\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 63, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/63\hfil Existence of solutions] {Existence of solutions for some nonlinear elliptic equations} \author[A. Anane, O. Chakrone, M. Chehabi\hfil EJDE-2006/63\hfilneg] {Aomar Anane, Omar Chakrone, Mohammed Chehabi} % in alphabetical order \address{D\'epartement de Math\'ematiques et Informatique, Facult\'e des Sciences, Universit\'e Mohammed 1er, Oujda, Maroc} \email[Aomar Anane]{anane@sciences.univ-oujda.ac.ma} \email[Omar Chakrone]{chakrone@sciences.univ-oujda.ac.ma} \email[Mohammed Chehabi]{chehb\_md@yahoo.fr} \date{} \thanks{Submitted January 23, 2006. Published May 19, 2006.} \subjclass[2000]{35J15, 35J70, 35J85} \keywords{Boundary value problem; truncation; $L^1$; p-Laplacian; spectrum} \begin{abstract} In this paper, we study the existence of solutions to the following nonlinear elliptic problem in a bounded subset $\Omega$ of $\mathbb{R}^{N}$: \begin{gather*} -\Delta _{p}u = f(x,u,\nabla u)+\mu \quad \hbox{in } \Omega ,\\ u = 0 \quad \mbox{on }\partial \Omega , \end{gather*} where $\mu $ is a Radon measure on $\Omega $ which is zero on sets of $p$-capacity zero, $f:\Omega \times \mathbb{R}\times \mathbb{R} ^{N}\to \mathbb{R}$ is a Carath\'{e}odory function that satisfies certain conditions with respect to the one dimensional spectrum. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} We consider the quasilinear elliptic problem \begin{equation}\label{eP} \begin{gathered} -\Delta _{p}u=f(x,u,\nabla u)+\mu \quad\text{in } \Omega , \\ u=0 \quad \text{on }\partial \Omega , \end{gathered} \end{equation} where $\Omega $ is a bounded open set in $\mathbb{R}^{N}$, $N\geq 2$, $1
0, \end{equation*} They require also that for almost every $x\in \Omega $, for every $\xi $ in $\mathbb{R}^{N}$, for every $s$ in $\mathbb{R}$ such that $|s|\geq \sigma $, \begin{equation*} g(x,s,\xi )\mathop{\rm sgn}(s)\geq \rho |\xi |^{p}, \end{equation*} where $\rho $ and $\sigma $ are two positive real numbers and $\mathop{\rm sgn}(s)$ is the sign of $s$. Let $(\beta ,\alpha ,u)\in \mathbb{R}^{N}\mathbb{\times R\times} W_{0}^{1,p}(\Omega )\backslash \{0\}$. If $(\beta ,\alpha ,u)$ is a solution of the problem \begin{gather*} -\Delta _{p}u=\alpha m(x)|u|^{p-2}u+\beta . |\nabla u|^{p-2}\nabla u \quad \text{in }\Omega , \\ u =0\quad\text{on } \partial \Omega , \end{gather*} where $1
0\}\neq 0\}$. In this case, the pair $(\beta ,\alpha )$ is said to be a one dimensional eigenvalue and $u$ the associated eigenfunction. We designate by $\sigma _{1}(-\Delta _{p},m)\subset \mathbb{R}^{N}\mathbb{\times R}$ the set of one dimensional eigenvalues $(\beta ,\alpha )$ with $\alpha \geq 0$. \begin{proposition} \label{prop1} (1) $\sigma _{1}(-\Delta _{p},m)$ contains the union of the sequence of graphs of the functions $\Lambda _{n}:\mathbb{R}^{N}\to \mathbb{R}^{+}$, $n=1,2,\dots $, where $\Lambda _{n}(\beta )$ is defined for every $\beta \in \mathbb{R}^{N}$ by \begin{equation*} \frac{1}{\Lambda _{n}(\beta )} =\sup_{K\in A_{n}^{\beta }} \min_{u\in K} \int_{\Omega }e^{\beta .x}m(x)|u|^{p}dx. \end{equation*} with $A_{n}^{\beta }=\{K\subset S_{\beta }$, $K$ compact symmetrical; $\gamma (K)\geq n\}$, $$ S_{\beta }=\big\{ u\in W_{0}^{1,p}(\Omega ):\Big( \int_{\Omega }e^{\beta .x}m(x)|\nabla u|^{p}dx\Big) ^{1/p}=1\big\} $$ and $\gamma(K)$ indicates the genus of $K$. (2) $\Lambda _{1}(.)$ is the first eigensurface of the spectrum of $\sigma _{1}(-\Delta _{p},m)$ in the sense \begin{equation*} \sigma _{1}(-\Delta _{p},m)\subset \{ (\beta ,\alpha )\in \mathbb{R}^{N} \mathbb{\times R}\text{; }\Lambda _{1}(\beta )\leq \alpha \} \end{equation*} \end{proposition} The proof of the above proposition can be found in \cite{Anan}. When $\mu =h\in W^{-1,p'}(\Omega )$, Anane, Chakrone and Gossez have proved in \cite{Anan} the existence of a solution to \eqref{eP}, in the sense \begin{equation*} \int_{\Omega }|\nabla u|^{p-2}\nabla u\nabla v\,dx=\int_{\Omega }f(x,u,\nabla u)v\,dx+\langle h,v\rangle \end{equation*} for every $v\in W_{0}^{1,p}(\Omega )\cap L^{\infty }(\Omega )$. This is done under the hypotheses of non-resonance with respect to the spectrum of one dimensional $\sigma_{1}(-\Delta _{p},1)$: There exists ($\beta ,\alpha )\in \mathbb{R}^{N}\times \mathbb{R}$ with $\alpha <\Lambda _{1}(\beta ,-\Delta _{p},1)$ where $\Lambda_{1}(.,-\Delta_{p},1)$ is the first eigensurface of the spectrum of one dimensional $\sigma _{1}(-\Delta _{p},1)$, such that for all $\delta >0$ there exists $a_{\delta }\in L^{p'}(\Omega)$ such that \begin{equation} \label{eP1} f(x,s,\xi )s\leq \alpha |s|^{p}+\beta |\xi |^{p-2}\xi s +\delta (|s|^{p-1}+|\xi |^{p-1}+a_{\delta }(x))|s| \end{equation} for almost every $x\in \Omega$ and for all $(\xi ,s)\in \mathbb{R}^{N}\times \mathbb{R}$; and for all $k>0$ there exist $\phi _{k}\in L^{1}(\Omega )$ and $ b_{k}\in \mathbb{R}$ such that \begin{equation} \label{eP2} \max_{|s|\leq k} |f(x,s,\xi )|\leq b_{k}|\xi |^{p}+\phi _{k}(x) \end{equation} for almost every $x\in \Omega $ and for all $\xi \in \mathbb{R}^{N}$. \begin{remark} \rm \begin{enumerate} \item If $f(x,u,\nabla u)=\alpha m(x)|u|^{p-2}u +\beta .|\nabla u|^{p-2}\nabla u$, then \eqref{eP} has a solution for every $\mu \in W^{-1,p'}(\Omega )$, in the usual sense \begin{equation*} \int_{\Omega }|\nabla u|^{p-2}\nabla u\nabla v\,dx=\int_{\Omega }f(x,u,\nabla u)v\,dx +\langle h,v\rangle_{W^{-1,p'}(\Omega ),W_{0}^{1,p}(\Omega )} \end{equation*} for every $v\in W_{0}^{1,p}(\Omega )$, if and only if $(\beta,\alpha )\notin \sigma _{1}(-\Delta _{p},m)$. \item If $\mu \notin W^{-1,p'}(\Omega )$, problem \eqref{eP} does not have always a solution. Indeed in the case $1
