\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 67, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/67\hfil Existence results] {Existence results for nonlocal multivalued boundary-value problems} \author[P. Candito, G. Molica Bisci\hfil EJDE-2006/67\hfilneg] {Pasquale Candito, Giovanni Molica Bisci} % in alphabetical order \address{Pasquale Candito \newline Dipartimento di Informatica, Matematica, Elettronica e Trasporti\\ Facolt\`a di Ingegneria, Universit\`a degli Studi Mediterranea di Reggio Calabria\\ Via Graziella (Feo di Vito), 89100 Reggio Calabria, Italy} \email{pasquale.candito@unirc.it} \address{Giovanni Molica Bisci \newline Dipartimento P.A.U., Universit\`a degli Studi Mediterranea di Reggio Calabria, Salita Melissari - Feo di Vito, 89100 Reggio Calabria, Italy} \email{giovanni.molica@ing.unirc.it} \date{} \thanks{Submitted January 19, 2006. Published July 6, 2006.} \subjclass[2000]{34A60, 34B15} \keywords{Nonlocal boundary-value problems; integral boundary conditions; \hfill\break\indent operator inclusions} \begin{abstract} In this paper we establish some existence results for nonlocal multivalued boundary-value problems. Our approach is based on existence results for operator inclusions involving a suitable closed-valued multifunction; see \cite{am1,am}. Some applications are given. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \section{Introduction} Let $(X, \|\cdot\|_X)$ be a separable real Banach space and let $(\mathbb{R}^n , \|\cdot\|)$ be the real Euclidean $n$-space with the norm $\|z\|=\max_{1\leq i\leq n}|z_i|$ and induced metric $d$. Denote by $M([0,1],X)$ the family of all (equivalence classes of) strongly Lebesgue measurable functions from $[0,1]$ to $X$. The papers \cite{am1} and \cite{am} provide some existence results for operator inclusions of the type \begin{equation} \label{P_F} \begin{gathered} u\in U, \\ \Psi(u)(t)\in F(t,\Phi(u)(t)) \quad \text{a.e. in } [0,1], \end{gathered} \end{equation} where $U$ is a nonempty set, $F$ is a multifunction from $[0,1]\times X$ into $\mathbb{R}^n $, and $\Phi:U\to M([0,1],X)$, $\Psi:U\to L^s([0,1],{\mathbb{R}}^n)$ are two abstract operators (see Theorems \ref{thm2.1}, \ref{thm2.2}, and \ref{thm2.3} below). Their approach is chiefly based on the following conditions: \begin{itemize} \item[(U1)] $\Psi$ is bijective and for any $v\in L^s([0,1],\mathbb{R}^n )$ and any sequence $\{v_h\}\subset L^s([0,1], \mathbb{R}^n )$ weakly converging to $v$ in $L^q([0,1],\mathbb{R}^n )$ there exists a subsequence of $\{\Phi(\Psi^{-1}(v_h))\}$ which converges a.e. in $[0,1]$ to $\Phi(\Psi^{-1}(v))$. Furthermore, a nondecreasing function $\varphi:[0,+\infty[\to [0,+\infty]$ can be defined in such a way that \begin{equation}\label{varphi} \mathop{\rm