\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 88, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/88\hfil Existence and regularity of local solutions] {Existence and regularity of local solutions \\ to partial neutral functional differential equations with infinite delay} \author[H. Bouzahir\hfil EJDE-2006/88\hfilneg] {Hassane Bouzahir} \address{Hassane Bouzahir \newline LAMA, Universit\'{e} Ibn Zohr,\newline Ecole Nationale des Sciences Appliqu\'{e}es,\newline P. O. Box 1136 Agadir, 80 000 Morocco} \email{hbouzahir@yahoo.fr} \urladdr{www.geocities.com/hbouzahir} \date{} \thanks{Submitted Janaury 6, 2005. Published August 9, 2006.} \subjclass[2000]{34K30, 34K40, 35R10, 45K05} \keywords{Infinite delay; integrated semigroup; neutral type; \hfill\break\indent phase space; regularity} \begin{abstract} In this paper, we establish results concerning, existence, uniqueness, global continuation, and regularity of integral solutions to some partial neutral functional differential equations with infinite delay. These equations find their origin in the description of heat flow models, viscoelastic and thermoviscoelastic materials, and lossless transmission lines models; see for example \cite{DesGriSch1} and \cite{Wu1}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In this article, we consider the following nonlinear partial neutral functional differential equations with infinite delay \begin{equation} \begin{gathered} \frac{\partial }{\partial t}\mathcal{D}u_{t}=A\mathcal{D}u_{t}+F(t,u_{t}), \quad t\geq 0, \\ u_{0}=\phi \in \mathcal{B}, \end{gathered} \label{11f1} \end{equation} where $A:D(A)\subseteq E\to E$ is a linear operator on a Banach space $(E,|\cdot|)$, $\mathcal{B}$ is the phase space of functions mapping $(-\infty ,0]$ into $E$, which will be specified later, $\mathcal{D}$ is a bounded linear operator from $\mathcal{B}$ to $E$ defined by \[ \mathcal{D}\varphi =\varphi (0)-\mathcal{D}_{0}\varphi\quad \text{ for }\varphi \in \mathcal{B}. \] The operator $\mathcal{D}_{0}$ is a bounded and linear from $\mathcal{B}$ to $E$ and for each $u:(-\infty ,b]\to E$, $b>0$, and $t\in [0,b ]$, $u_{t}$ represents, as usual, the mapping defined from $( -\infty ,0]$ to $E$ by \[ u_{t}(\theta )=u(t+\theta )\quad \text{for }\theta \in ( -\infty ,0]. \] The operator $F$ is an $E$-valued nonlinear continuous mapping on $\mathbb{R}_{+}\times \mathcal{B}$. Throughout this paper, we suppose that $(\mathcal{B},\|\cdot\|_{\mathcal{B }})$ is a (semi)normed abstract linear space of functions mapping $( -\infty ,0]$ to $E$, and satisfies the following fundamental axioms which were introduced in \cite{HalKat1} and widely discussed in \cite{HinMurNai1}. \begin{itemize} \item[(A1)] There exist a positive constant $H$ and functions $K(.)$, $M(.)$ form $\mathbb{R}^{+}\to \mathbb{R}^{+}$, with $K$ continuous and $M$ locally bounded, such that for any $\sigma \in \mathbb{R}$ and $a>0$, if $x:(-\infty ,\sigma +a]\to E$, $x_{\sigma }\in \mathcal{B}$ and $x(.)$ is continuous on $[\sigma ,\sigma +a]$, then for every $t$ in $[\sigma ,\sigma +a]$ the following conditions hold: \begin{itemize} \item[(i)] $x_{t}\in \mathcal{B}$, \item[(ii)] $|x(t)|\leq H\,\| x_{t}\| _{\mathcal{B}}$, which is equivalent to \item[(ii')] $|\varphi (0)|\leq H\|\varphi \|_{ \mathcal{B}}$, for every $\varphi \in \mathcal{B}$ \item[(iii)] $\| x_{t}\| _{\mathcal{B}}\leq K(t-\sigma )\sup_{\sigma \leq s\leq t}|x(s)| +M(t-\sigma )\| x_{\sigma }\| _{\mathcal{B}}$. \end{itemize} \item[(A2)] For the function $x(.)$ in (A1), $t\mapsto x_{t}$ is a $\mathcal{B}$-valued continuous function for $ t$ in $[\sigma ,\sigma +a]$. \item[(B1)] The space $\mathcal{B}$ is complete. \end{itemize} \subsection*{Example} Define for a constant $\gamma $ the following standard space \[ C_{\gamma }:=\{ \phi :(-\infty ,0]\to E\text{ continuous such that}\lim_{\theta \to -\infty } e^{\gamma \theta }\phi (\theta )\text{ exists in }E\} . \] It is known from \cite{HinMurNai1} that $C_{\gamma }$ with the norm $\| \phi \| _{\gamma }=\,\sup_{\theta \leq 0}e^{\gamma \theta }|\phi (\theta )|$, $\phi \in C_{\gamma }$, satisfies the axioms $({A1})$, $({A2})$ and $({B})$ with $H=1$, $K(t)=\max (1,e^{-\gamma t})$ and $M(t)=e^{-\gamma t}$ for all $t\geq 0$. Throughout, we