0$ there exists $a_{\delta }\in L^{p'}(\Omega )$ such that \begin{equation} \label{eP3} f(x,s,\xi )s\leq -\rho |\xi |^{p}|s|+\alpha | s|^{p}+\beta |\xi |^{p-2}\xi s+\delta (|s| ^{p-1}+|\xi |^{p-1}+a_{\delta }(x))|s| \end{equation} for almost every $x\in \Omega$ and for all $(\xi ,s)\in \mathbb{R}^{N}\times \mathbb{R}$, where ($\beta ,\alpha )\in \mathbb{R}^{N}\times \mathbb{R}$ satisfies the same conditions as in \eqref{eP1} and $\rho $ is a positive real number. In the case $\delta =1$, there exists $a_{1}\in L^{p'}(\Omega )$ such that \begin{equation} \label{eP4} f(x,s,\xi )\mathop{\rm sgn}(s)\leq -\rho |\xi |^{p}+\alpha '|s| ^{p-1}+\beta '|\xi |^{p-1}+a_{1}(x) \end{equation} for almost every $x\in \Omega$ and for all $(\xi ,s)\in \mathbb{R}^{N}\times \mathbb{R}$, where $\alpha '=\alpha +1$ and $\beta '=|\beta |+1$. \begin{remark} \rm \begin{enumerate} \item The conditions of the sign given in \cite{Boc} imply \eqref{eP3} in the case $\alpha =0$ and $\beta =0$. \item The hypothesis \eqref{eP2} and \eqref{eP3} are satisfied for example if \begin{equation*} f(x,s,\xi )=-\rho |\xi |^{p}\mathop{\rm sgn}(s)+\alpha |s| ^{p-2}s+\beta |\xi |^{p-2}\xi +g(x,s,\xi )+l(x,s,\xi ) \end{equation*} where $g$ and $l$ satisfy \begin{gather*} g(x,s,\xi )s\leq 0, \\ |g(x,s,\xi )|\leq b(|s|)(|x|^{p}+c(x)), \\ sl(x,s,\xi )\leq C(|s|^{q-1}+|x|^{q-1}+d(x))|s| \end{gather*} with $b$ continuous, $c(x)\in L^{1}(\Omega )$, $q
0$, \begin{equation*} T_{k}(s)=\begin{cases} k\mathop{\rm sgn}(s) & \text{if }|s|>k, \\ s & \text{if } |s|\leq k, \end{cases} \end{equation*} and $G_{k}(s)=s-T_{k}(s)$. \begin{lemma} \label{lem1} Let $g\in L^{\infty }(\Omega )$ and $F\in (L^{p'}(\Omega ))^{N}$. Under the hypotheses \eqref{eP2} and \eqref{eP3}, the problem \begin{equation} \label{eP6} \begin{gathered} -\Delta _{p}u=f(x,u,\nabla u)+g- \mathop{\rm div}F \quad \text{in }\Omega, \\ u=0 \quad\text{on }\partial \Omega , \end{gathered} \end{equation} admits a solution $u\in W_{0}^{1,p}(\Omega )$ in the sense that $f(x,u,\nabla u)$ and $f(x,u,\nabla u)u$ are in $L^{1}(\Omega )$, and that $$ \int_{\Omega }|\nabla u|^{p-2}\nabla u\nabla v\,dx=\int_{\Omega }f(x,u,\nabla u)v\,dx+\int_{\Omega }gv +\int_{\Omega }F\nabla v $$ for every $v\in W_{0}^{1,p}(\Omega )\cap L^{\infty}(\Omega )$ and for $v=u$. \end{lemma} \begin{proof} Letting $l=g-\mathop{\rm div}F$, we have $l\in W^{-1,p'}(\Omega )$. Then \eqref{eP3} implies \eqref{eP1}, and Lemma \ref{lem1} is a particular case of a result in \cite{Anan}. \end{proof} \begin{lemma} \label{lem2} $\mathcal{M}_{0}^{p}(\Omega )=L^{1}(\Omega )+W^{-1,p'}(\Omega )$ for every $1
N$, then $L^{1}(\Omega )\subset W^{-1,p'}(\Omega )$; therefore, $\mathcal{M}_{0}^{p}(\Omega )=W^{-1,p'}(\Omega )$. Then the existence of a solution of \eqref{eP5} is a consequence of \cite[Theorem 7.1]{Anan}. That is why, we assume that $1
1\}}\varphi _{1}f(x,u_{n},\nabla u_{n})dx.
