frac{3b}{M4\sqrt{\pi }} (\frac{2}{3eb^{2}})^{3/2}\Big)\\ &\leq M^{2}C_{2}(b)\sqrt{t}, \end{align*} which implies \eqref{ii}. To prove \eqref{iii}, we have \[ \int_{0}^{b}|N(s(t),t,\xi ,0)| |h'(\xi )| d\xi \leq \|h'\|\int_{0}^{\infty }|N(s(t),t,\xi ,0)| d\xi \leq \|h'\| \] because \[ \int_{0}^{\infty }|N(s(t),t,\xi ,0)| d\xi \leq 1. \] To prove \eqref{iv}, by taking into account that \[ |N(s(t),t,s(\tau ),\tau ) -N(s(t),t,0,\tau )| \leq \frac{2}{\sqrt{\pi (t-\tau )}} \] we obtain \begin{align*} \int_{0}^{t}|N(s(t),t,s(\tau ),\tau )-N(s(t),t,0,\tau )| | F(V(\tau ))| \, d\tau &\leq LM\int_{0}^{t}\frac{2}{\sqrt{\pi (t-\tau )}}\, d\tau \\ & =C_{4}(L)M\sqrt{t}. \end{align*} The inequality \eqref{v} is prove in the same way as \eqref{iii}. To prove \eqref{vi}, we have \begin{align*} \int_{0}^{t}|N(0,t,0,\tau )| |\dot {f}(\tau)| \, d\tau &\leq \|\dot {f}\|_{\sigma }\int_{0}^{t}|N(0,t,0,\tau )| \, d\tau \\ &=\|\dot {f}\|_{\sigma }\int_{0}^{t}\frac{1}{\sqrt{\pi (t-\tau )}}\, d\tau \\ &=\frac{\|\dot {f}\|_{\sigma }}{\sqrt{\pi }}2\sqrt{t}. \end{align*} To prove \eqref{vii}, we have \begin{align*} |G_{x}(0,t,s(\tau ),\tau )| &=\frac{(t-\tau )^{-3/2}}{4\sqrt{\pi }}\,s(\tau ) \exp \Big(\frac{-(s(\tau ))^{2}}{4(t-\tau )}\Big)\\ &\leq \frac{3b}{8\sqrt{\pi }}(t-\tau )^{-3/2} \exp \Big(\frac{-b^{2}}{16(t-\tau )}\Big)\\ &\leq \frac{3b}{8\sqrt{\pi }}(\frac{24}{eb^{2}})^{3/2}\,. \end{align*} To prove \eqref{viii}, as in \eqref{iv}, we prove that \[ |N(0,t,s(\tau ),\tau )-N(0,t,0,\tau )| \leq \frac{2}{\sqrt{\pi (t-\tau )}} \] and therefore \eqref{viii} holds. \end{proof} \begin{lemma} \label{lem4} Let $s_{1}$, $s_{2}$ be the functions corresponding to $v_{1}$, $v_{2}$ in $C^{0}[0,\sigma ]$, respectively, with $\max_{t\in [0,\sigma]}|v_{i}(t)| \leq M$, $i=1,2$, Then we have \begin{equation} \begin{gathered} |s_{2}(t)-s_{1}(t)| \leq t\| v_{2}-v_{1}\|_{t}, \\ |s_{i}(t)-s_{i}(\tau )| \leq M|t-\tau | ,\quad i=1,2, \\ \frac{b}{2}\leq s_{i}(t)\leq \frac{3b}{2},\quad \forall t\in [0,\sigma ],\; i=1,2. \end{gathered} \end{equation} \end{lemma} \begin{lemma} \label{lem5} Let $f\in C^{1}[0,T)$, $h\in C^{1}[0,b]$, $F$ a Lipschitz function in $C^{0}[0,T]$. We have \begin{gather} |F_{0}(v_{2}(t))-F_{0}(v_{1}( t))| \leq E(b,h,f)\sqrt{t}\| v_{2}-v_{1}\|_{t}; \label{i1} \\ \begin{aligned} &\int_{0}^{t}|N(s_{2}(t),t,s_{2}(\tau ) ,\tau )-N(s_{2}(t),t,0,\tau )| | F(V_{2}(\tau ))-F(V_{1}(\tau ))| \, d\tau\\ &\leq C_{4}(L)\sqrt{t}\|V_{2}-V_{1}\|_{t}; \end{aligned} \label{ii1} \\ \begin{aligned} &\int_{0}^{t}|N(s_{2}(t),t,0,\tau )-N( s_{1}(t),t,0,\tau )| |F(V_{1}(\tau ))| \, d\tau\\ &\leq C_{5}(b,L,M)t\|v_{2}-v_{1}\|_{t}; \end{aligned} \label{iii1} \\ \begin{aligned} &\int_{0}^{t}|N(s_{2}(t),t,s_{2}(\tau ) ,\tau )-N(s_{1}(t),t,s_{1}(\tau ) ,\tau )| |F(V_{1}(\tau )) | \, d\tau \\ &\leq [C_{6}(L,M)\sqrt{t}+C_{7}(b,L,M) t]\|v_{2}-v_{1}\|_{t}; \end{aligned} \label{iv1} \\ \int_{0}^{t}|G_{x}(0,t,s_{2}(\tau ),\tau )| |v_{2}(\tau )-v_{1}(\tau )| \, d\tau \leq C_{8}(b)t\| v_{2}-v_{1}\|_{t}; \label{v1} \\ \begin{aligned} &\int_{0}^{t}|G_{x}(0,t,s_{2}(\tau ),\tau )v_{2}(\tau )-G_{x}(0,t,s_{1}(\tau ),\tau )v_{1}(\tau )| \, d\tau\\ &\leq (C_{8}(b)t+C_{9}(b,M)t^{2}) \|v_{2}-v_{1}\|_{t}; \end{aligned} \label{vi1} \\ \begin{aligned} &\int_{0}^{t}\Big|[N(0,t,s_{2}(\tau ),\tau )-N(0,t,0,\tau )]F(V_{2}(\tau ))\\ &-[N(0,t,s_{1}(\tau ),\tau )-N(0,t,0,\tau )] F(V_{1}(\tau ))\Big| \, d\tau \\ &\leq C_{4}(L)\sqrt{t}\|V_{2}-V_{1}\| _{t}+C_{5}(b,L,M)t^{2}\|v_{2}-v_{1}\|_{t}, \end{aligned} \label{vii1} \end{gather} where the constants are defined by \begin{equation} \begin{gathered} C_{4}(L)=\frac{4L}{\sqrt{\pi }}, \quad C_{5}(b,L,M)=LM\frac{3b}{8\sqrt{\pi }}(\frac{24}{eb^{2}})^{3/2}\,, \\ C_{6}(L,M)=\frac{LM^{3}}{\sqrt{\pi }}\,, \quad C_{7}(b,L,M)=(\frac{6}{eb^{2}})^{3/2}\frac{3bLM^{2}}{2\sqrt{\pi }}\,, \\ C_{8}(b)=\frac{3}{4\sqrt{\pi }}(\frac{24}{eb^{2}})^{3/2}\,,\quad C_{9}(b,M)=[(\frac{40}{eb^{2}})^{\frac{5}{2}}\frac{9b^{2}}{16\sqrt{\pi }}+\frac{1}{2\sqrt{ \pi }}(\frac{24}{eb^{2}})^{3/2}]\frac{M}{2}. \end{gathered} \label{viii1} \end{equation} \end{lemma} \begin{proof} The proof of \eqref{i1} can be found in \cite{Fr}. To prove \eqref{ii1}, we have \[ |N(s_{2}(t),t,s_{2}(\tau),\tau )-N(s_{2}(t),t,0,\tau ) | \leq \frac{2}{\sqrt{\pi (t-\tau )}}. \] Then \begin{align*} &\int_{0}^{t}|N(s_{2}(t),t,s_{2}(\tau ),\tau )-N(s_{2}(t),t,0,\tau )| | F(V_{2}(\tau ))-F(V_{1}(\tau ) )| \, d\tau \\ &\leq \frac{4L}{\sqrt{\pi }}\sqrt{t}\|V_{2}-V_{1}\|_{t} \end{align*} To prove \eqref{iii1}, we use the mean value theorem: There exists $c=c(t,\tau )$ between $s_{1}(t) $ and $s_{2}(t)$ such that \begin{align*} &|N(s_{2}(t),t,0,\tau )-N(s_{1}(t),t,0,\tau )| |F(V_{1}(\tau ))| \\ &=|N_{x}(c,t,0,\tau )| |s_{2}(\tau )-s_{1}(\tau )| |F(V_{1}(\tau ))|\\ &\leq |c| \exp \big(-\frac{c^2}{4(t-\tau )}\big) \frac{(t-\tau )^{-3/2}}{2\sqrt{\pi }}LM\tau |v_{2}(\tau )-v_{1}(\tau)| \\ &\leq \frac{3b}{4\sqrt{\pi }}\exp \big(-\frac{b^{2}}{16(t-\tau )}\big) (t-\tau )^{-3/2}LM\tau |v_{2}(\tau )-v_{1}(\tau )| \\ &\leq \frac{3b}{4\sqrt{\pi }}(\frac{24}{eb^{2}})^{3/2} LM\tau |v_{2}(\tau )-v_{1}(\tau )|\,. \end{align*} Then \begin{align*} &\int_{0}^{t}|N(s_{2}(t),t,0,\tau )-N( s_{1}(t),t,0,\tau )| |F(V_{1}(\tau ))| \, d\tau \\ &\leq \frac{3b}{8\sqrt{\pi }}(\frac{24}{eb^{2}})^{\frac{3}{2} }LMt\|v_{2}-v_{1}\|_{t}=C_{5}(b,L,M)t\| v_{2}-v_{1}\|_{t}. \end{align*} To prove \eqref{iv1}, we have \begin{align*} &N(s_{2}(t),t,s_{2}(\tau ),\tau ) -N(s_{1}(t),t,s_{1}(\tau ),\tau ) \\ &=K(s_{2}(t),t,s_{2}(\tau ),\tau ) -K(s_{1}(t),t,s_{1}(\tau ),\tau ) \\ &\quad +K(-s_{2}(t),t,s_{2}(\tau ),\tau ) -K(-s_{1}(t),t,s_{1}(\tau ),\tau )\,. \end{align*} As in \cite{Sh}, for each $(t,\tau )$, $0<\tau 0$, for all $V\neq 0$ and $F(0)=0$, \end{itemize} then by the maximum principle \cite{Ber}, $u$ is a sub-solution for the same problem with $F\equiv 0$, that is \[ u(x,t)\leq u_{0}(x,t)\,,\quad s(t)\leq s_{0}(t) \] where $u_{0}(x,t)$ and $s_{0}(t)$ solve the classical Stefan problem \begin{gather*} u_{0t}-u_{0xx}=0, \quad 0