also assume that the operator $A$ satisfies the Hille-Yosida condition: \begin{itemize} \item[(H1)] There exist $\bar{M}\geq 0$ and $\overline{\omega } \in \mathbb{N}$ such that $] \overline{\omega },+\infty [ \subset \rho (A)$ and \begin{equation} \sup \{ (\lambda -\overline{\omega })^{n}\| (\lambda I-A)^{-n}\| :n\in \mathbb{N},\,\lambda >\overline{\omega }\} \leq \bar{M}. \label{11f002} \end{equation} \end{itemize} Let $A_{0}$ be the part of the operator $A$ in $\overline{D(A)}$, which is defined by \[ \begin{gathered} D(A_{0})=\{ x\in D(A):Ax\in \overline{D(A)}\} , \\ A_{0}x=Ax\text{, for\ }x\in D(A_{0}). \end{gathered} \] It is well known that $\overline{D(A_{0})}=\overline{D(A)}$ and the operator $A_{0}$ generates a strongly continuous semigroup $(T_{0}(t))_{t\geq 0}$ on $\overline{D(A)}$. From \cite{Paz1}, we recall that for all $x\in \overline{D(A)}$ and $t\geq 0$, one has $\int_{0}^{t}T_{0}(s)x\in D(A_{0})$ and \begin{equation} (A\int_{0}^{t}T_{0}(s)xds)+x=T_{0}(t)x. \label{11f02} \end{equation} We also recall that $(T_{0}(t))_{t\geq 0}$ coincides on $\overline{D(A_{0})}$ with the derivative of the locally Lipschitz integrated semigroup $(S(t))_{t\geq 0}$ generated by $A$ on $E$. Which is, according to \cite{Are1} and \cite{KelHie1}, a family of bounded linear operators on $E$, that satisfies \begin{itemize} \item[(i)] $S(0)=0$, \item[(ii)] for any $y\in E$, $t\to S(t)y$ is strongly continuous with values in $E$, \item[(iii)] $S(s)S(t)=\int_{0}^{s}(S(t+r)-S(r))dr$ for all $ t,s\geq 0$, and for any $\tau >0$ there exists a constant $l(\tau )>0$ such that \[ \| S(t)-S(s)\| \leq l(\tau )|t-s|\text{ for all }t,s\in [ 0,\tau ]. \] \end{itemize} This integrated semigroup is exponentially bounded, that is, there exist two constants $\bar{M}$ and $\overline{\omega }$ such that $\| S(t)\| \leq \bar{M}e^{\overline{\omega }t}$ for all $t\geq 0$. As stated in Hale \cite{Hal3}, Hale and Lunel \cite{HalLun1} and the references therein, very much attention has been given to differential difference equations of neutral type. The reason was applications on lossless transmission lines. The development has concerned the general theory of partial neutral functional differential equations. The origin of the special form \eqref{11f1} is the description of heat flow models and of the viscoelastic and thermoviscoelastic materials dynamics; see \cite {DesGriSch1} and the references therein. The recent study of \eqref{11f1} has been initiated in the case of finite delay by Hale in \cite{Hal4} and \cite{Hal5}. The motivation was a model for a continuous circular array of resistively coupled transmission lines with mixed initial boundary conditions introduced by Wu and Xia (\cite{WuXia1}, \cite{WuXia2}). In addition, Magal and Ruan have stated in \cite{MagRua1} that \eqref{11f1} is also a special case of age structured populations model. Chen \cite{Che1} proved some results concerning the existence, uniqueness, and asymptotic behavior of (local and global) solutions of \eqref{11f1} in the case where the delay is finite and $A$ generates a compact C$_{0}$-semigroup on $E$. Based mainly on a detailed discussion in the book by Wu \cite{Wu1}, Adimy and Ezzinbi have published some other interesting results about \eqref{11f1} but also with finite delay (cf. \cite{AdiEzz3}-\cite{AdiEzz8}). This work (such as \cite{AdiBouEzz1}, \cite{AdiBouEzz2} and \cite{NagHuy1}) contributes to the construction of a complete theory about the infinite delay case. It can be seen as an extension to the case of neutral type of some earlier results about functional differential equations with infinite delay in \cite{AdiBouEzz3}. We do not suppose a global Lipschitz condition as in \cite{AdiBouEzz1} or \cite{NagHuy1} nor a compact condition as in \cite {AdiBouEzz2}. Under a local Lipschitz condition on $F$, we state the local existence, uniqueness, continuation and regularity. We recall that in general, neutral functional differential equations with infinite delay are functional differential equations depending on all past and present values, which involve derivatives with infinite delay as well as the unknown function itself. In \cite{Her2} and \cite{HerHen1}, existence and regularity of solutions were established to the following