ess\,sup}_{t\in [0,1]}\left\|\Phi(u)(t)\right\|\leq \varphi(\left\|\Psi(u)\right\|_{p})\quad \forall u\in U. \end{equation} Here $p, q, s \in [0,+\infty] $ with $ q< +\infty $ and $ q\leq p\leq s$. \item[(U2)] To each $\rho\in L^s([0,1],{\mathbb{R}}^+_0)$ there corresponds a nonnegative measurable function $\rho^*$ so that if $u\in U$ and $\|\Psi(u)(t)\|\leq \rho(t)$ a.e. in $[0,1]$, then $\Phi(u)$ is Lipschitz continuous with constant $\rho^*(t)$ at almost all $t\in [0,1]$. \item[(F1)] There exists $r>0$ such that the function $$ M(t):=\sup_{\|x\|_X\leq \varphi(r)}d(0,F(t,x)), \quad t\in [0,1], $$ belongs to $L^s([0,1],{\mathbb{R}}_0^{+})$ and $ \|M\|_{{p}}\leq r $. \end{itemize} Let us denote by $W^{2,s}([0,1],\mathbb{R}^n )$ the space of all $u\in C^1([0,1],\mathbb{R}^n )$ such that $u'$ is absolutely continuous in $[0,1]$ and $u''\in L^s([0,1],\mathbb{R}^n )$. The aim of this paper is to establish, under suitable assumptions, the existence of at least one generalized solution in $W^{2,s}([0,1], \mathbb{R}^n )$ to the problem \begin{equation} \label{P^F} \begin{gathered} u''\in F(t,u,u') \quad \text{a.e. } t\in [0,1] \\ u(0)-k_1u'(0)=H_1(u), \\ u(1)+k_2u'(1)=H_2(u), \end{gathered} \end{equation} where $F:[0,1]\times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n }$ is a multifunction with nonempty closed values, for $i=1,2$, $L_{H_i}$ and $k_i$ are nonnegative constants, $H_i:W^{2,s}([0,1],\mathbb{R}^n )\to \mathbb{R}^n $ fulfill \begin{equation}\label{LHi} \|H_i(u)-H_i(v)\|\leq L_{H_i}\|u-v\|_{\infty}, \quad \forall u, v \in W^{2,s}([0,1], \mathbb{R}^n ). \end{equation} The key to solve problem \eqref{P^F} is to show that the operators $\Phi$, $\Psi$ and $F$ satisfy the structural hypotheses (U1), (U2) and (F1). This study is motivated by many nonlocal boundary-value problems discussed in \cite{ake,bb,bc,k}. For more details on these topics, see also \cite{kt1,kt2,kt3}. Recent references are furnished in \cite{eloe,ruyun,xue}. In our opinion this method exhibits at least two interesting features: owing to (F1), no compactness condition on the values of $F$ is required; we can treat both the case when $F$ takes convex values, $F(\cdot,x,y)$ is measurable, while $F(t,\cdot,\cdot)$ is upper semicontinuous, and the one where $F$ is measurable and $F(t,\cdot,\cdot)$ is lower semicontinuos. However, in the latter case, in addition to (U1), we also need (U2). In all concrete situations, to verify (U1) and (U2) we exploit only the boundary conditions of \eqref{P^F} and we do not use the assumptions on $F$. Basic definitions and preliminary results are given in Section 2. Main results are contained in Section 3, while Section 4 is devoted to some applications. \section{Basic definitions and preliminary results} Given