\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 55, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/55\hfil Travelling wave solutions] {Travelling wave solutions in delayed cellular neural networks with nonlinear output} \author[X. Liu, P. Weng, Z. Xu\hfil EJDE-2006/55\hfilneg] {Xiuxiang Liu, Peixuan Weng, Zhiting Xu} % in alphabetical order \address{Xiuxiang Liu \newline School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China} \email{liuxx@scnu.edu.cn} \address{Peixuan Weng \newline School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China} \email{wengpx@scnu.edu.cn} \address{Zhiting Xu \newline School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China} \email{xztxhyyj@pub.guangzhou.gd.cn} \date{} \thanks{Submitted February 15, 2006. Published April 28, 2006.} \thanks{Supported by grants 04010364 and 10571064 from the Natural Science Foundation of the \hfill\break\indent Guangdong Province, and of China} \subjclass[2000]{34B15, 34K10} \keywords{Cellular neural networks; lattice dynamical system; \hfill\break\indent travelling wave solutions; monotone iteration} \begin{abstract} This paper concerns the existence of travelling wave solutions of delayed cellular neural networks distributed in a 1-dimensional lattice with nonlinear output. Under appropriate assumptions, we prove the existence of travelling waves and extend some known results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Cellular neural networks (CNN) system were first proposed by Chua and Yang \cite{c1,c2} as an achievable alternative to fully-connected neural networks in electric circuit systems, so it is also called CY-CNN system. The structure of CNN is similar to the cellular automata that any cell in a CNN is connected only to its neighboring cells. In the recent years, the CNN approach has been applied to a broad scope of problems arising from, for example, image and video signal processing, robotic and biological visions etc. We refer the readers to \cite{h1,h2,h3} for some practical applications. An 1-dimensional CNN without inputs is given by \begin{equation} \frac{{\rm d} x_i(t)}{{\rm d} t}=-x_i(t)+z+\alpha f(x_i(t))+\beta f(x_{i+1}(t)), \label{e1.1} \end{equation} for $i$ in a 1-dimensional lattice $\mathbb{Z}$, where the positive coefficients $\alpha, \beta$ of the signal output function $f$ constitute the so-called space-invariant template that measures the synaptic weights of self-feedback and neighborhood interaction. The quantity $z$ is called a threshold or bias term and is related to the independent voltage sources in electric circuits. Due to the finite switching speed and finite velocity of signal transmission, the distributed delays may exist for CNN systems. One of the models with delay is proposed in \cite{l1} with $z=0$ by \begin{equation} \frac{{\rm d} x_i(t)}{{\rm d} t}=-x_i(t)+\alpha f(x_i(t))+\beta \int_0^\tau K(u) f(x_{i+1}(t-u)){\rm d} u, \label{e1.2} \end{equation} where $\tau> 0 $ is a constant, $K:[0, \tau]\to [0,+\infty)$ is a piece-wise continuous function satisfying \[ \int_0^\tau K(u){\rm d} u=1. \] It is assumed that the self-feedback interaction is instantaneous and there exists delay in neighborhood interaction. A typical output function $f$ in \eqref{e1.1} or \eqref{e1.2} is defined by \begin{equation} f(x)=\begin{cases} 1 & \mbox {if } x\geq 1,\\ x& \mbox {if } |x|\leq 1,\\ -1 & \mbox {if } x\leq -1; \end{cases} \label{e1.3} \end{equation} see for example \cite{c1,c2,h1,h2,h3,l1}. A travelling wave solution of \eqref{e1.2} is defined as a solution of \eqref{e1.2} with \begin{equation} x_i(t)=\phi(i-ct):=\phi(s), \quad \mbox{for all $i\in \mathbb{Z}$ and $t\in \mathbb{R}$}, \label{e1.4} \end{equation} where $c\in\mathbb{R}$ is the wave speed. The profile equation for $\phi(s)$ can be written as \begin{equation} -c\phi'(s)=-\phi(s)+\alpha f(\phi(s))+\beta \int_0^\tau K(u)f(\phi(s+1+u)){\rm d} u. \label{e1.5} \end{equation} Assuming that the synaptic connection is sufficiently large so that \begin{equation} \alpha+\beta>1, \label{e1.6} \end{equation} then there are three equilibria of \eqref{e1.5}: \begin{equation} x^-=-(\alpha+\beta),\quad x^0=0,\quad x^+=\alpha+\beta.\label{e1.7} \end{equation} Recently, Weng and Wu \cite{w1} studied the deformation and existence of travelling wave solutions for \eqref{e1.2} with \eqref{e1.3}, which satisfy different types of asymptotic boundary conditions. For instance one type of conditions are \begin{equation} \lim_{s\to -\infty}\phi(s)=x^0,\quad \lim_{s\to\infty}\phi(s)=x^+. \label{e1.8} \end{equation} Ling \cite{l1} discussed the deformation and existence of travelling wave solutions of \eqref{e1.2} with a nonlinear output function $f$ on $[-1, 1]$, that is \begin{equation} f(x)=\begin{cases} 1 & \mbox {if } x\geq 1,\\ \sin(\frac{\pi}{2}x)& \mbox {if } |x|\leq 1,\\ -1 & \mbox {if } x\leq -1. \end{cases} \label{e1.9} \end{equation} This paper is a continuation of the work in \cite{l1,w1}. We consider the existence of travelling wave solutions of \eqref{e1.2} with a more general output function $f$ under the following hypotheses: \begin{itemize} \item[(H1)] $f$ is a continuous odd function on $(-\infty, +\infty)$ and satisfies: \begin{enumerate} \item $f(x)=1$ for $x\geq 1$; \item $f(0)=0$ and $f$ is differentiable at $x=0$, $\mu=f'(0)\geq 1$; \item $f$ is non-decreasing and $f(x)\leq f'(0)x$ on $[0, 1]$. \end{enumerate} \end{itemize} Under the above hypotheses and \eqref{e1.6}, we see that $x^-$, $x^0$ and $x^+$ are still equilibria of \eqref{e1.5}, furthermore, \begin{equation} f'(0)x-f(x)=o(x)\quad \mbox{as }x\to 0. \label{e1.10} \end{equation} In fact, noting that $f(0)=0$, one has $$ \lim_{x\to 0}\frac{f'(0)x-f(x)}{x} =f'(0)-\lim_{x\to 0}\frac{f(x)-f(0)}{x}=0, $$ hence $f'(0)x-f(x)=o(x)$. \section{Existence of Monotone Travelling Waves} In this section, we study the existence of travelling wave solutions of \eqref{e1.2} under the assumption (H1). First of all, we define the characteristic function of \eqref{e1.5} at $x^0=0$ by \begin{equation} \Delta(\lambda, c, x^0)=-c\lambda+1-\mu\alpha -\mu\beta\int_0^\tau K(u){\rm e}^{\lambda(1+cu)}{\rm d} u. \label{e2.1} \end{equation} The characteristic function \eqref{e2.1} plays crucial roles in our study. The following lemma is needed. \begin{lemma} \label{lem2.1} Assume that $\alpha\geq 1$. There exist exactly a pair of numbers $(c_\ast, \lambda_\ast)$ with $c_\ast<0$, $\lambda_\ast =\lambda(c_\ast)>0$ such that \begin{itemize} \item[(i)] $\Delta(\lambda_\ast, c_\ast, x^0)=0$, $\frac{\partial}{\partial\lambda} \Delta(\lambda_\ast, c_\ast, x^0)=0$; \item[(ii)] for $c_\ast0$, $\varepsilon_1>0$ such that $\Delta(\lambda_1, c, x^0)=0$, and for any small $\varepsilon\in (0, \varepsilon_1)$ one has $\Delta(\lambda_1 +\varepsilon, c, x^0)>0$. \end{itemize} \end{lemma} \begin{proof} A simple calculation leads to \begin{gather*} \frac{\partial}{\partial c}\Delta(\lambda, c, x^0) =-\lambda\Big(1+\mu\beta\int_0^\tau K(u)u{\rm e}^{\lambda(1+cu)} {\rm d} u\Big),\\ \frac{\partial}{\partial\lambda}\Delta(\lambda, c, x^0)=-c-\mu\beta\int_0^\tau K(u)(1+cu){\rm e}^{\lambda(1+cu)}{\rm d} u,\\ \frac{\partial^2}{\partial\lambda^2} \Delta(\lambda, c, x^0)=-\mu\beta\int_0^\tau K(u)(1+cu)^2{\rm e}^{\lambda(1+cu)}{\rm d} u<0\,. \end{gather*} Note that, \begin{gather*} \Delta(0, c, x^0)=1-\mu(\alpha+\beta)<0\quad \mbox{for any }c\in\mathbb{R},\\ \lim_{c\to-\infty}\Delta(\lambda, c, x^0) = +\infty \quad \mbox{for any }\lambda>0,\\ \Delta(\lambda, 0, x^0)=1-\mu\alpha-\mu\beta {\rm e}^{\lambda}<0\quad \mbox{for any }\lambda\in\mathbb{R}, \end{gather*} and that $\Delta(\lambda, c, x^0)$ is a concave function of $\lambda\in \mathbb{R}$ for any given $c\in \mathbb{R}$. Therefore, there exist exactly a pair of numbers $(c_\ast, \lambda_\ast)$ with $c_\ast<0, \lambda_\ast= \lambda(c_\ast)>0$ satisfying (i) and (iii). Note that $ \Delta(\lambda, 0, x^0)<0$ for any $\lambda\in\mathbb{R}$. Furthermore, for any given $\lambda<0$, we have $\frac{\partial\Delta}{\partial c}>0$. Therefore, $\Delta(\lambda, c, x^0)=0$ has no real roots for any $c\in (c_\ast,0]$. This completes the proof. \end{proof} We now consider the existence of monotone travelling waves of \eqref{e1.2} for $c1$, one has $f(V(s))=10$ which implies $v(s+1+cu)=0$. Moreover, if $s<0, 0<\eta<1$, one has $0<\eta{\rm e}^{\lambda_1 s}(1-{\rm e}^{\varepsilon s})<1$. So we can obtain \begin{align*} & cv'(s)-v(s)+\alpha f(v(s))+\beta\int_0^\tau K(u)f(v(s+1+cu)) {\rm d} u\\ &= -\eta{\rm e}^{\lambda_1 s}(-c\lambda_1+1)+\eta{\rm e}^{(\lambda_1+\varepsilon)s}\left(-c(\lambda_1 +\varepsilon)+1\right)\\ &\quad +\alpha f(\eta(1-{\rm e}^{\varepsilon s}){\rm e}^{\lambda_1 s})\\ &= -\eta {\rm e}^{\lambda_1 s}\Delta(\lambda_1, c, x^0)+\eta {\rm e}^{(\lambda_1+\varepsilon)s}\Delta(\lambda_1+\varepsilon, c, x^0) +G_1, \end{align*} where \begin{align*} G_1&=-\mu\beta\eta\int_0^\tau K(u){\rm e}^{\lambda_1(s+1+cu)} [1-{\rm e}^{\varepsilon(s+1+cu)}]{\rm d} u-\alpha {\rm e}^{\lambda_1s}(1-{\rm e}^{\varepsilon s})|o(\eta)|\\ &\geq \eta\Big(\mu\beta\int^\tau_0 K(u){\rm e}^{\lambda_1(s+1+cu)}\;[{\rm e}^{\varepsilon(s+1+cu)}-1\;]{\rm d} u-\alpha{\rm e}^{\lambda_1s}(1-{\rm e}^{\varepsilon s})\frac{|o(\eta)|}{\eta}\Big). \end{align*} Thus, $G_1\geq 0$ if $\eta$ is small enough. >From Lemma 2.1, $\Delta(\lambda_1, c,x^0)=0$, $\Delta(\lambda_1+\varepsilon, c, \ x^0)>0$, hence \eqref{e2.4} holds. \smallskip \noindent{\bf Case 2.