neutral functional differential equations with infinite delay \begin{equation} \begin{gathered} \frac{d}{dt}[x(t)-G(t,x_{t})]=Ax(t)+F(t,x_{t}),\quad t\geq 0, \\ x_{0}=\varphi \in \mathcal{B}, \end{gathered} \label{5f0} \end{equation} where $A$ generates a strongly continuous semigroup on $E$. $G$ and $F$ are appropriate continuous functions from $[0,+\infty)\times \mathcal{B}$ to $E$. The authors have essentially used the analytic semigroup theory. More recently, in \cite{Her1} the same theory was used to prove existence of mild solutions for the so-called partial neutral functional integrodifferential equations with infinite delay using the Leray-Schauder alternative. Finally, more discussion about the comparison between the study of \eqref{11f1} and of (\ref{5f0}) can be found in \cite{AdiBouEzz1,AdiEzz3,Bou1}. \section{Preliminaries} Consider the system \begin{equation} \begin{gathered} \frac{\partial }{\partial t}\mathcal{D}u_{t}=A\mathcal{D}u_{t}\quad \text{if }t\geq 0, \\ u(\theta )=\varphi (\theta )\quad \text{if }\theta \in (-\infty ,0] \text{ with }\varphi \in \mathcal{B}. \end{gathered} \label{11f2} \end{equation} Using (\ref{11f02}), we can see that a necessary condition for $ u:(-\infty ,b)\to E$, $b>0$, to be a solution of (\ref{11f2}) is that it verifies the following integrated equation on $(-\infty ,b)$ \begin{equation} \begin{gathered} \mathcal{D}u_{t}=T_{0}(t)\mathcal{D}\varphi ,\quad t\geq 0, \\ u_{0}=\varphi , \end{gathered} \label{11f3} \end{equation} where $\varphi \in \mathcal{Y}:=\{ \varphi \in \mathcal{B}:\mathcal{D}\varphi \in \overline{D(A)}\}$. The following result is only the combination of \cite[Lemma 3]{AdiBouEzz2} and \cite[Proposition 11]{AdiBouEzz1} which are proved in a general framework. Precisely, here it suffices to take $h(t):=T_{0}(t)\mathcal{D} \varphi $. \begin{proposition} \label{11p1} Assume that Condition (H1) is satisfied and $\| \mathcal{D}_{0}\| K(0)<1$. Then, for given $\varphi \in \mathcal{Y}$ there exists a unique function $u$ which is continuous on $[0,T)$ and solves \eqref{11f3} on $(-\infty ,T)$. Moreover, the family of operators $(\mathcal{T}(t))_{t\geq 0}$ defined on $\mathcal{Y}$ by $\mathcal{T}(t)\varphi =u_{t}(.,\varphi )$ is a $C_{0}$-semigroup on $\mathcal{Y}$. \end{proposition} We now define a fundamental integral solution $Z(t)$ associated to \eqref{11f1}. Consider for given $c\in E$ the following equation \begin{equation} \begin{gathered} \mathcal{D}z_{t}=S(t)c\,\,\,\,\text{if}\,\,t\geq 0, \\ z(t)=0\,\,\,\,\,\text{if}\,\,t\in (-\infty ,0]. \end{gathered} \label{11f9} \end{equation} To our purpose, we make the following condition \begin{itemize} \item[(H2)] There exists a continuous nondecreasing function $ \delta :[0,+\infty )\to [0,+\infty [$, $\delta (0)=0$ and a family of continuous linear operators $W_{\varepsilon }:\mathcal{B}\to E$, $\varepsilon \in [0,+\infty )$, such that \[ |\mathcal{D}_{0}\varphi -\mathcal{D}_{\varepsilon }\varphi |\leq \delta (\varepsilon )\| \varphi \| _{\mathcal{B}}\quad \text{for } \varepsilon \in [0,+\infty )\text{ and }\varphi \in \mathcal{B} , \] where the linear operator $\mathcal{D}_{\varepsilon }:\mathcal{B}\to E$ is defined, for $\varepsilon \in [0,+\infty )$, by \begin{gather*} \mathcal{D}_{\varepsilon }=W_{\varepsilon }\circ \tau _{\varepsilon }, \\ \tau _{\varepsilon }(\varphi )(\theta )=\varphi (\theta -\varepsilon ) \quad \text{for }\varphi \in \mathcal{B}\text{ and }\theta \in (-\infty ,0 ]. \end{gather*} \end{itemize} Note that Assumption (H2) implies that the operator $\mathcal{D} _{0}$ does not depend very strongly upon $\varphi (0)$. It is the infinite delay version of the one introduced in \cite{AdiEzz7,AdiEzz8}. \begin{proposition} \label{11p3} Assume that Conditions (H1) and (H2) are satisfied such that $K(0)\| \mathcal{D}_{0}\|<1$. Then, for given $c\in E$, \eqref{11f9} has a unique integral solution $ z:=z(.)c:(-\infty ,+\infty )\to E$. Moreover, the operator $Z(t):E\to \mathcal{B}$ defined by \[ Z(t)c=z_{t}(.)c \] satisfies, for any continuous function $f:[0,+\infty ) \to E$, the following properties \begin{itemize} \item[(i)] For each $T>0$, there exists a function $\alpha (.)