\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 54, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/54\hfil Growth of solutions] {Growth of solutions of complex differential equations with coefficients of finite iterated order} \author[J. Tu, Z. Chen, X. Zheng\hfil EJDE-2006/54\hfilneg] {Jin Tu, Zongxuan Chen, Xiumin Zheng} % in alphabetical order \address{Jin Tu \newline School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China} \email{tujin2008@sina.com} \address{Zongxuan Chen \newline Department of Mathematics, South China Normal University, Guangzhou, 510631, China} \email{chzx@sina.com} \address{Xiumin Zheng \newline Institute of Mathematics and Information, Jiangxi Normal University, Nanchang, 330027, China} \email{xiaogui88@sohu.com} \date{} \thanks{Submitted January 17, 2006. Published April 28, 2006.} \thanks{Supported by grant 10371009 from the Natural Science Foundation of China} \subjclass[2000]{30D35, 34M10} \keywords{Differential equations; growth of solutions; iterated order} \begin{abstract} In this paper, we investigate the growth of solutions to the differential equation $$ f^{(k)}+A_{k-1}(z)f^{(k-1)}+\dots+A_0(z)f=F(z), $$ where the coefficients are of finite iterated order. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} It is well known that all solutions of the complex differential equations \begin{gather} f^{(k)}+A_{k-1}(z)f^{(k-1)}+\dots+A_0(z)f=0, \label{e1.1}\\ f^{(k)}+A_{k-1}(z)f^{(k-1)}+\dots+A_0(z)f=F(z) \label{e1.2} \end{gather} are entire functions, provided that the coefficients $A_0(z),A_1(z),\dots,A_{k-1}(z),F(z)$ are entire functions with $A_0(z)\not\equiv 0$. A natural question arises: What conditions on $A_0(z),A_1(z),\dots,A_{k-1}(z),F(z)$ will guarantee that every solution $f\not\equiv0$ has infinite order? Also: For solutions of infinite order, how to express the growth of them explicitly, it is a very important problem. Partial results have been available since a paper of Frei \cite{f1}. For high order differential equations, the following results have been obtained. \begin{theorem}[{\cite[Theorem 2.1]{b3}}] \label{thm1.1} Let $A_0(z),A_1(z),\dots,A_{k-1}(z)$ be entire functions with $A_0(z)\not\equiv0$, such that for some real constants $\alpha,\beta,\mu,\theta_1,\theta_2$, with $0\leq\beta<\alpha, \mu>0, \theta_1<\theta_2$, we have \begin{gather} |A_0(z)|\geq e^{\alpha|z|^{\mu}},\label{e1.3}\\ |A_j(z)|\leq e^{\beta|z|^{\mu}},\quad j=1,\dots,k-1,\label{e1.4} \end{gather} as $z\to\infty$ with $\theta_1\leq \arg z\leq\theta_2$. Then every solution $f\not\equiv0$ of \eqref{e1.1} has infinite order. \end{theorem} \begin{theorem}[{\cite[Theorem 1]{b1}}] \label{thm1.2} Let $H$ be a set of complex numbers satisfying $\overline{\mathop{\rm dens}}\{|z|:z\in H\}>0$, and let $A_0(z),A_1(z),\dots,A_{k-1}(z)$ be entire functions and satisfy \eqref{e1.3} and \eqref{e1.4} as $z\to\infty$ for $z\in H$. Then every solution $f\not\equiv0$ of \eqref{e1.1} satisfies $\sigma(f)=\infty$ and $\sigma_2(f)\geq\mu$. \end{theorem} \begin{theorem}[{\cite[Theorem 2]{b1}}] \label{thm1.3} Let $H$ be a set of complex numbers satisfying $\overline{\mathop{\rm dens}}\{|z|:z\in H\}>0$, and let $A_0(z),A_1(z),\dots,A_{k-1}(z)$ be entire functions with $\max\{\sigma (A_j):j=1,\dots,k-1\}\leq\sigma(A_0)=\sigma<+\infty$ such that for some constants $0\leq\beta<\alpha$ and for any $\varepsilon>0$, we have \begin{gather} |A_0(z)|\geq e^{\alpha|z|^{\sigma-\varepsilon}} ,\label{e1.5}\\ |A_j(z)|\leq e^{\beta|z|^{\sigma-\varepsilon}},\quad j=1,\dots,k-1,\label{e1.6} \end{gather} as $z\to\infty$ for $z\in H$. Then every solution $f\not\equiv0$ of \eqref{e1.1} satisfies $\sigma(f)=\infty$ and $\sigma_2(f)=\sigma(A_0)$. \end{theorem} \begin{theorem}[{\cite[Theorem 1.1]{b2}}] \label{thm1.4} Let $H,A_0(z),A_1(z),\dots,A_{k-1}(z)$ satisfy the hypotheses of Theorem \ref{thm1.3}, and let $F\not\equiv0$ be an entire function with $\sigma(F)<+\infty$. Then every solution $f(z)$ of \eqref{e1.2} satisfies $\overline{\lambda}_2(f)=\sigma_2(f)=\sigma$, with at most one exceptional solution $f_0$ satisfying $\sigma_2(f_0)<\sigma$. \end{theorem} \section{Notation and results} In this section, we prove some results concerning the above questions when the coefficients of \eqref{e1.1} and \eqref{e1.2} are of finite iterated order. For $r\in[0,\infty)$, we define $\exp_{1}r=e^{r}$ and $\exp_{i+1}r=\exp(\exp_{i}r)$ ($i\in \mathbb{N}$). For $r$ sufficiently large, we define $\log_{1}r=\log r$, $\log_{i+1}r=\log(\log_{i}r)$ ($i\in \mathbb{N}$). To express the rate of growth of entire function of infinite order, we introduce the notion of iterated order \cite{k1}. \begin{definition} \label{def2.1} \rm The iterated $i$-order of an entire function $f$ is defined by \begin{equation} \sigma_{i}(f)=\limsup_{r\to\infty} \frac{\log_{i+1}M(r,f)}{\log r} =\limsup_{r\to\infty} \frac{\log_{i}T(r,f)}{\log r}\quad(i\in \mathbb{N}). \label{e2.1} \end{equation} \end{definition} \begin{definition} \label{def2.2} \rm The finiteness degree of the order of an entire function $f$ is defined by \begin{equation} i(f)=\begin{cases} 0 & \text{if $f$ is a polynomial}, \\ \min\{j\in \mathbb{N}:\sigma _{j}(f)<\infty\} & \text{if $f$ is transcendental with}\\ &\quad \sigma_{j}(f)<\infty \text{ for some }j\in\mathbb{N}, \\ \infty & \text{if } \sigma _{j}(f)=\infty\; \forall j\in \mathbb{N}. \end{cases} \label{e2.2} \end{equation} \end{definition} \begin{definition} \label{def2.3} \rm The iterated convergence exponent of the sequence of zeros of an entire function $f$ is defined by \begin{equation} \lambda_{i}(f)=\limsup_{r\to \infty} \frac{\log_{i}n(r,1/f)}{\log r}\quad(i\in \mathbb{N}).\label{e2.3} \end{equation} \end{definition} The linear measure of a set $E\subset[0,+\infty)$ is defined as $m(E)=\int^{+\infty}_0\chi_E(t)\,dt$. The logarithmic measure of a set $E\subset[1,+\infty)$ is defined by $lm(E)=\int^{+\infty}_1 \chi_E(t)/t\, dt$, where $\chi_E(t)$ is the characteristic function of $E$. The upper and lower densities of $E$ are \begin{equation} \overline{\mathop{\rm dens}}E =\limsup_{r\to\infty} \frac{m(E\cap[0,r])}{r},\quad \underline{\mathop{\rm dens}}E=\liminf_{r\to\infty} \frac{m(E\cap[0,r])}{r}.