\end{align*}
By \eqref{eP2}, we have
\begin{align*}
|\int_{\{|u_{n}|\leq 1\}}\varphi
_{1}f(x,u_{n},\nabla u_{n})dx|
& \leq \int_{\{|u_{n}|\leq 1\}}|
\varphi _{1}||f(x,u_{n},\nabla u_{n})|dx \\
& \leq \int_{\{|u_{n}|\leq 1\}}|\varphi_{1}|
[ b_{1}|\nabla u_{n}|^{p}+\phi _{1}(x)]dx \\
& \leq b_{1}\int_{\{|u_{n}|\leq 1\}}|
\varphi _{1}||\nabla u_{n}|^{p}dx+\varphi (1)\|
\phi_{1}\| _{L^{1}} \\
& \leq b_{1}\int_{\Omega }|\varphi _{1}||\nabla
(T_{1}(u_{n}))|^{p}dx+\varphi (1)\| \phi _{1}\| _{L^{1}}.
\end{align*}
On the other hand, on $\{|u_{n}|>1\}$,
$T_{1}(u_{n})=\mathop{\rm sgn}(u_{n})$, so
$\varphi (T_{1}(u_{n}))=\mathop{\rm sgn}(u_{n})$
$e^{\theta }$ and by \eqref{eP4}, we get
\begin{align*}
&\int_{\{|u_{n}|>1\}}\varphi _{1}f(x,u_{n},\nabla u_{n})dx\\
& = \int_{\{|u_{n}|>1\}}e^{\theta }f(x,u_{n},\nabla
u_{n})\mathop{\rm sgn}(u_{n})dx\\
& \leq e^{\theta }\int_{\{|u_{n}|>1\}}[-\rho |
\nabla u_{n}|^{p}+\alpha '|u_{n}|^{p-1}
+ \beta '|\nabla u_{n}|^{p-1}+a_{1}(x)]dx.
\end{align*}
Adding the above inequalities, by \eqref{eP10}, we obtain
\begin{equation}
\begin{aligned}
& \int_{\Omega }[\varphi _{1}'-b_{1}|\varphi
_{1}|]|\nabla (T_{1}(u_{n}))|^{p}dx+\rho e^{\theta
}\int_{\{|u_{n}|>1\}}|\nabla u_{n}|^{p}dx \\
&\leq \| F\| _{L^{p'}}\varphi '(1)\| T_{1}(u_{n})\| _{1,p}
+\varphi (1)\| \widetilde{g}\| _{L^{1}}+\varphi (1)\| \phi
_{1}\| _{L^{1}}
\\
&\quad +e^{\theta }\int_{\{|u_{n}|>1\}}[\alpha '|
u_{n}|^{p-1}+\beta '|\nabla u_{n}|^{p-1}+a_{1}(x)]dx.
\end{aligned} \label{eP11}
\end{equation}
Using H\"{o}lder's inequality, we have
\begin{gather*}
\int_{\{|u_{n}|>1\}}|\nabla u_{n}|^{p-1}dx
\leq \| u_{n}\| _{1,p}^{p-1}(\mathop{\rm meas}(\Omega ))^{1/p},
\\
\int_{\{|u_{n}|>1\}}|u_{n}|^{p-1}dx
\leq \|u_{n}\| _{p}^{p-1}(\mathop{\rm meas}(\Omega ))^{1/p}.
\end{gather*}
By Poincar\'{e}'s inequality, there exists $c>0$ such that
\begin{equation*}
\| u_{n}\| _{p}\leq c\| \nabla u_{n}\| _{p}.
\end{equation*}
So
\begin{equation*}
\int_{\{|u_{n}|>1\}}|u_{n}|^{p-1}dx
\leq c^{p-1}\| u_{n}\| _{1,p}^{p-1}(\mathop{\rm meas}
(\Omega ))^{1/p}.