\in L^{\infty }([0,T], \mathbb{R}^{+})$ and $\beta \in \mathbb{R}$, such that $\| Z(t)\| \leq \alpha (t)e^{t\beta }$ for all $t\in [0,T]$; \item[(ii)] $Z(t)(E)\subseteq \mathcal{Y}$, for all $t\geq 0$; \item[(iii)] For all $\tau >0$ there exists a constant $k(\tau )>0$ such that \[ \| Z(t)c-Z(s)c\| _{\mathcal{B}}\leq k(\tau )|t-s\| c|\quad \text{for all $t,s\in [ 0,\tau ]$ and }c\in E. \] \item[(iv)] For any continuous function $f:[0,+\infty ) \to E$, the functions \[ t\mapsto \int_{0}^{t}Z(t-s)f(s)\,ds\quad \text{and}\quad t\mapsto \int_{0}^{t}S(t-s)f(s)\,ds \] are continuously differentiable for all $t\geq 0$ and satisfy \[ \frac{d}{dt}(\int_{0}^{t}Z(t-s)f(s)\,ds) =\lim_{h\to 0^{+}}\frac{1}{h}\int_{0}^{t}\mathcal{T}(t-s)Z(h)f(s)ds \quad \text{for all }t\geq 0. \] \begin{align*} \mathcal{D}(\frac{d}{dt}\int_{0}^{t}Z(t-s)f(s)\,ds) &=\lim_{h\to 0^{+}}\frac{1}{h}\int_{0}^{t}S'(t-s)S(h)f(s)ds \\ &=\frac{d}{dt}\int_{0}^{t}S(t-s)f(s)ds. \end{align*} \end{itemize} \end{proposition} \begin{proof}[Sketch of Proof] Recalling that $\| S(t)\| \leq \bar{M}e^{ \bar{\omega}t}$ for all $t\geq 0$, the proof of existence, uniqueness and (i) is only a particular case of \cite[Lemma 3]{AdiBouEzz2} where $ h(t)=S(t)c$ and $v_{0}=0$. To prove (ii), it suffices to remark that for any $c\in E$, $S(t)c\in \overline{D(A) }$ for all $t\geq 0$ and $\mathcal{D}(Z(t)c)=S(t)c$. Then $Z(t)c\in \mathcal{Y}$ for all $t\geq 0$. We infer (iii) from the fact that $S(.)$ is locally Lipschitz continuous. Finally, the proof of (iv) is exactly the same as in \cite{AdiEzz8}. Note that (iv) also ensures that $\int_{0}^{t}Z(t-s)f(s)ds$ is differentiable with respect to $t$. \end{proof} For convenience of the reader about the main equation \eqref{11f1}, we recall the following definitions. \begin{definition} \label{def2.3} \rm Let $T>0$ and $\varphi \in \mathcal{B}$. We consider the following definitions. We say that a function $u:=u(.,\varphi ):(-\infty ,T)\to E$, $00$, be a continuous function such that $f(t)(\theta )$ is continuous for $(t,\theta )\in [0,a]\times (-\infty ,0]$. Then, \[ \big[\int_{0}^{a}f(t)dt\big](\theta )=\int_{0}^{a}f(t)(\theta )dt,\quad \theta \in (-\infty ,0]. \] \end{lemma} In \cite{AdiBouEzz1}, we have also obtained the following similar result using (D1). \begin{lemma}[\cite{AdiBouEzz1,Bou1}] \label{11l3} Assume that $\mathcal{B}$ satisfies Axiom (D1) and $f:[0,a] \to \mathcal{B}$ is a continuous function. Then, for all $\theta \in (-\infty ,0]$, the function $f(.)(\theta )$ is continuous on $[0,a]$ and satisfies \[ \big[\int_{0}^{a}f(t)dt\big](\theta ) =\int_{0}^{a}f(t)(\theta)dt,\quad \theta \in (-\infty ,0]. \] \end{lemma} \begin{proposition} \label{11p4} Let $\mathcal{B}$ be a normed space which satisfies Axiom (C1) or Axiom (D1) with $K(0)\| \mathcal{D} _{0}\| <1$. If there exists an integral solution $u:=u(.,\varphi ):(-\infty ,T)\to E$, $00$ there exists a constant $c_{0}(r)>0$ such that if $ t\geq 0$, $\varphi _{1},\varphi _{2}\in \mathcal{B}$ and $\| \varphi _{1}\| _{\mathcal{B}},\| \varphi _{2}\| _{\mathcal{B}}\leq r$ then \[ |F(t,\varphi _{1})-F(t,\varphi _{2})|\leq c_{0}(r)\| \varphi _{1}-\varphi _{2}\| _{\mathcal{B}}. \] \end{itemize} \begin{theorem} \label{12t1} Let $\mathcal{B}$ be a normed space which satisfies Axiom (C1) or Axiom (D1) with $K(0)\| \mathcal{D} _{0}\| <1$. Assume that (H1) (H2) and (H3) hold. Let $\varphi \in \mathcal{B}$ such that $\mathcal{D} \varphi \in \overline{D(A)}$. Then, there exists a maximal interval of existence $(-\infty ,b_{\varphi }),\,b_{\varphi }>0$, and a unique mild solution $u(.,\varphi )$ of \eqref{11f1}, defined on $(-\infty ,b_{\varphi })$ and either $b_{\varphi }=+\infty $ or \[ \limsup_{t\to b_{\varphi }^{-}}|u(t,\varphi )|=+\infty . \] Moreover, $u(t,\varphi )$ is a continuous function of $\varphi $, in the sense that if $\varphi \in \mathcal{B}$, $\mathcal{D}\varphi \in \overline{D(A)}$ and $t\in [0,b_{\varphi })$, then there exist positive constants $\beta $ and $\alpha $ such that, for $\psi \in \mathcal{B}$, $\mathcal{D }\psi \in \overline{D(A)}$ and $\| \varphi -\psi \| _{\mathcal{B} }<\alpha $, we have $t\in [0,b_{\psi })$ and \[ |u(s,\varphi )-u(s,\psi )|\leq \beta \| \varphi -\psi \| _{\mathcal{B}}\text{ \ for all }s\in [0,t]. \] \end{theorem} \begin{proof} The first part of the proof is contained in \cite{Bou2}. We