a separable real Banach space $(X,\|\cdot\|_X)$, the symbol $\mathcal{B}(X)$ indicates the Borel $\sigma$-algebra of $X$. If $W$ is a nonempty subset of $X$, $x_0\in W$ and $\epsilon > 0$, we write $d(x_0,W):=\inf_{w\in W}\|x_0-w\|_X$ as well as $$ B(x_0,\epsilon):=\{z\in X:\|x_0-z\|_X\leq \epsilon\},\quad B^0(x_0,\epsilon):=\{z\in X:\|x_0-z\|_X< \epsilon\}. $$ A function $\psi$ from $[0,1]$ into $X$ is said to be Lipschitz continuous at the point $t\in [0,1]$ when there exist a neighborhood $V_t$ of $t$ and a constant $k_t\geq 0$ such that $\|\psi(\tau)-\psi(t)\|_X\leq k_t|\tau-t|$ for every $\tau\in [0,1]\cap V_t$. Given any $p\in [1,+\infty]$, we write $p'$ for the conjugate exponent of $p$ besides $L^p([0,1],X)$ for the space of $u\in M([0,1],X)$ satisfying $\|u\|_{p}<+\infty $, where $$ \|u\|_{p}:= \begin{cases} \big( \int_{0}^{1}\|u(t)\|^p_Xd\mu\big)^{1/p} & \text{if $p<+\infty$, } \\ \mathop{\rm ess\,sup}_{t\in [0,1]} \|u(t)\|_X & \text{if $p=+\infty$}, \end{cases} $$ and $\mu$ is the Lebesgue measure on $[0,1]$. Let $F$ be a multifunction from $W$ into $\mathbb{R}^n $ (briefly, $F:W\to 2^{\mathbb{R}^n }$), namely a function which assigns to each point $x\in W$ a nonempty subset $F(x)$ of $\mathbb{R}^n $. If $V\subseteq W$ we write $F(V):=\cup_{x\in V}F(x)$ and $F|_V$ for the restriction of $F$ to $V$. The graph of $F$ is the set $\{(x,z)\in W\times \mathbb{R}^n :z\in F(x)\}$. If $Y\subseteq \mathbb{R}^n $ we define $F^-(Y):=\{x\in W:F(x)\cap Y\neq \emptyset\}$. If $(W,\mathfrak F)$ is a measurable space and $F^-(Y)\in \mathfrak F$ for any open subset $Y$ of $\mathbb{R}^n $, we say that $F$ is $\mathfrak F$-measurable, or simply measurable as soon as no confusion can arise. We denote with $\mathcal{L}$ the Lebesgue $\sigma-$algebra in $\mathbb{R}^n $. We say that $F$ is upper semicontinuous at the point $x_0\in W$ if to every open set $Y\subseteq \mathbb{R}^n $ satisfying $F(x_0)\subseteq Y$ there corresponds a neighborhood $W_0$ of $x_0$ such that $F(W_0)\subseteq Y$. The multifunction $F$ is called upper semicontinuous when it is upper semicontinuous at each point of $W$. In such a case its graph is clearly closed in $W\times \mathbb{R}^n $ provided that $F(x)$ is closed for all $x\in W$. We say that $F$ has a closed graph at $x_0$ if the condition $\{x_k\}\subseteq W$, $\{z_k\}\subseteq \mathbb{R}^n $, $lim_{k\to+\infty}x_k=x_0$, $lim_{k\to+\infty}z_k=z_0$, $z_k\in F(x_k)$, $k\in {\mathbb{N}}$, imply $z_0\in F(x_0)$. We say that $F$ is lower semicontinuous at the point $x_0$ if to every open set $Y\subseteq \mathbb{R}^n $ satisfying $F(x_0)\cap Y\neq \emptyset$ there corresponds a neighborhood $V_0$ of $x_0$ such that $F(x)\cap Y\neq \emptyset$, $x\in V_0$. The multifunction $F$ is called lower semicontinuous