\end{equation*}
Replacing this in (\ref{eP11}) and using that
$\varphi _{1}'-b_{1}|\varphi _{1}|\geq \frac{1}{2}$, we
obtain
\begin{equation*}
\frac{1}{2}\int_{\Omega }|\nabla (T_{1}(u_{n}))|
^{p}dx+\rho e^{\theta }\int_{\{|u_{n}|>1\}}|\nabla
u_{n}|^{p}dx\leq c_{1}\| u_{n}\|
_{1,p}+c_{2}\| u_{n}\| _{1,p}^{p-1}+c_{3},
\end{equation*}
where $c_{1}=\| F\| _{L^{p'}}\varphi '(1)$,
$c_{2}=e^{\theta }[\alpha 'c^{p-1}+\beta '](\mathop{\rm meas}(\Omega ))^{
\frac{1}{p}}$ and
$c_{3}=\varphi (1)\| \widetilde {g}\| _{L^{1}}+\varphi (1)\| \phi _{1}\|
_{L^{1}}+e^{\theta }\| a_{1}(x)\| _{L^{1}}$.
Set
$c_{4}=\min (\frac{1}{2},\rho e^{\theta })$, we have
\begin{equation*}
c_{4}\| u_{n}\| _{1,p}^{p}\leq c_{1}\|
u_{n}\| _{1,p}+c_{2}\| u_{n}\|_{1,p}^{p-1}+c_{3},
\end{equation*}
since $p>1$, $(u_{n})_{n}$ is a bounded sequence in
$W_{0}^{1,p}(\Omega )$.
\end{proof}
For a subsequence, still denoted by $(u_{n})_{n}$, we have
\begin{equation}
\begin{gathered}
u_{n}\rightharpoonup u \quad \text{weakly in }W_{0}^{1,p}(\Omega ), \\
u_{n}\to u \quad \text{strongly in }\ L^{p}(\Omega ), \\
u_{n}(x)\to u(x)\quad \text{for almost every }x\in \Omega .
\end{gathered} \label{eP12}
\end{equation}
\begin{lemma} \label{lem5}
For every $k>0$, the sequence $(T_{k}(u_{n}))_{n}$
converges strongly to $T_{k}(u)$ in $W_{0}^{1,p}(\Omega )$.
\end{lemma}
\begin{proof}
Let $k>0$. Consider $\varphi (s)=se^{\theta s^{2}}$ with
$\theta =\frac{b^{2}}{4a^{2}}$, $a=1$ and $b=a_{k}$ ($a_{k }\geq 0$ is
given by \eqref{eP2}.
Setting
\begin{gather*}
a(\xi )=|\xi |^{p-2}\xi,\quad \forall \xi \in \mathbb{R}^{N},
\varphi _{n}=\varphi (T_{k}(u_{n})-T_{k}(u)), \quad
\varphi_{n}'=\varphi '(T_{k}(u_{n})-T_{k}(u)).
\end{gather*}
By \eqref{eP12}, the continuity of $\varphi $ and
$\varphi'$, and the dominated convergence theorem, we have
\begin{equation}
\begin{gathered}
\varphi _{n}\rightharpoonup 0 \quad\text{and}\quad
\varphi _{n}'\rightharpoonup 1 \quad
\text{weak-$\ast$ in $L^{\infty }(\Omega )$ and a. e.
$x\in \Omega $}, \\
\varphi _{n}\to 0\quad\text{and}\quad
\varphi _{n}'\to 1 \quad\text{in $L^{q}(\Omega )$ for every $q\geq 1$}.
\end{gathered} \label{eP13}
\end{equation}
We will denote by $\varepsilon _{n}$\ any quantity which converges
to zero as $n$ tends to infinity.