prove that the solution depends continuously on the initial data. Let $\varphi \in \mathcal{B}$ such that $\mathcal{D}\varphi \in \overline{D(A)}$ and $t\in [0,b_{\varphi})$ be fixed. Set \begin{gather*} r=1+\sup_{0\leq s\leq t}\| u_{s}(.,\varphi )\| _{\mathcal{B}}, \\ c(t)=\overline{M}e^{\omega t}\exp (\overline{M}e^{\omega t}c_{0}(r)kt). \end{gather*} Let $\alpha \in (0,1)$ be such that $c(t)\alpha <1$ and $\psi \in \mathcal{B}$, $\mathcal{D}\psi \in \overline{D(A)}$ such that $\|\varphi -\psi \| _{\mathcal{B}}<\alpha $. We have \[ \| \psi \| _{\mathcal{B}}\leq \| \varphi \| _{\mathcal{B} }+\alpha 0$ such that \[ \| u_{s}(.,\psi )\| _{\mathcal{B}}\leq c(t)\alpha +r-10$ such that $ \| u_{\sigma }(.,\psi )\| _{\mathcal{B}}\leq r$, for all $\sigma \in [0,s]$. Thus, $b_{0}\geq t$ and $t0$ there exist constants $C_{1}(r), C_{2}(r)>0$ such that if $t\geq 0$, $\varphi ,\psi \in \mathcal{B}$ and $\| \varphi \| _{\mathcal{B}},\| \psi \|_{\mathcal{B}}\leq r$ then \begin{gather} |D_{t}F(t,\varphi )-D_{t}F(t,\psi )|\leq C_{1}(r)\| \varphi -\psi \| _{\mathcal{B}}, \\ \| D_{\varphi }F(t,\varphi )-D_{\varphi }F(t,\psi )\| \leq C_{2}(r)\| \varphi -\psi \| _{\mathcal{B}}\,. \label{12f0006} \end{gather} \end{itemize} \begin{theorem} \label{12t02} Suppose that (H4) and the assumptions of Theorem \ref{12t1} are satisfied. In addition, let an element $\varphi $ of $\mathcal{B}$ be continuously differentiable such that \begin{equation} \varphi '\in \mathcal{B},\quad \mathcal{D}\varphi \in D(A),\quad \mathcal{D}\varphi '\in \overline{D(A)}, \quad \mathcal{D}\varphi '=A\mathcal{D}\varphi +F(0,\varphi ). \label{12f77} \end{equation} Then, the integral solution asserted by Theorem \ref{12t1} is a strict solution of \eqref{11f1}. \end{theorem} \begin{proof} Let $\varphi \in \mathcal{B}$ such that $\varphi '\in \mathcal{B}$, $ \mathcal{D}\varphi \in D(A)$, $\mathcal{D}\varphi '\in \overline{D(A)}$ and $\mathcal{D}\varphi '=A\mathcal{D}\varphi +F(0,\varphi)$. Let $ u:=u(.,\varphi )$ be the unique integral solution of (\ref{11f1}) on $(-\infty ,b_{\varphi })$. To prove that $u$ is also a strict solution, by Remark \ref{12r1}, it suffices to show that $t\mapsto Du_{t}$ is continuously differentiable on $[0,b_{\varphi })$. For that purpose, consider the linear equation \begin{equation} \begin{gathered} \frac{\partial }{\partial t}\mathcal{D}v_{t}=A\mathcal{D} v_{t}+D_{t}F(t,u_{t})+D_{\varphi }F(t,u_{t})\,v_{t},\quad t\geq 0, \\ v_{0}=\varphi '. \end{gathered} \label{12f006} \end{equation} Using Axiom (A2), we can set $r:=\sup_{0\leq s\leq T}\| u_{s}\| _{\mathcal{B}}$ for each $0\leq T0$ such that $\| D_{\varphi }F(t,u_{t})\| \leq \beta _{0}$ for all $t\in [0,T]$ where $0\leq T0$ and for all $t\in [0,T_{1}]$, \begin{align*} &\big|\frac{d}{dt}\int_{0}^{t}S(t-s)(F(s,u_{s})-F(s,w_{s}))\,ds\big|\\ &\leq \overline{M}e^{\overline{\omega }T_{1}}\int_{0}^{t} |F(s,u_{s})-F(s,w_{s})|\,ds. \end{align*} Since $S(t)$ is assumed to be exponentially bounded, we have also for suitable positive constants $\bar{M}$ and $\overline{\omega }$, \begin{align*} &\big|\int_{0}^{t}S(t-s)(D_{t}F(s,u_{s})-D_{t}F(s,w_{s}))\,ds\big|\\ &\leq \bar{M}e^{\overline{\omega } T_{1}}\int_{0}^{t}|D_{t}F(s,u_{s})-D_{t}F(s,w_{s})|\,ds, \end{align*} and \begin{align*} &\big|\int_{0}^{t}S(t-s)(D_{\varphi }F(s,u_{s}) -D_{\varphi }F(s,w_{s}))v_{s}\,ds\big|\\ &\leq \bar{M}e^{\overline{\omega } T_{1}}\int_{0}^{t}\| D_{\varphi }F(s,u_{s})-D_{\varphi }F(s,w_{s})\| \| v_{s}\| _{\mathcal{B}}\,ds. \end{align*} Set $K_{T}:=\max_{0\leq t\leq T}K(t)$. Since $ u_{0}=w_{0}=\varphi$, by Axiom (A1)(ii), for all $0\leq t\leq T_{1}$, \[ \| u_{t}-w_{t}\| _{\mathcal{B}}\leq K_{T}\sup_{0\leq s\leq t}|u(s)-w(s)|. \] From (H2) and inequality (\ref{12f070}), we infer that \begin{align*} |u(t)-w(t)|\leq & K_{T}\delta (\varepsilon )\sup_ {0\leq s\leq t}|u(s)-w(s)|\\ & +\overline{M}e^{\overline{\omega }T}k\int_{0}^{t}|F( s,u_{s})-F(s,w_{s})|ds \\ & +\bar{M}e^{\overline{\omega }T}\int_{0}^{t}| D_{t}F(s,u_{s})-D_{t}F(s,w_{s})|ds \\ & +\bar{M}e^{\overline{\omega }T}\int_{0}^{t}\| D_{\varphi }F(s,u_{s})-D_{\varphi }F(s,w_{s})\| \| v_{s}\| _{\mathcal{B} }\,ds. \end{align*} Choose $\varepsilon $ small enough such that $K_{T}\delta (\varepsilon )<1$. Thus for all $t\in [0,T_{1}]$, \begin{align*} \| u_{t}-w_{t}\| _{\mathcal{B}} &\leq K_{T}\sup_{0\leq s\leq T_{1}}|u(s)-w(s)|\\ & \leq K_{T}(1-K_{T}\delta (\varepsilon ))^{-1}\overline{M}e^{\overline{ \omega }T_{1}}k\int_{0}^{t}|F(s,u_{s})-F( s,w_{s})|ds \\ &\quad +K_{T}(1-K_{T}\delta (\varepsilon ))^{-1}\bar{M}e^{\overline{\omega } T_{1}}\int_{0}^{t}|D_{t}F(s,u_{s})-D_{t}F(s,w_{s})|ds \\ &\quad +K_{T}(1-K_{T}\delta (\varepsilon ))^{-1}\bar{M}e^{\overline{\omega } T_{1}}\int_{0}^{t}\| D_{\varphi }F(s,u_{s})-D_{\varphi }F(s,w_{s})\| \| v_{s}\| _{\mathcal{B}}\,ds. \end{align*} Set \[ r:=\max \big(\sup_{0\leq s\leq T_{1}}\| u_{s}\| _{B}\,,\,\sup_{0\leq s\leq T_{1}}\| v_{s}\| _{\mathcal{B}}, \sup_{0\leq s\leq T_{1}}\| w_{s}\| _{\mathcal{B} }\big). \] There exist $C_{0}(r),C_{1}(r),C_{2}(r)>0$ such that, for $s\in [ 0,T_{1}]$, \begin{gather*} |F(s,u_{s})-F(s,w_{s})|\leq C_{0}(r)\| u_{s}-w_{s}\| _{\mathcal{B}}, \\ |D_{t}F(t,u_{s})-D_{t}F(t,w_{s})|\leq C_{1}(r)\| u_{s}-w_{s}\| _{\mathcal{B}}, \\ \| D_{\varphi }F(t,u_{s})-D_{\varphi }F(t,w_{s})\| \leq C_{2}(r)\| u_{s}-w_{s}\| _{\mathcal{B}}. \end{gather*} This implies that for suitable positive constants $\overline{M}$ and $ \overline{\omega }$, for all $t\in [0,T_{1}]$, \[ \| u_{t}-w_{t}\| _{\mathcal{B}}\leq \frac{K_{T}\overline{M}e^{ \overline{\omega }T_{1}}}{1-K_{T}\delta (\varepsilon )}( kC_{0}(r)+C_{1}(r)+rC_{2}(r))\int_{0}^{t}\| u_{s}-w_{s}\| _{\mathcal{B}}ds. \] By the Gronwall lemma, $\| u_{t}-w_{t}\| _{\mathcal{B}}$ for any $t\in [0,T_{1}]$. Using Axiom (A1)(ii), we deduce that $u(t)=w(t)$ for all $t\in [0,T_{1}]$. We can repeat the previous argument on $[T_{1},T_{2}]$, where $ T_{2}:=\min \{2\varepsilon ,T-T/2^{2}\} $ and $\varepsilon \in (0,T]$, $K_{T}\delta (\varepsilon )<1$, with the initial condition $u_{T_{1}}$. We obtain for $t\in [T_{1},T_{2}]$ and $ \theta \in (-\infty ,0]$, \[ -\infty 0$ and for all $t\in [T_{1},T_{2}]$, \[ |\frac{d}{dt}\int_{T_{1}}^{t}S(t-s)(F(s,u_{s})-F(s,w_{s}))\,ds| \leq \overline{M}e^{\overline{\omega}T_{2}}\int_{T_{1}}^{t}|F(s,u_{s}) -F(s,w_{s})|\,ds. \] Since $S(t)$ is assumed to be exponentially bounded, we have also for suitable positive constants $\bar{M}$ and $\overline{\omega }$, \begin{align*} &\big|\int_{T_{1}}^{t}S(t-s)(D_{t}F(s,u_{s}) -D_{t}F(s,w_{s}))\,ds\big|\\ &\leq \bar{M}e^{\overline{\omega } T_{2}}\int_{T_{1}}^{t}|D_{t}F(s,u_{s})-D_{t}F(s,w_{s})|\,ds, \end{align*} and \begin{align*} &\big|\int_{T_{1}}^{t}S(t-s)(D_{\varphi }F(s,u_{s}) -D_{\varphi }F(s,w_{s}))v_{s}\,ds\big|\\ &\leq \bar{M}e^{\overline{\omega } T_{2}}\int_{T_{1}}^{t}\| D_{\varphi }F(s,u_{s})-D_{\varphi }F(s,w_{s})\| \| v_{s}\| _{\mathcal{B}}\,ds. \end{align*} Note that $\max_{T_{1}\leq t\leq T}K(t-T_{1})\leq K_{T}$. Since $u_{T_{1}}=w_{T_{1}}$, by Axiom (A1)(iii), for all $T_{1}\leq t\leq T_{2}$, \[ \| u_{t}-w_{t}\| _{\mathcal{B}}\leq K_{T}\sup_{T_{1}\leq s\leq t}|u(s)-w(s)|, \] and \begin{align*} |u(t)-w(t)|\leq & K_{T}\delta (\varepsilon )\sup_{ T_{1}\leq s\leq t}|u(s)-w(s)|\\ & +\overline{M}e^{\overline{\omega }T}k\int_{T_{1}}^{t}|F( s,u_{s})-F(s,w_{s})|ds \\ & +\bar{M}e^{\overline{\omega }T}\int_{T_{1}}^{t}| D_{t}F(s,u_{s})-D_{t}F(s,w_{s})|ds \\ & +\bar{M}e^{\overline{\omega }T}\int_{T_{1}}^{t}\| D_{\varphi }F(s,u_{s})-D_{\varphi }F(s,w_{s})\| \| v_{s}\| _{\mathcal{B} }\,ds. \end{align*} Recall that $K_{T}\delta (\varepsilon )<1$. Thus for all $t\in [ 0,T_{1})$, \begin{align*} \| u_{t}-w_{t}\| _{\mathcal{B}} &\leq K_{T} \sup_{T_{1}\leq s\leq T_{2}}|u(s)-w(s)|\\ &\leq K_{T}(1-K_{T}\delta (\varepsilon ))^{-1}\overline{M}e^{\overline{ \omega }T_{2}}k\int_{0}^{t}|F(s,u_{s})-F( s,w_{s})|ds \\ &\quad +K_{T}(1-K_{T}\delta (\varepsilon ))^{-1}\bar{M}e^{\overline{\omega } T_{2}}\int_{0}^{t}|D_{t}F(s,u_{s})-D_{t}F(s,w_{s})|ds \\ &\quad +K_{T}(1-K_{T}\delta (\varepsilon ))^{-1}\bar{M}e^{\overline{\omega } T_{2}}\int_{0}^{t}\| D_{\varphi }F(s,u_{s})-D_{\varphi }F(s,w_{s})\| \| v_{s}\| _{\mathcal{B}}\,ds. \end{align*} Set \[ r:=\max \Big(\sup_{T_{1}\leq s\leq T_{2}}\| u_{s}\| _{B},\sup_{T_{1}\leq s\leq T_{2}}\| v_{s}\| _{\mathcal{B}},\sup_{T_{1}\leq s\leq T_{2}} \| w_{s}\| _{\mathcal{B}}\Big), \] There exist $C_{0}(r),\,C_{1}(r)$,$\,C_{2}(r)>0$ such that, for $s\in [T_{1},T_{2}]$, \begin{gather*} |F(s,u_{s})-F(s,w_{s})|\leq C_{0}(r)\| u_{s}-w_{s}\| _{\mathcal{B}}, \\ |D_{t}F(t,u_{s})-D_{t}F(t,w_{s})|\leq C_{1}(r)\| u_{s}-w_{s}\| _{\mathcal{B}}, \\ \| D_{\varphi }F(t,u_{s})-D_{\varphi }F(t,w_{s})\| \leq C_{2}(r)\| u_{s}-w_{s}\| _{\mathcal{B}}. \end{gather*} This implies that for suitable positive constants $\overline{M}$ and $ \overline{\omega }$, and all $t\in [T_{1},T_{2}]$, \[ \| u_{t}-w_{t}\| _{\mathcal{B}}\leq \frac{K_{T}\overline{M}e^{ \overline{\omega }T_{2}}}{1-K_{T}\delta (\varepsilon )}( kC_{0}(r)+C_{1}(r)+rC_{2}(r))\int_{T_{1}}^{t}\| u_{s}-w_{s}\| _{\mathcal{B}}ds. \] By the Gronwall lemma, $\| u_{t}-w_{t}\| _{\mathcal{B}}=0$ for any $ t\in [T_{1},T_{2}]$. Using Axiom (A1)(ii), we deduce that $u(t)=w(t)$ for all $t\in [T_{1},T_{2}]$. Proceeding inductively we obtain $u(t)=w(t)$ for all $t\in [0,T]$ for any $T$ in $[0,b_{\varphi })$. Finally, since \[ t\mapsto \mathcal{D}w_{t}=\mathcal{D}\varphi +\mathcal{D}\Big( \int_{0}^{t}v_{s}ds\Big) =\mathcal{D}\varphi +\int_{0}^{t}\mathcal{D}v_{s}ds \] is continuously differentiable, the function $t\mapsto \mathcal{D}u_{t}$ is continuously differentiable. This completes the proof of Theorem \ref{12t02}. \end{proof} \subsection*{Acknowledgments} The author would like to thank Professors M. Adimy and K. Ezzinbi for helpful discussions; thanks also to Professor S. Ruan and the MSO at the University of Miami, for the facilities offered. This research was supported by TWAS under contract No. 04-150 RG/MATHS/AF/AC, and by the Moroccan-American Fulbright Visiting Scholar program. \begin{thebibliography}{00} \bibitem{AdiBouEzz1} M. Adimy, H. Bouzahir, K. Ezzinbi; \emph{Existence and stability for some partial neutral functional differential equations with infinite delay}, J. Math. Anal. Appl., Vol. 294, Issue 2, June 15, 438-461 (2004). \bibitem{AdiBouEzz2} M. Adimy, H. Bouzahir, K. Ezzinbi; \emph{Local existence for a class of partial neutral functional differential equations with infinite delay}, Differential Equations Dynam. Systems, Vol. 12, Nos. 3-4, July-October, 353-370 (2004). \bibitem{AdiBouEzz3} M. Adimy, H. Bouzahir, K. Ezzinbi; \emph{Local existence and stability for some partial functional differential equations with infinite delay}, Nonlinear Analysis TMA, Vol. 48, N. 3, 323-348 (2002). \bibitem{AdiEzz3} M. Adimy, K. Ezzinbi; \emph{A class of linear partial neutral functional differential equations with non-dense domain}, J. Differential Equations, Vol. 147, N. 2, 285-332 (1998). \bibitem{AdiEzz4} M. Adimy, K. Ezzinbi; \emph{Strict solutions of nonlinear hyperbolic neutral differential equations}, Appl. Math. Lett., Vol. 12, N. 1, 107-112 (1999). \bibitem{AdiEzz7} M. Adimy, K. Ezzinbi; \emph{Existence and linearized stability for partial neutral functional differential equations with non dense domains}, Differential Equations and Dynam. Systems, Vol. 7, N. 3, 371-417 (1999). \bibitem{AdiEzz8} M. Adimy, K. Ezzinbi; \emph{Existence and stability for a class of partial neutral functional differential equations}, Hiroshima Math. J., Vol. 34, N. 3, 251-294 (2004). \bibitem{Are1} W. Arendt; \emph{Resolvent positive operators and integrated semigroup}, Proc. London Math. Soc., (3), Vol. 54, 321-349 (1987). \bibitem{Bou1} H. Bouzahir; \emph{Contribution \`{a} l'\'{e}tude des aspects quantitatifs et qualitatifs pour une classe d'\'{e}quations diff\'{e}rentielles \`{a} retard infini, en dimension infinie}, Ph. D. thesis, Cadi Ayyad University of Marrakesh, N. 40, April 05, (2001). \bibitem{Bou2} H. Bouzahir; \emph{On neutral functional differential equations with infinite delay}, Fixed Point Theory, Vol. 5, Nos. 1, 11-21 (2005). \bibitem{BusWu1} S. Busenberg, B. Wu; \emph{Convergence theorems for integrated semigroups}, Differential Integral Equations, Vol. 5, N. 3, 509-520 (1992). \bibitem{Che1} Y. Chen; \emph{Abstract partial functional differential equations of neutral type: basic theory}, Differential Equations Dynam. Systems, Vol. 7, N. 3, 331-348 (1999). \bibitem{ColGur1} B. D. Coleman, M. E. Gurtin; \emph{Equipresence and constitutive equations for rigid heat conductors}, Z. Angew. Math. Phys., Vol. 18, 199-208 (1967). \bibitem{DapSin1} G. Da Prato and E. Sinestrari; \emph{Differential operators with non-dense domains}, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), N. 2, Vol. 14, 