when it is lower semicontinuous at each point of $W$. Finally, for $B\subseteq [0,1]\times X$, $\mathop{\rm proj}_X(B)$ indicates the projection of $B$ onto $X$. We say that a multifunction $F:B\to 2^{\mathbb{R}^n }$ has the lower Scorza Dragoni property if to every $\epsilon>0$ there corresponds a closed subset $I_\epsilon$ of $[0,1]$ such that $\mu([0,1]\setminus I_\epsilon)<\epsilon$ and $F|_{(I_\epsilon\times X)\cap B}$ is lower semicontinuous. Let $D$ be a nonempty closed subset of $X$, let $A\subseteq [0,1]\times D$, and let $C:=([0,1]\times D)\setminus A$. We always suppose that the set $A$ complies with \begin{itemize} \item[(A1)] $A\in \mathcal{L}\otimes \mathcal{B}(X)$ and $A_t=\{x\in D:(t,x)\in A\}$ is open in $D$ for every $t\in [0,1]$. \end{itemize} Moreover, let $F$ be a closed-valued multifunction from $[0,1]\times D$ into $\mathbb{R}^n $, let $m\in L^s([0,1],{\mathbb{R}}^{+}_0)$, and let $N\in \mathcal{L}$ with $\mu(N)=0$. The conditions below will be assumed in what follows. \begin{itemize} \item[(A2)] $F|_A$ has the lower Scorza Dragoni property. \item[(A3)] $F(t,x)\cap B^0(0,m(t))\neq \emptyset$ whenever $(t,x)\in A\cap[([0,1]\setminus N)\times D]$. \item[(A4)] The set $\{x\in \mathop{\rm proj}_X(C):$ $F|_C(\cdot,x)$ is measurable$\}$ is dense in $\mathop{\rm proj}_X(C)$. \item[(A5)] For every $(t,x)\in C\cap [([0,1]\setminus N)\times D]$ the set $F(t,x)$ is convex, $F(t,\cdot)$ has a closed graph at $x$, and $F(t,x)\cap B(0,m(t))\neq \emptyset$. \end{itemize} Combining opportunely the above conditions we point out the abstract results that we will apply to study problem \eqref{P_F}. More precisely we have the following results. \begin{theorem}[{\cite[Theorem 3.1]{am1}}] \label{thm2.1} Let $\Phi,\Psi,\varphi$ be as in (U1) and let $F:[0,1]\times X\to 2^{\mathbb{R}^n }$ be a multifunction with convex closed values satisfying (F1). Suppose that \begin{itemize} \item[(A4')] The set $\{x\in X:$ $F(\cdot,x)$ is $\mathfrak F$-measurable$\}$ is dense in $X$ \item[(A5')] For almost every $t\in [0,1]$ and every $x\in X$, $F(t,\cdot)$ has closed graph at $x$. \end{itemize} Then \eqref{P_F} has at least one solution $u\in U$ with $\|\Psi(u)(t)\|\leq M(t)$ a.e. in $[0,1]$. \end{theorem} \begin{theorem}[{\cite[Theorem 2.3]{am}}] \label{thm2.2} Let $r>0$ be such that $\|m\|_p\leq r$, and let $D=B(0_X,\varphi(r))$. Suppose that $F,\Phi,\Psi$ satisfy (A2)-(A5), (U1) and (U2). Then problem \eqref{P_F} has at least one solution $u\in U$ with $\|\Psi(u)(t)\|\leq M(t)$ a.e. in $[0,1]$. \end{theorem} \begin{theorem}[{\cite[Theorem 2.5]{am}}] \label{thm2.3} Suppose that $H:[0,1]\times \mathbb{R}^n \to 2^{\mathbb{R}^n }$ is a closed-valued multifunction with the following properties: \begin{itemize} \item[(C1)] For