\label{e2.4} \end{equation} In this paper, we improve the results of Bela\"{\i}di \cite{b1,b2,b3}, and we obtain the following results: \begin{theorem} \label{thm2.1} Let $A_0(z),A_1(z),\dots,A_{k-1}(z)$ be entire functions with $A_0(z)\not\equiv0$ such that for real constants $\alpha,\beta,\mu,\theta_1,\theta_2$ and positive integer $p$ with $0\leq\beta<\alpha,\mu>0,\theta_1<\theta_2,1\leq p<\infty$, we have \begin{gather} |A_0(z)|\geq \exp_p\{\alpha|z|^{\mu}\}, \label{e2.5} \\ |A_j(z)|\leq \exp_p\{\beta|z|^{\mu}\},\quad j=1,\dots,k-1,\label{e2.6} \end{gather} as $z\to\infty$ with $\theta_1\leq argz\leq\theta_2$. Then $\sigma_{p+1}(f)\geq\mu$ holds for all non-trivial solutions of \eqref{e1.1}. \end{theorem} \begin{theorem} \label{thm2.2} Let $H$ be a set of complex numbers satisfying $\overline{\mathop{\rm dens}}\{|z|:z\in H\}>0$, and let $A_0(z)$, $A_1(z),\dots,A_{k-1}(z)$ be entire functions and satisfy \eqref{e2.5} and \eqref{e2.6} as $z\to\infty$ for $z\in H$, where $0\leq\beta<\alpha,\mu>0$, $1\leq p<\infty$. Then every solution $f\not\equiv0$ of \eqref{e1.1} satisfies $\sigma_{p+1}(f)\geq\mu$. \end{theorem} \begin{theorem} \label{thm2.3} Let $H$ be a set of complex numbers satisfying $\overline{\mathop{\rm dens}}\{|z|:z\in H\}>0$, and let $A_0(z),A_1(z),\dots,A_{k-1}(z)$ be entire functions of iterated order with $\max\{\sigma_p(A_j):j=1,\dots,k-1\}\leq\sigma_p(A_0)=\sigma<+\infty$, $1\leq p<\infty$ such that for some constants $0\leq\beta<\alpha$ and for any given $\varepsilon>0$, we have \begin{gather} |A_0(z)|\geq \exp_p\{\alpha|z|^{\sigma-\varepsilon}\}\label{e2.7} \\ |A_j(z)|\leq \exp_p\{\beta|z|^{\sigma-\varepsilon}\},\quad j=1,\dots,k-1,\label{e2.8} \end{gather} as $z\to\infty$ for $z\in H$. Then every solution $f\not\equiv0$ of \eqref{e1.1} satisfies $\sigma_{p+1}(f)=\sigma_{p}(A_0)=\sigma$. \end{theorem} \begin{theorem} \label{thm2.4} Let $H,A_0(z)$, $A_1(z),\dots,A_{k-1}(z)$ satisfy the hypotheses of Theorem \ref{thm2.3}, and let $F\not\equiv0$ be an entire function of iterated order with $i(F)=q$. \begin{itemize} \item[(i)] If $q
p+1$ or $q=p+1, \sigma_p(A_0)<\sigma_{p+1}(F)<+\infty$,
then every solution $f(z)$ of \eqref{e1.2} satisfies $i(f)=q$
and $\sigma_{q}(f)=\sigma_q(F)$.
\end{itemize}
\end{theorem}
\section{Preliminaries for proving the main results}
To prove the above theorems, we need the following lemmas:
\begin{lemma}[\cite{g1}] \label{lem3.1} Let $f(z)$ be a
nontrivial entire function, and let $\alpha>1$ and $\varepsilon>0$
be given constants. Then there exist a constant $c>0$ and a set
$E_1\subset[0,\infty)$ having finite linear measure such that for
all $z$ satisfying $|z|=r\not\in E_1$, we have
\begin{equation}
\big|\frac{f^{(k)}(z)}{f(z)}\big|
\leq c[T(\alpha r,f)r^\varepsilon\log T(\alpha r,f)]^k\quad
(k\in \mathbb{N}).\label{e3.1}
\end{equation}
\end{lemma}
\begin{lemma}[Wiman-Valiron \cite{h1,v1}] \label{lem3.2}
Let $f(z)$ be a transcendental entire function, and let $z$ be a
point with $|z|=r$ at which $|f(z)|=M(r,f)$. Then for all $|z|$
outside a set $E_2$ of $r$ of finite logarithmic measure, we have
\begin{equation}
\frac{f^{(k)}(z)}{f(z)}=\Big(\frac{\nu_{f}(r)}{z}\Big)^{k}
(1+o(1))
\quad(k\in \mathbb{N},r\not\in E_2).\label{e3.2}
\end{equation}
where $\nu_f(r)$ is the central index of $f$.
\end{lemma}
\begin{lemma}[\cite{h2}] \label{lem3.3}
Let $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ be an entire
function, $\mu(r)$ be the maximum term, i.e.
$\mu(r)=\max\{|a_n|r^n; n=0,1,\dots\}$, and let $\nu_f(r)$ be the
central index of $f$. Then
\begin{itemize}
\item[(i)] For $|a_{0}|\neq 0$,
\begin{equation}
\log\mu(r)=\log|a_{0}|+\int_{0}^{r}\frac{\nu_{f}(t)}{t}dt,\label{e3.3}
\end{equation}
\item[(ii)] For $r