285-344 (1987). \bibitem{DesGriSch1} W. Desch, R. Grimmer, W. Schappacher; \emph{Wellposedness and wave propagation for a class of integrodifferential equations in Banach space}, J. Differential Equations 74, 391-411, (1988). \bibitem{GurPip1} M. E. Gurtin, A. C. Pipkin; \emph{A general theory of heat conduction with finite wave speeds}, Arch. Rational Mech. Anal. 31, 113-126, (1968). \bibitem{Hal3} J. K. Hale; \emph{Theory of functional differential equations}, Springer-Verlag, New York (1977). \bibitem{Hal4} J. K. Hale; \emph{Partial neutral functional differential equations}, Rev. Roumaine Math. Pure Appl., Vol. 39, 339-344 (1994). \bibitem{Hal5} J. K. Hale; \emph{Coupled Oscillators on a Circle}, Resenhas IME-USP, Vol. 1, N. 4, 441-457 (1994). \bibitem{HalKat1} J. K. Hale, J. Kato; \emph{Phase space for retarded equations with infinite delay}, Funkcial. Ekvac., Vol. 21, 11-41 (1978). \bibitem{HalLun1} J. K. Hale, S. Lunel; \emph{Introduction to functional differential equations}, Springer-Verlag, New York, (1993). \bibitem{Her1} E. Hernandez; \emph{Regularity of solutions of partial neutral functional differential equations with unbounded delay}, Proyecciones, Vol. 21, N. 1, 65-95 (2002). \bibitem{Her2} E. Hernandez; \emph{Existence results for partial neutral functional integrodifferential equations with unbounded delay}, J. Math. Anal. Appl., Vol. 292 , N. 1, 194-210 (2004). \bibitem{HerHen1} E. Hernandez, H. R. Henriquez; \emph{Existence results for partial neutral functional differential equations with unbounded delay}, {\it J. Math. Anal. Appl., Vol. 221, N. 2, 452-475 (1998). \bibitem{HinMurNai1} Y. Hino, S. Murakami, T. Naito; \emph{Functional Differential Equations with Infinite Delay}, Vol. 1473, Lecture Notes in Mathematics, Springer-Verlag, Berlin (1991). \bibitem{Kel1} H. Kellermann; \emph{Integrated Semigroups}, Dissertation, T\"{u}bingen, (1986).} \bibitem{KelHie1} H. Kellermann, M. Hieber; \emph{Integrated semigroup}, J. Fun. Anal., Vol. 15, 160-180 (1989). \bibitem{LiaXiaCas1} J. Liang, T. Xiao, J. Casteren; \emph{A note on semilinear abstract functional differential and integrodifferential equations with infinite delay}, Appl. Math. Lett., Vol. 17, N. 4, 473-477 (2004). \bibitem{MagRua1} P. Magal, S. Ruan; \emph{On integrated semigroups and age structured models in L$^{p}$ space}, preprint. \bibitem{NagHuy1} R. Nagel, N. T. Huy; \emph{Linear neutral partial differential equations: a semigroup approach}, Int. J. Math. Math. Sci., N. 23, 1433-1445 (2003). \bibitem{NaiShiMur2} T. Naito, J. S. Shin, S. Murakami; \emph{The generator of the solution semigroup for the general linear functional-differential equation}, Bull. Univ. Electro-Comm., Vol. 11, N. 1, 29-38 (1998). \bibitem{Neu1} F. Neubrander; \emph{Integrated semigroups and their applications to the abstract Cauchy problems}, Pacific J. Math., Vol. 135, N. 1, 111-155 (1988). \bibitem{Paz1} A. Pazy; \emph{Semigroups of linear operators and applications to partial differential equations}, Applied Mathematical Sciences, 44, Springer-Verlag, New York, (1983). \bibitem{Sin1} E. Sinestrari; \emph{On the abstract Cauchy problem of parabolic type in spaces of continuous functions}, J. Math. Anal. Appl., Vol. 107, 16-66 (1985). \bibitem{Thi1} H. Thieme; \emph{Integrated semigroups and integrated solutions to abstract Cauchy problems}, J. Math. Anal. Appl., Vol. 152, 416-447 (1990). \bibitem{Thi2} H. Thieme; \emph{Semiflows generated by Lipschitz perturbations of non-densely defined operators}, Differential Integral Equations, Vol. 3, 1035-1066 (1990). \bibitem{TraWeb1} C. Travis, G. F. Webb; \emph{Existence and stability for partial functional differential equations}, Trans. Amer. Math. Soc., Vol. 200, 395-418 (1974). \bibitem{Wu1} J. Wu; \emph{Theory and Applications of Partial Functional Differential Equations}, Springer-Verlag, (1996). \bibitem{WuXia1} J. Wu, H. Xia; \emph{Self-sustained oscillations in a ring array of coupled lossless transmission lines}, J. Differential Equations, Vol. 124, 247-278 (1996). \bibitem{WuXia2} J. Wu, H. Xia; \emph{Rotating waves in neutral partial functional differential equations}, J. Dynam. Differential Equations, Vol. 11, N. 2, 209-238 (1999). \end{thebibliography} \end{document}