almost all $t\in [0,1]$ and for all $x\in \mathbb{R}^n $, either $H(t,x)$ is convex or $H(t,\cdot)$ is lower semicontinuous at $x$. \item[(C2)] The set $\{x\in \mathbb{R}^n :$ $H(\cdot,x)$ is measurable$\}$ is dense in $\mathbb{R}^n $. \item[(C3)] For almost every $t\in [0,1]$ and every $x\in X$, $H(t,\cdot)$ has closed graph at $x$. \item[(C4)] There is $m_1\in L^s([0,1],{\mathbb{R}}^{+}_0)$ such that $H(t,x)\cap B(0,m_1(t))\neq \emptyset$ a.e. in $[0,1]$, for all $x\in \mathbb{R}^n $. \end{itemize} Then there exists a set $A\subseteq [0,1]\times \mathbb{R}^n $ and a closed-valued multifunction $F$ from $[0,1]\times \mathbb{R}^n $ into $\mathbb{R}^n $ satisfying (A1)-(A5). Moreover, for almost every $t\in [0,1]$ and every $x\in \mathbb{R}^n $, one has $F(t,x)\subseteq H(t,x)$. \end{theorem} Moreover, to problem \eqref{P^F} we associate the following functions: $G:[0,1]\times [0,1]\to \mathbb{R}$ (the Green function associated with \eqref{P^F}), $$ G(t,s):=\frac{g(t,s)}{1+k_1+k_2},\quad\text{with}\quad g(t,s):=\begin{cases} (k_1+t)(s-1-k_2), & 0\leq t \leq s \leq 1 \\ (k_1+s)(t-1-k_2), & 0\leq s \leq t \leq 1; \end{cases} $$ for every $r\in ]0,+\infty[$, put $$ \varphi'(r)=m_{\varphi'}r+q_{\varphi'}, \quad \varphi''(r)=m_{\varphi''}r+q_{\varphi''},\quad \varphi(r)=\max\{\varphi(r),\varphi'(r)\}, $$ where \begin{gather*} m_{\varphi'}:=\frac{\sup_{[0,1]^{2}}|g(t,s)|}{1+k_1(1-L_{H_2}) +k_2(1-L_{H_1})-(L_{H_1}+L_{H_2})}, \\ q_{\varphi'}:=\frac{((1+k_2)\|H_1(0)\|+(1+k_1)\|H_2(0)\|)}{1+k_1(1-L_{H_2}) +k_2(1-L_{H_1})-(L_{H_1}+L_{H_2})}, \\ m_{\varphi''}:=(L_{H_1}+L_{H_2})m_{\varphi'}+\sup_{[0,1]^{2}}|g(t,s)|, \\ q_{\varphi''}:=(L_{H_1}+L_{H_2})q_{\varphi'}+\|H_1(0)\|+\|H_2(0)\|. \end{gather*} \section{Main results} Let $F$ be a closed-valued multifunction from $[0,1]\times \mathbb{R}^n \times \mathbb{R}^n \to 2^{\mathbb{R}^n }$ fulfilling (F1). \begin{theorem}\label{main1} Suppose that: \begin{itemize} \item[(I1)] There exist $c,d\in \mathbb{R}^n $ such that $$H_1(ct+d)=d-ck_1,\quad \ H_2(ct+d)=d+c(1+k_2).$$ \item[(I2)] $$ \frac{(1+k_2)L_{H_1}+(1+k_1)L_{H_2}}{1+k_1+k_2}<1. $$ \item[(I3)] For almost all $t\in [0,1]$ and all $(x,y)\in \mathbb{R}^n \times\mathbb{R}^n $, $F(t,x,y)$ is convex. \item[(I4)] The set $\{(x,y)\in \mathbb{R}^n \times\mathbb{R}^n :F(\cdot,x,y)$ is measurable$\}$ is dense in $\mathbb{R}^n \times\mathbb{R}^n $. \item[(I5)] For almost every $t\in [0,1]$ the graph of $F(t,\cdot,\cdot)$ is closed. \end{itemize} Then problem \eqref{P^F} admits at least one solution $u\in W^{2,s}([0,1])$ such that $$ \|u \|_{\infty}\leq \varphi'(r), \quad \|u' \|_{\infty}\leq \varphi''(r), \quad \|u''(t)\| \leq M(t) \quad \text{for a.e. } t\in [0,1]. $$ \end{theorem} \begin{proof} We apply Theorem 2.1 by choosing $X=\mathbb{R}^n \times \mathbb{R}^n $, $\Phi(u)(t)=(u(t),u'(t))$ and $\Psi(u)(t)=u''(t)$ for each $u\in U$, where \begin{align*} U=&\Big\{ u\in W^{2,s}([0,1],\mathbb{R}^n ):\exists \; \sigma\in L^{s}([0,1],\mathbb{R}^n ) \text{ such that } \\ &u(t)= \frac{1}{1+k_1+k_2}\Big[(1+k_2-t)H_1(u)+ (k_1+t)H_2(u)\Big]+\int_{0}^{1}G(t,s) \sigma(s)ds \Big\}. \end{align*} Clearly, since $Y$ has finite dimension and (F1) holds, we only need to show that $U_1$ is verified. With this aim, we first observe that $U$ is not empty. Indeed, by (I1), the function $w(t):=ct+d\in U$. Moreover, for each $u\in U$, arguing in standard way it results that $u''\equiv \sigma$ and, by \eqref{LHi}, we get the following inequalities \begin{gather*} \|H_i(u)\|\leq \|H_i(0)\|+L_{H_i}\|u\|_{\infty}. \quad \text{for } i=1,2,\\ \begin{aligned} \|u\|_\infty& \leq \frac{1}{1+k_1+k_2}(1+k_2)[\|H_1(0)\| +L_{H_1}\|u\|_{\infty}] \\ &\quad +\frac{1+k_1}{1+k_1+k_2}[L_{H_2}\|u\|_\infty+\|H_2(0)\|] +\int_0^1\sup_{[0,1]^2}|G(t,s)|\|u''(s)\|\,ds. \end{aligned} \end{gather*} Hence \begin{align*} &\|u\|_\infty\Big(1-\frac{(1+k_2)L_{H_1}+(1+k_1)L_{H_2}}{(1+k_1+k_2)}\Big)\\ &\leq \frac{(1+k_1)\|H_2(0)\|+(1+k_2)\|H_2(0)\|}{1+k_1+k_2} +\frac{\sup_{[0,1]^2}|g(t,s)|}{1+k_1+k_2}\|u''\|_p, \end{align*} which implies \begin{equation}\label{stima} \|u\|_{\infty}\leq \varphi'(\|u''\|_{p}). \end{equation} Similarly, we have \begin{align*} \|u'\|_{\infty} &\leq \frac{1}{1+k_1+k_2}\Big[(L_{H_1}+L_{H_2})\varphi'(\|u''\|_{p})\\ &\quad +\|H_1(0)\|+\|H_2(0)\|+\sup_{[0,1]^2}\Big|\frac{\partial g }{\partial t}(t,s) \Big|\|u''\|_p\Big], \end{align*} which clearly ensures, \begin{equation}\label{stima1} \|u'\|_{\infty}\leq \varphi''(\|u''\|_{p}). \end{equation} So, \eqref{varphi} holds. Let us next prove that $\Psi:U\to L^s([0,1],\mathbb{R}^n )$ is injective. Arguing by contradiction, suppose that there exist two functions $u,v\in U$ and $B\subseteq [0,1]$ with $\mu(B)>0$, such that $u(t)\neq v(t)$ for each $t\in B$ and $u''(t)=v''(t)$ a.e. in $[0,1]$. Pick $t\in [0,1]$. By \eqref{LHi}, one has $$ \|u(t)-v(t)\|\leq\frac{(1+k_2)L_{H_1}+(1+k_1)L_{H_2}}{1+k_1+k_2} \|u-v\|_{\infty}. $$ From this, taking into account (I2), we have $\|u-v\|_{\infty}=0$, that is $u(t)=v(t)$ a.e. in $[0,1]$, which is absurd. Hence we get a contradiction. Next, fix $v\in L^s([0,1],\mathbb{R}^n )$ and a sequence $\{v_h\}$ weakly converging to $v$ in $L^s([0,1],\mathbb{R}^n )$. To simplify the notation we put $u_h=\Psi^{-1}(v_h)$ and $u=\Psi^{-1}(v)$, i.e., $u''_h=v_h$, $u''=v$, $u''_h \rightharpoonup u''$ in $L^s([0,1],\mathbb{R}^n )$ and for a.e. $t$ in $[0,1]$ one has $$ \Phi(\Psi^{-1}(v_h))(t)=(u_h(t),u'_h(t)). $$ We claim that \begin{equation}\label{point} \Phi(\Psi^{-1}(v_h))(t)\to \Phi(\Psi^{-1}(v))(t),\quad \text{a.e. } t\in [0,1]. \end{equation} To see this, we first prove that \begin{equation} \lim_{h\to +\infty}u_h(t)=u(t) \quad \text{for all }t\in [0,1]. \end{equation} Fix $t\in [0,1]$. By \eqref{LHi} it is easy to show that \begin{align*} &\|u_h(t)-u(t)\| \\ &\leq \frac{1}{1+k_1+k_2}\Big((1+k_2)\|H_1(u_h)-H_1(u)\|+ (k_1+1)\|H_2(u_h)-H_2(u)\|\Big)\\ &\quad +\big\|\int_{0}^{1}G(t,s)(u''_h(s)-u''(s)) ds\big\|\\ &\leq \frac{(1+k_2)L_{H_1}+(1+k_1)L_{H_2}}{1+k_1+k_2} \|u_h-u\|_{\infty}+\Big\|\int_{0}^{1}G(t,s)(u''_h(s)-u''(s))ds\Big\|. \end{align*} Moreover, since $u''_h$ weakly converges to $ u''$ in $L^{s}([0,1],\mathbb{R}^n )$, and $G(t,\cdot)\in L^{s}([0,1])$ if $s\geq1$, it results $$ \lim_{h\to +\infty}\int_{0}^{1}G(t,s)(u''_h(s)-u''(s))ds=0. $$ Therefore, we have $$ \limsup_{h\to\infty}\|u_h-u\|_{\infty}\leq \frac{(1+k_2)L_{H_1}+(1+k_1)L_{H_2}}{1+k_1+k_2} \limsup_{h\to\infty}\|u_h-u\|_{\infty}. $$ Furthermore, since the sequence $\{\|u_h\|_{p}\}$ is bounded, from \eqref{stima}, it is easy to show that $\limsup_{h\to\infty}\|u_h-u\|_{\infty}<+\infty$. Hence, on account of (I2), the preceding inequality provides \begin{equation}\label{uniforme} \lim_{h\to +\infty}\|u_h-u\|_\infty =0. \end{equation} Now we prove that \[ \lim_{h\to +\infty}u_h'(t)=u'(t) \quad \text{a.e. in } [0,1]. \] To do this, we observe that if $u\in U$, then an easy computation ensures that $$ u'(t)=\frac{1}{1+k_1+k_2}(H_2(u)-H_1(u))+\int_0^1\frac{\partial G(t,s)}{\partial t}u''(s)ds. $$ Hence, for every $t\in [0,1]$, one has \begin{align*} \|u'_h(t)-u'(t)\| &\leq \frac{1}{1+k_1+k_2}\Big(\|H_2(u_h)-H_2(u)\|\\ &\quad +\|H_1(u_h)-H_1(u)\|\Big)+\Big\|\int_0^1\frac{\partial G(t,s)}{\partial t}(u''_h(s)-u''(s))ds\Big\|\\ &\leq \frac{L_{H_1}+L_{H_2}}{1+k_1+k_2}\|u_h-u\|_{\infty} +\Big\|\int_0^1\frac{\partial G(t,s)}{\partial t}(u''_h(s)-u''(s))ds\Big\|. \end{align*} Thus by \eqref{uniforme} and taking into account that $\frac{\partial G(t,\cdot)}{\partial t}\in L^s([0,1])$, exploiting again that $u''_h\rightharpoonup u''$ we also get \begin{equation}\label{uniformeprime} \lim_{h\to +\infty}\|u'_h(t)-u'(t)\|= 0. \end{equation} From \eqref{uniforme} and \eqref{uniformeprime}, we conclude that $(\ref{point})$ holds, and the proof is complete. \end{proof} \begin{remark} \label{rmk3.1} \rm If we take $k_1=k_2=0$ and $H_1(\cdot)=H_2(\cdot)=0$, problem \eqref{P^F} reduces to homogeneous Dirichlet problem and Theorem \ref{main1} takes the form of \cite[Theorem 2.1]{ma} provided $\mathbb{R}^n $ is equipped with the norm used here. \end{remark} \begin{theorem}\label{lower} Suppose that (I1) and (I2) hold. In addition, assume that: \begin{itemize} \item[(A1')] $F$ has the lower Scorza Dragoni property. \item[(A2')] There exist two positive constants $r$ and $\delta$ with $\delta