Let $v=\varphi _{n}$, be a test function in
(\ref{eP9}). Then
\begin{equation}
\begin{aligned}
&\int_{\Omega }a(\nabla u_{n})\nabla
(T_{k}(u_{n})-T_{k}(u))\varphi _{n}'dx \\
& = \int_{\Omega }f(x,u_{n},\nabla u_{n})\varphi _{n}dx
+\int_{\Omega }g_{n}\varphi _{n}dx
+\int_{\Omega }F\nabla (T_{k}(u_{n})-T_{k}(u))\varphi_{n}' \\
&:= A+B+C+D
\end{aligned} \label{eP14}
\end{equation}
For the third term on the right-hand side:
Since $\varphi _{n}\rightharpoonup 0$ weak-$\ast$ in
$L^{\infty}(\Omega )$ and $g_{n}\to g\ $in $L^{1}(\Omega )$,
we have $\int_{\Omega }g_{n}\varphi _{n}dx\to 0$ so that
\begin{equation}
C=\varepsilon _{n}. \label{eP15}
\end{equation}
For the forth term on the right-hand side:
It is clear that $F\varphi _{n}'\to F$ in
$(L^{p'}(\Omega ))^{N}$ and $T_{k}(u_{n})\rightharpoonup T_{k}(u)\ $
weakly in $W_{0}^{1,p}(\Omega )$, so that
\begin{equation}
D=\varepsilon _{n}. \label{eP16}
\end{equation}
For the second term on the right-hand side:
\begin{align*}
&\int_{\Omega }f(x,u_{n},\nabla u_{n})\varphi _{n}dx\\
&=\int_{\{|u_{n}|>k\}}f(x,u_{n},\nabla u_{n})\varphi _{n}dx
+ \int_{\{|u_{n}|\leq k\}}f(x,u_{n},\nabla
u_{n})\varphi _{n}dx
:= B_1+B_2.
\end{align*}
On the set $\{|u_{n}|>k\}$, $\varphi _{n}$ has the same sign as
$u_{n}$, so by \eqref{eP4},
\begin{align*}
&f(x,u_{n},\nabla u_{n})\varphi _{n} \\
&\leq -\rho |\nabla u_{n}|^{p}|\varphi _{n}|+\alpha '|
u_{n}|^{p-1}|\varphi _{n}|+\beta '|\nabla
u_{n}|^{p-1}|\varphi_{n}|+a_{1}(x)|\varphi _{n}|\\
&\leq [\alpha '|u_{n}|^{p-1}+\beta
'|\nabla u_{n}|^{p-1}+a_{1}(x)]|\varphi _{n}|.
\end{align*}
By Lemma \ref{lem4} and \eqref{eP13}, we have
$B_{1}\leq \varepsilon _{n}$,
so that
\begin{equation*}
\int_{\Omega }f(x,u_{n},\nabla u_{n})\varphi _{n}dx
\leq \int_{\{|u_{n}|\leq k\}}f(x,u_{n},\nabla
u_{n})\varphi _{n}dx+\varepsilon _{n}.
\end{equation*}
By \eqref{eP2}, we have
\begin{align*}
|\int_{\{|u_{n}|\leq k\}}f(x,u_{n},\nabla u_{n})\varphi _{n}dx|
& \leq \int_{\{|u_{n}|\leq k\}}|
f(x,u_{n},\nabla u_{n})||\varphi _{n}|dx \\
& \leq \int_{\{|u_{n}|\leq k\}}[b_{k}|
\nabla u_{n}|^{p}+\phi _{k}(x)]|\varphi _{n}|dx \\
& \leq b_{k}\int_{\Omega }|\nabla T_{k}(u_{n})| ^{p}|
\varphi _{n}|dx+\int_{\Omega }\phi _{k}(x)|\varphi _{n}|dx,
\end{align*}
and
\begin{align*}
\int_{\Omega }|\nabla T_{k}(u_{n})|^{p}|\varphi _{n}|dx
&= \int_{\Omega }a(\nabla T_{k}(u_{n}))\nabla T_{k}(u_{n})|
\varphi_{n}|dx \\
& = \int_{\Omega }(a(\nabla T_{k}(u_{n}))-a(\nabla
T_{k}(u)))(\nabla
T_{k}(u_{n})-\nabla T_{k}(u))|\varphi _{n}|dx \\
& \quad + \int_{\Omega }a(\nabla T_{k}(u_{n}))\nabla T_{k}(u)|
\varphi_{n}|dx \\
& \quad + \int_{\Omega }a(\nabla T_{k}(u))(\nabla
T_{k}(u_{n})-\nabla T_{k}(u))|\varphi _{n}|dx.