} $-10. \] Hence \eqref{e2.4} still holds in this case. According to the above discussion, we know that $v(s)$ is a lower solution of \eqref{e1.5}. This completes the proof. \end{proof} Now we let ${\bf C}={\bf C}(\mathbb{R}, [x^0, x^+])$, and \begin{align*} S_1=\big\{\phi\in{\bf C}: &{\rm (i)}\; \phi(s) \mbox{ is nondecreasing for $s$ in }\mathbb{R};\\ &{\rm (ii)}\; \lim_{s\to -\infty}\phi(s)=x^0, \; \lim_{s\to \infty}\phi(s)=x^+. \big\}. \end{align*} %{e2.5} Assume that $c-\frac{1}{c}>0$ such that\, $ F(\phi)(s)\geq F(\psi)(s)$ provided that $\phi(s)\geq \psi(s)$ for $s\in \mathbb{R}$. It is easy to show that \eqref{e2.6} is equivalent to $$ \phi(s)={\rm e}^{-\gamma s}\int_{-\infty}^s{\rm e}^{\gamma u } F(\phi)(u){\rm d} u. %{e2.7} $$ Define an operator $T:\ S_1\to{\bf C}$ by \begin{equation} (T\phi)(s)={\rm e}^{-\gamma s}\int_{-\infty}^s{\rm e}^{\gamma u } F(\phi)(u){\rm d} u, \quad \phi\in S_1, \; s\in \mathbb{R}. \label{e2.8} \end{equation} Then we have the following result. \begin{lemma} \label{lem2.3} Assume that $c0$. By the facts \begin{gather*} \Delta(0, c, x^0)=1-\mu(\alpha+\beta)<0; \quad \lim_{\lambda\to -\infty} \Delta(\lambda, c, x^0)=+\infty; \\ \frac{\partial\Delta}{\partial\lambda}(\lambda, c, x^0)<0, \lambda\in\mathbb{R}; \quad \frac{\partial^2\Delta}{\partial\lambda^2}(\lambda, c, x^0)<0, \lambda\in\mathbb{R}. \end{gather*} Thus, we know, for any fixed $c>0$, the equation $\Delta(\lambda, c, x^0)=0$ has a unique real root $\lambda_2=\lambda_2(c)<0$. Furthermore, there is $\varepsilon_2>0$ such that for $0<\varepsilon<\varepsilon_2$, one has \begin{equation} \Delta(\lambda_2-\varepsilon, c, x^0)>0. \label{e2.10} \end{equation} We note that \eqref{e1.5} becomes \begin{equation} \phi'(s)=\frac{1}{c}(\phi(s)-\alpha-\beta) \label{e2.11} \end{equation} if $\phi(s)\geq 1$ for large $|s|$, and $$ \phi(s)=(\phi(0)-\alpha-\beta){\rm e}^{\frac{s}{c}}+\alpha+\beta. %{e2.12} $$ Therefore, \eqref{e2.11} has no monotone solution satisfying \eqref{e1.8}, so we consider monotone solutions with boundary conditions \[ \lim_{s\to -\infty}\phi(s)=x^+, \quad \lim_{s\to\infty}=x^0. \] Let \begin{align*} S_2=\big\{&\phi\in {\bf C}: {\rm (i)} \phi(s) \text{ is nonincreasing for } s\in \mathbb{R};\\ &{\rm (ii)} \lim_{s\to -\infty}\phi(s)=x^+, \lim_{s\to \infty}\phi(s)=x^0.\}, \end{align*} \[ \bar{V}(s)=\begin{cases} x^+,&s\leq 0,\\ x^+{\rm e}^{\lambda_2 s},& s \geq0, \end{cases} \] and \[ \bar{v}(s)=\begin{cases} 0,&s\leq 0,\\ \eta(1-{\rm e}^{-\varepsilon s}){\rm e}^{\lambda_2 s},& s\geq 0, \end{cases} \] where $\lambda_2, {\varepsilon}$ are given in \eqref{e2.10}. We can show that $\bar{V}(s)$ is an upper solution and $\bar{v}(s)$ is a lower solution of \eqref{e1.5} while ${\eta}$ is appropriately chosen, with the argument similar to that for the situation where $c1/c$ such that $ H(\phi)(s) \leq H(\psi)(s)$ provided that $\phi(s)\geq \psi(s)$ for $ s\in \mathbb{R}$. Note that \eqref{e1.5} is equivalent to $$ \phi(s)=-{\rm e}^{\gamma s}\int_s^{\infty}{\rm e}^{-\gamma u } H(\phi)(u){\rm d} u. %{e2.13} $$ Define an operator $Q: S_2\to {\bf C}$ by \begin{equation} (Q\phi)(s)=-{\rm e}^{\gamma s}\int^{\infty}_s{\rm e}^{-\gamma u } H(\phi)(u){\rm d} u, \quad \phi\in S_2, s\in \mathbb{R}. \label{e2.14} \end{equation} Similar to the proof of Lemma 2.3 we have the following result. \begin{lemma} \label{lem2.4} Let $Q$ be defined in \eqref{e2.14}. Then \begin{enumerate} \item if $\phi \in S_2$, then $Q\phi \in S_2$; \item if $\phi$ is an upper (a lower) solution of \eqref{e1.5}, then $\phi(s)\geq (Q\phi)(s)\ (\phi(s)\leq (Q\phi)(s))$ for $s\in \mathbb{R}$; \item if $\phi(s)\geq \psi(s)$ for $s\in \mathbb{R}$, then $(Q\phi)(s) \geq (Q\psi)(s)$ for $s\in\mathbb{R}$; \item if $ \phi $ is an upper (a lower) solution of \eqref{e1.5}, then $Q\phi$ is also an upper (a lower) solution of \eqref{e1.5}. \end{enumerate} \end{lemma} Then we can show the existence of a monotone solution in $S_2$ of \eqref{e1.5} by monotone iteration method, with the argument similar to that of the situation where $c0$, we have the following conclusions. \begin{enumerate} \item There exists a wave solution $\phi(s)$ of \eqref{e1.2} which is decreasing and satisfies $$ \lim_{s\to-\infty}\phi(s)=x^+, \quad \lim_{s\to\infty}\phi(s)=x^0. $$ \item There exists a wave solution $\phi(s)$ of \eqref{e1.2} which is increasing and satisfying $$\lim_{s\to-\infty}\phi(s) =x^-, \quad \lim_{s\to\infty}\phi(s)=x^0. $$ \end{enumerate} \end{theorem} Finally, we shall briefly discuss the existence of monotone waves of CNN model with some explicit output function $f$. \begin{example} \label{ex2.1} \rm Let the output function $f$ be defined as \eqref{e1.3}. Obviously, the assumption (H1) is satisfied with $\mu=1$. Then \eqref{e1.2} has monotone waves by Theorem 2.1-2.3, which leads to \cite[Theorem 2.1-2.2]{l1}. \end{example} \begin{example} \label{ex2.2} \rm Let the output function $f$ be defined as \eqref{e1.9} [see \cite{w1}). Then the assumption (H1) is satisfied with $\mu=\frac{\pi}{2}>1$. Hence \eqref{e1.2} has monotone waves by Theorem 2.1-2.3. \end{example} \begin{example} \label{ex2.3} \rm Let the output function $f$ be defined by $$ f(x)=\begin{cases} 1 & \mbox {if } x\geq 1,\\ 2x-x^2& \mbox {if } 0\leq x\leq 1,\\ 2x+x^2& \mbox {if } -1\leq x\leq 0,\\ -1 & \mbox {if } x\leq -1. \end{cases}%{e2.15} $$ Obviously the assumption (H1) is satisfied with $\mu=2$, which leads to \eqref{e1.2} having monotone waves by Theorem 2.1-2.3. \end{example} \subsection*{Acknowledgments} The authors are grateful to the anonymous referee for her/his suggestions and comments on the original manuscript. \begin{thebibliography}{99} \bibitem{c1} L. O. Chua, L. Yang; Cellular neural networks: theory, {\it IEEE Trans. Circuits Systems}, 35 (1988): 1257-1272. \bibitem{c2} L. O. Chua, L. Yang; Cellular neural networks: applications, {\it IEEE Trans. Circuits Systems,} 35 (1988): 1273-1290. \bibitem{h1} C. H. Hsu, S. S. Lin; Existence and multiplicity of travelling waves in a lattice dynamcal systems, {\it J. Diff. Eqs.,} 164 (2000): 431-450. \bibitem{h2} C. H. Hsu, S. S. Lin, W. Shen; Traveling waves in cellular neural networks, {\it Int. J. Bifur. Chaos}, 9 (1999): 1307-1319. \bibitem{h3} C. H. Hsu, S. Y. Yang; On Camel-like travelling wave solutions in cellular neural networks. {\it J. Diff. Eqs.}, 196 (2004): 481-514. \bibitem{l1} J. X. Ling; Existence of travelling waves for delay population model on patches with age-structure and deformation of travelling waves for delay CNN model with nonlinear output. Master Degree Thesis, {\it South China Normal University}, Guangzhou, 2003. \bibitem{w1} P. X. Weng, J. H. Wu; Deformation of travelling waves in delayed cellular neural networks. {\it Int. J. Bifur. Chaos}, 13 (2003): 797-813. \end{thebibliography} \end{document}