\end{align*}
By \eqref{eP13}, since $(T_{k}(u_{n}))_{n}$ is bounded in
$W_{0}^{1,p}(\Omega )$, we have
\begin{equation}
\begin{aligned}
&\int_{\Omega }f(x,u_{n},\nabla u_{n})\varphi _{n}dx\\
&\leq \varepsilon _{n}+b_{k}\int_{\Omega }\big(a(\nabla T_{k}(u_{n}))-a(\nabla T_{k}(u))
\big)\big(\nabla T_{k}(u_{n})-\nabla T_{k}(u)\big)|
\varphi _{n}|dx.
\end{aligned} \label{eP17}
\end{equation}
For the firs term on the right-hand side (A):
We verify easily that $a(\nabla T_{k}(u_{n}))+a(\nabla
G_{k}(u_{n}))=a(\nabla u_{n})$, so that
\begin{align*}
&\int_{\Omega }a(\nabla u_{n})\nabla
(T_{k}(u_{n})-T_{k}(u))\varphi _{n}'dx \\
& = \int_{\Omega }a(\nabla T_{k}(u_{n}))\nabla
(T_{k}(u_{n})-T_{k}(u))\varphi _{n}'dx
+\int_{\Omega }a(\nabla G_{k}(u_{n}))\nabla
(T_{k}(u_{n})\\
&\quad -T_{k}(u))\varphi _{n}'dx := A_1+A_2.
\end{align*}
We have $\nabla (T_{k}(u_{n}))=0$ if $\nabla (G_{k}(u_{n}))\neq
0$, so
\begin{align*}
A_{2} &= -\int_{\Omega }a(\nabla G_{k }(u_{n}))\nabla
(T_{k}(u))\varphi _{n}'dx \\
& = -\int_{\Omega }a(\nabla G_{k }(u_{n}))\nabla
(T_{k}(u))\chi_{\{|u_{n}|\geq k\}}\varphi _{n}'dx.
\end{align*}
Since $\nabla T_{k}(u)=0$ on the set $\{|u|\geq k\}$,
$\nabla T_{k}(u)\chi _{\{|u_{n}|\geq k\}}\to 0$ for almost
every $x\in \Omega $, so, by Lebesgue theorem
$A_{2}=\varepsilon _{n}$.
For $(A_1)$, we have
\begin{align*}
&\int_{\Omega }a(\nabla T_{k}(u_{n}))\nabla (T_{k}(u_{n})-
T_{k}(u))\varphi _{n}'dx\\
&=\int_{\Omega }[a(\nabla T_{k}(u_{n}))-a(\nabla
T_{k}(u))]\nabla
(T_{k}(u_{n})-T_{k}(u))\varphi _{n}'dx\\
&\quad +\int_{\Omega }a(\nabla T_{k}(u))\nabla
(T_{k}(u_{n})-T_{k}(u))\varphi
_{n}'dx := A_{1.1}+A_{1.2}
\end{align*}
By (\ref{eP13}) , since $T_{k}(u_{n})\rightharpoonup T_{k}(u)$
weakly in $W_{0}^{1,p}(\Omega )$, we have
$A_{1.2}=\varepsilon _{n}$.
Thus
\begin{equation}
A=\int_{\Omega }[a(\nabla T_{k}(u_{n}))-a(\nabla T_{k}(u))
]\nabla \big(T_{k}(u_{n})-T_{k}(u)\big)\varphi
_{n}'dx+\varepsilon _{n}. \label{eP18}
\end{equation}
By \eqref{eP15}, \eqref{eP16}, \eqref{eP17}, \eqref{eP18}
and from \eqref{eP14}, we obtain
\begin{equation*}
\int_{\Omega }[a\big(\nabla T_{k}(u_{n})\big)-a\big(
\nabla T_{k}(u)\big)]\nabla \big(T_{k}(u_{n})-T_{k}(u)
\big) [\varphi _{n}'-b_{k}|\varphi _{n}|]
dx\leq \varepsilon _{n}.
\end{equation*}
Since $\varphi _{n}'-b_{k}|\varphi _{n}|\geq \frac{1}{2}$
with $a=1$ and $b=b_{k})$ and
\begin{gather*}
[a(\nabla T_{k}(u_{n}))-a(\nabla T_{k}(u))]\nabla \big(T_{k}(u_{n})
-T_{k}(u)\big)\geq 0, \\
\int_{\Omega }[a(\nabla T_{k}(u_{n}))-a(\nabla T_{k}(u))]
\nabla \big(T_{k}(u_{n})-T_{k}(u)\big)dx=\varepsilon _{n};
\end{gather*}
therefore,
\begin{equation*}
\langle -\Delta _{p}(T_{k}(u_{n}))+\Delta
_{p}(T_{k}(u)),T_{k}(u_{n})-T_{k}(u)\rangle \to 0.
\end{equation*}
Since $T_{k}(u_{n})\rightharpoonup T_{k}(u)$ weakly in
$W_{0}^{1,p}(\Omega )$,
\begin{gather*}
\langle -\Delta _{p}(T_{k}(u)),T_{k}(u_{n})-T_{k}(u)\rangle \to 0,\\
\langle -\Delta _{p}(T_{k}(u_{n})),T_{k}(u_{n})-T_{k}(u)\rangle
\to 0.
\end{gather*}
Since $-\Delta _{p}$ belongs to the class $(S^{+})$
(see \cite{Mu}), $T_{k}(u_{n})\to T_{k}(u)$ strongly in
$W_{0}^{1,p}(\Omega )$.
\end{proof}
\begin{lemma} \label{lem6}
The following to limit hold:
\begin{equation}
\begin{gathered}
\lim_{k\to +\infty } [\sup_{n\in \mathbb{N}}
\int_{\{|u_{n}|\geq k\}}|\nabla u_{n}|^{p}dx] =0, \\
\lim_{k\to +\infty }[\sup_{n\in \mathbb{N}}
\int_{\{|u_{n}|\geq k\}}|f(x,u_{n},\nabla u_{n})|dx]=0.
\end{gathered} \label{eP19}
\end{equation}
\end{lemma}
\begin{proof}
For the first limit, we define $\psi : \mathbb{R}\to \mathbb{R}^{+}$
by $\psi (-s)=-\psi (s)$ for all $s\in \mathbb{R}$ and
\[
\psi (s)=\begin{cases}
0 & \text{if }0\leq s\leq k-1, \\
s-(k-1) & \text{if } k-1\leq s\leq k, \\
1 & \text{if } s\geq k,
\end{cases}
\]
where $k>1$,
so that $\psi $ is continuous, bounded in $\mathbb{R}$ and
$\psi (u_{n})\in W_{0}^{1,p}(\Omega )$. We choose
$v=\psi (u_{n})$, as a test function in \eqref{eP9} we have
\begin{align*}
&\int_{\Omega }|\nabla u_{n}|^{p-2}\nabla u_{n}\nabla \psi
(u_{n})dx\\
&=\int_{\Omega }f(x,u_{n},\nabla u_{n})\psi
(u_{n})dx+\int_{\Omega }g_{n}\psi (u_{n})dx+\int_{\Omega }F\nabla
\psi (u_{n})dx.
\end{align*}
Using Young's inequality, we obtain
\begin{align*}
\int_{\Omega }|\nabla \psi (u_{n})|^{p}dx
& \leq \int_{\Omega }f(x,u_{n},\nabla u_{n})\psi (u_{n})dx
+\int_{\{|u_{n}|\geq \ k-1\}}|g_{n}|dx \\
&\quad + c\int_{\{ k-1<|u_{n}|