\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 94, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/94\hfil A blow up condition] {A blow up condition for a nonautonomous semilinear system} \author[A. P\'erez\hfil EJDE-2006/94\hfilneg] {Aroldo P\'erez-P\'erez} \address{Aroldo P\'erez-P\'erez\hfill\break Divisi\'on Acad\'emica de Ciencias B\'asicas, Universidad Ju\'arez Aut\'onoma de Tabasco, Km. 1 Carretera Cunduac\'an-Jalpa de M\'endez, C.P. 86690 A.P. 24, Cunduac\'an, Tabasco, M\'exico} \email{aroldo.perez@dacb.ujat.mx} \date{} \thanks{Submitted July 14, 2006. Published August 18, 2006.} \subjclass[2000]{35B40, 35K45, 35K55, 35K57} \keywords{Finite time blow up; mild solution; weakly coupled system; \hfill\break\indent nonautonomous initial value problem; fractal diffusion} \begin{abstract} We give a sufficient condition for finite time blow up of the nonnegative mild solution to a nonautonomous weakly coupled system with fractal diffusion having a time dependent factor which is continuous and nonnegative. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} This paper deals with the blow up of nonnegative solutions of the nonautonomous initial value problem for a weakly coupled system with a fractal diffusion \begin{equation} \label{general} \begin{aligned} \frac{\partial u(t,x)}{\partial t}&=k(t)\Delta_{\alpha}u(t,x)+v^{\beta_{1}}(t,x),\quad t>0,\quad x\in \mathbb{R}^{d} \\ \frac{\partial v(t,x)}{\partial t}&=k(t)\Delta_{\alpha}v(t,x)+u^{\beta_{2}}(t,x),\quad t>0,\quad x\in \mathbb{R}^{d}\\ u(0,x)&=\varphi_{1}(x),\quad x\in \mathbb{R}^{d}\\ v(0,x)&=\varphi_{2}(x),\quad x\in \mathbb{R}^{d}, \end{aligned} \end{equation} where $\Delta _{\alpha }:=-(-\Delta )^{\alpha /2}$, $0<\alpha\le2$ denotes the $\alpha $-Laplacian, $\beta_{1},\text{ }\beta_{2} >1$ are constants, $0\leq\varphi_{1}, \text{ }\varphi_{2}\in B(\mathbb{R}^{d})$ (where $B(\mathbb{R}^{d})$ is the space of bounded measurable functions on $\mathbb{R}^{d})$ do not vanish identically, $k:[0,\infty )\to [0,\infty )$ is continuous and satisfies \begin{equation} \varepsilon _{1}t^{\rho }\leq \int_{0}^{t}k( r) dr\leq \varepsilon _{2}t^{\rho },\quad \varepsilon _{1}, \;\varepsilon _{2},\; \rho >0, \label{condk} \end{equation} for all $t$ large enough. The associated integral system to \eqref{general} is given by \begin{gather} u(t,x)=U(t,0)\varphi_{1}(x)+\int_{0}^{t}U(t,r)v^{\beta_{1}}(r,x)dr,\quad t>0,\text{ }x\in\mathbb{R}^{d},\label{mildsol1}\\ v(t,x)=U(t,0)\varphi_{2}(x)+\int_{0}^{t}U(t,r)u^{\beta_{2}}(r,x)dr,\quad t>0,\text{ }x\in\mathbb{R}^{d},\label{mildsol2} \end{gather} where $\{U(t,s)\}_{t\geq s\geq 0}$ is the evolution family on $B(\mathbb{R}^{d})$ that solves the homogeneous Cauchy problem for the family of generators $\{k(t)\Delta_{\alpha}\}_{t\geq0}$. Clearly \begin{equation*} U(t,s)=S(K(t,s)),\quad t\geq s\geq0, \end{equation*} where $\{S(t)\}_{t\geq0}$ is the semigroup with infinitesimal generator $\Delta_{\alpha}$, and $K(t,s)=\int_{s}^{t}k(r)dr$, $t\geq s\geq0$. A solution of (\ref{mildsol1})-(\ref{mildsol2}) is called a mild solution of \eqref{general}. If there exist a solution $(u,v)$ of \eqref{general} in $[0,\infty)\times\mathbb{R}^{d}$ such that $\| u( t,\cdot)\|_{\infty}+\| v(t,\cdot)\|_{\infty}<\infty$ for any $t\geq 0$, we say that $(u,v)$ is a global solution, and when there exist a number $T_{\varphi_{1},\varphi_{2}}<\infty$ such that \eqref{general} has a bounded solution $(u,v)$ in $[0,T]\times \mathbb{R}^{d}$ for all $T1$ and $(\gamma+1)/({\beta_{1}}{\beta_{2}}-1)\geq d/2$ with $\gamma=\max\{\beta_{1},\beta_{2}\}$, any nontrivial positive solution to \eqref{general} blows up in finite time. Related results and more general cases for the Laplacian can be found for instance in \cite{A-H-V,De,E-L,F-L-U,Ko,M-H,S-T,Wa,Zh}. The case for fractional powers of the Laplacian when $k\equiv1$ for equations with different diffusion operators was considered in \cite{Gu-Ki,K-Q}; see also \cite{B-L-W,L-W} for a probabilistic approach. Sugitani \cite{Su} has considered a scalar version of \eqref{general} with $k\equiv1$ when the nonlinear term is given by an increasing nonnegative continuous and convex function $F(u)$, defined on $[0,\infty)$, and Guedda and Kirane \cite{G-K} have considered a scalar version of \eqref{general} with $k\equiv1$ when the nonlinear term is $h(t)u^{\beta}$, $\beta>1$ with $h$ being a nonnegative continuous function on $[0,\infty)$ satisfying $c_{0}t^{\sigma}\leq h(t)\leq c_{1}t^{\sigma}$ for sufficiently large $t$, where $c_{0}, c_{1}>0$ and $\sigma>-1$ are constants. They proved that in this scalar case, solutions blow up in finite time if $00, \end{equation*} where $p(t,x)$, $t>0$, $x\in\mathbb{R}^{d}$ denotes the density of the semigroup $S(t)$, $t\geq0$. \begin{lemma} \label{Lemma1} For any $s,t>0,$ and $x,y\in \mathbb{R}^{d}$, $p( t,x) $ satisfies \begin{itemize} \item[i)] $p(ts,x) =t^{-\frac{d}{\alpha }}p( s,t^{-\frac{1}{\alpha }}x)$, \item[ii)] $p(t,x) \leq p( t,y) $ when $\vert x\vert \geq \vert y\vert $, \item[iii)] $p( t,x) \geq (\frac{s}{t}) ^{\frac{d}{\alpha }}p( s,x) $ for $t\geq s$, \item[iv)] $p(t,\frac{1}{\tau }( x-y)) \geq p( t,x)p( t,y) $ if $p( t,0) \leq 1$ and $\tau \geq 2$. \end{itemize} \end{lemma} \begin{proof} See Guedda and Kirane \cite{G-K} or Sugitani \cite{Su}. \end{proof} \begin{lemma}\label{Lemma2} If there exist $T_{0}>0$ such that $u(t)=\infty$ or $v(t)=\infty$ for $t\geq T_{0}$, then the nonnegative solution of \eqref{general} blows up in finite time. \end{lemma} \begin{proof} Due to (\ref{condk}) and Lemma \ref{Lemma1} i), we can assume that \begin{equation*} p(K(t,0),0)\leq1 \quad \mbox{ for all }t\geq T_{0}. \end{equation*} If $T_{0}\leq \varepsilon _{1}^{1/\rho }t$ and $\varepsilon _{1}^{1/\rho }t\leq r\leq(2\varepsilon _{1})^{1/\rho }t$, we have from the conditions of $k(t)$, \begin{align*} \tau&\equiv \Big[\frac{K((10\varepsilon _{2})^{1/\rho }t,r)}{K(r,0) }\Big]^{1/\alpha }=\Big[\frac{K((10\varepsilon _{2})^{1/\rho }t,0)-K(r,0)}{K(r,0) }\Big]^{1/\alpha }\\ &\geq \Big[\frac{K((10\varepsilon _{2})^{1/\rho }t,0)}{K((2\varepsilon _{1})^{1/\rho }t),0) }-1\Big]^{1/\alpha }\geq\Big[\frac{\varepsilon _{1}(10\varepsilon _{2})t^\rho}{\varepsilon _{2}(2\varepsilon _{1})t^\rho }-1\Big]^{1/\alpha }\geq2. \end{align*} Hence, using Lemma \ref{Lemma1} i), iv) with $\tau=\big[\frac{K((10\varepsilon _{2})^{1/\rho }t,r)}{K(r,0) }\big]^{1/\alpha }$, \begin{align*} & p(K((10\varepsilon _{2})^{1/\rho }t,r),x-y)\\ &=p(K(r,0)\Big[\frac{K((10\varepsilon _{2})^{1/\rho }t,r)}{K(r,0) }\Big],x-y)\\ &=\Big[\frac{K(r,0)}{K((10\varepsilon _{2})^{1/\rho }t,r) }\Big]^{d/\alpha }p(K(r,0),\Big[\frac{K(r,0)}{K((10\varepsilon _{2})^{1/\rho }t,r) }\Big]^{1/\alpha }(x-y))\\ &\geq\Big[\frac{K(r,0)}{K((10\varepsilon _{2})^{1/\rho }t),r) }\Big]^{d/\alpha }p(K(r,0),x)p(K(r,0),y), \quad x,y\in \mathbb{R}^{d}. \end{align*} Hence, assuming that $u(t)=\infty$ for all $t\geq T_{0}$, \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{d}}p(K((10\varepsilon _{2})^{1/\rho }t,r),x-y)u(r,y)dy\\ &\geq \Big[\frac{K(r,0)}{K((10\varepsilon _{2})^{1/\rho }t,r) }\Big]^{d/\alpha }p(K(r,0),x)u(r)=\infty,\quad x\in \mathbb{R}^{d}. \end{aligned}\label{estLemma2} \end{equation} We know by (\ref{mildsol2}) that \begin{align*} v(t,x)& =\int_{\mathbb{R}^{d}}p(K(t,0),x-y)\varphi_{2}(y)dy\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}}p(K(t,r),x-y) u^{\beta_{2}}(r,y)dy\Big)dr\\ &\geq\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}}p(K(t,r),x-y) u^{\beta_{2}}(r,y)dy\Big)dr. \end{align*}% Thus, \begin{equation*} v((10\varepsilon _{2})^{1/\rho }t,x)\geq\int_{0}^{(10\varepsilon _{2})^{1/\rho }t}\Big(\int_{\mathbb{R}^{d}}p(K((10\varepsilon _{2})^{1/\rho }t,r),x-y)u^{\beta_{2}}(r,y)dy\Big)dr \end{equation*} and by Jensen's inequality and (\ref{estLemma2}), we get \begin{equation*} v((10\varepsilon _{2})^{1/\rho }t,x)\geq\int_{\varepsilon _{1}^{1/\rho }t}^{(2\varepsilon _{1})^{1/\rho }t}\Big(\int_{\mathbb{R}^{d}}p(K((10\varepsilon _{2})^{1/\rho }t,r),x-y)u(r,y)dy\Big)^{\beta_{2}}dr=\infty, \end{equation*} so that $v(t,x)=\infty$ for any $t\geq(10\frac{\varepsilon _{2}}{\varepsilon _{1}})^{1/\rho }T_{0}$ and $x\in\mathbb{R}^{d}$. Similarly, when $v(t)=\infty$ for all $t\geq T_{0}$, it can be shown that $u(t,x)=\infty$ for all $t\geq(10\frac{\varepsilon _{2}}{\varepsilon _{1}})^{1/\rho }T_{0}$ and $x\in\mathbb{R}^{d}$. \end{proof} \begin{theorem} \label{Thm} If $0< d\rho( \beta_{i} -1)/ \alpha <1$, $i=1$, $2$, then the nonnegative solution of system \eqref{general} blows up in finite time. \end{theorem} \begin{proof} Let $t_{0}\geq1$ be such that (\ref{condk}) holds for all $t\geq t_{0}$ and such that $p(K(t_{0},0),0)\leq1$. Using Lemma \ref{Lemma1} i), iv), we have \begin{align*} p(K(t_{0},0),x-y)=&p(K(t_{0},0),\frac{1}{2}(2x-2y))\geq p(K(t_{0},0),2x)p(K(t_{0},0),2y)\\ =&2^{-d}p(2^{-\alpha}K(t_{0},0),x)p(K(t_{0},0),2y),\quad x,y\in \mathbb{R}^{d}. \end{align*} Therefore (see (\ref{mildsol1})) \begin{equation} \begin{aligned} u(t_{0},x) &\geq\int_{\mathbb{R}^{d}}p(K(t_{0},0),x-y)\varphi_{1}(y)dy \\ &\geq2^{-d}p(2^{-\alpha}K(t_{0},0),x)\int_{\mathbb{R}^{d}}p(K(t_{0},0),2y)\varphi_{1}(y)dy\\ &=N_{1}p(2^{-\alpha}K(t_{0},0),x),\quad x\in \mathbb{R}^{d}, \end{aligned}\label{estuto}% \end{equation} where $N_{1}=2^{-d}\int_{\mathbb{R}^{d}}p(K(t_{0},0),2y)\varphi_{1}(y)dy$. Notice that \begin{align*} u(t+t_{0},x)&=\int_{\mathbb{R}^{d}}p(K(t+t_{0},0),x-y)\varphi_{1}(y)dy\\ &\quad+\int_{0}^{t+t_{0}}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},r),x-y)v^{\beta_{1}} (r,y)dy\Big)dr\\ &=\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0})+K(t_{0},0),x-y)\varphi_{1}(y)dy\\ &\quad+\int_{0}^{t_{0}}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0})+K(t_{0},r),x-y)v^{\beta_{1}} (r,y)dy\Big)dr\\ &\quad+\int_{t_{0}}^{t+t_{0}}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},r),x-y)v^{\beta_{1}} (r,y)dy\Big)dr\\ &=\int_{\mathbb{R}^{d}}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0}),x-z)p(K(t_{0},0),z-y) dz\Big)\varphi_{1}(y)dy\\ &\quad+\int_{0}^{t_{0}}\Big[\int_{\mathbb{R}^{d}}\Big(\int_{\mathbb{R}^{d}} p(K(t+t_{0},t_{0}),x-z)p(K(t_{0},r),z-y)dz\Big)\\ &\quad \times v^{\beta_{1}}(r,y)dy\Big]dr\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},r+t_{0}),x-y)v^{\beta_{1}} (r+t_{0},y)dy\Big)dr,\\ \end{align*} $t\geq0$, $x\in\mathbb{R}^{d}$. From here, by Fubini's theorem and (\ref{mildsol1}) we have \begin{align*} u(t+t_{0},x)&=\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0}),x-z)\Big(\int_{\mathbb{R}^{d}} p(K(t_{0},0),z-y)\varphi_{1}(y)dy\Big)dz\\ &\quad+\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0}),x-z)\Big[\int_{0}^{t_{0}} \Big(\int_{\mathbb{R}^{d}}p(K(t_{0},r),z-y)\\ &\quad \times v^{\beta_{1}}(r,y)dy\Big)dr\Big]dz\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},r+t_{0}),x-y)v^{\beta_{1}} (r+t_{0},y)dy\Big)dr\\ &=\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0}),x-y)u(t_{0},y)dy\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},r+t_{0}),x-y)v^{\beta_{1}} (r+t_{0},y)dy\Big)dr, \end{align*} $t\geq0,\text{ } x\in\mathbb{R}^{d}$. Thus, using (\ref{estuto}) gives \begin{equation} \begin{aligned} u(t+t_{0},x) &\geq N_{1}\int_{\mathbb{R}^{d}}p(K(t+t_{0},t_{0}),x-y)p(2^{-\alpha} K(t_{0},0),y)dy\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}}p(K(t+t_{0},r+t_{0}),x-y) v^{\beta_{1}}(r+t_{0},y)dy\Big)dr\\ &=N_{1}p(K(t+t_{0},t_{0})+2^{-\alpha}K(t_{0},0),x)\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}} p(K(t+t_{0},r+t_{0}),x-y)v^{\beta_{1}}(r+t_{0},y)dy\Big)dr, \end{aligned}\label{estthm} \end{equation} $t\geq0$, $x\in\mathbb{R}^{d}$. Multiplying both sides of (\ref{estthm}) by $p(K(t+t_{0},0),x)$ and integrating, we have \begin{align*} u(t+t_{0})&= N_{1}p(2K(t+t_{0},t_{0})+(2^{-\alpha}+1)K(t_{0},0),0)\\ &\quad+\int_{0}^{t}\Big(\int_{\mathbb{R}^{d}} p(2K(t+t_{0},0)-K(r+t_{0},0),y)v^{\beta_{1}}(r+t_{0},y)dy\Big)dr, \end{align*} $t\geq0$. Applying Lemma \ref{Lemma1} i), iii), we get \begin{align*} u(t+t_{0}) &\geq N_{1}[2K(t+t_{0},t_{0})+(2^{-\alpha}+1)K(t_{0},0)]^{-d/\alpha }p(1,0)\\ &\quad+\int_{0}^{t}\Big(\frac{K(r+t_{0},0)}{2K(t+t_{0},0)}\Big)^{d/\alpha} v^{\beta_{1}}(r+t_{0})dr. \end{align*} For a suitable choice of $\theta>0$ given below, we define $f_{1}(t)=K^{d/\alpha}(t+t_{0},0)u(t+t_{0}),\text{ }g_{1}(t)=K^{d/\alpha}(t+t_{0},0)v(t+t_{0}),\text{ }t\geq\theta$. Then \begin{equation*} f_{1}(t)\geq \overline{N}_{1}+2^{-d/\alpha}\int_{\theta}^{t}K^{-d(\beta_{1}-1)/\alpha}(r+t_{0},0) g_{1}^{\beta_{1}}(r)dr,\quad t\geq\theta, \end{equation*}% where $\overline{N}_{1}=p(1,0)N_{1}\Big[\frac{K(\theta,0)}{2K(\theta+t_{0},0) +(2^{-\alpha}+1)K(t_{0},0)}\Big]^{d/\alpha}$. Similarly, it can be shown that \begin{equation*} g_{1}(t)\geq \overline{N}_{2}+2^{-d/\alpha}\int_{\theta}^{t}K^{-d(\beta_{2}-1)/\alpha}(r+t_{0},0) f_{1}^{\beta_{2}}(r)dr,\quad t\geq\theta, \end{equation*}% where $\overline{N}_{2}=p(1,0)N_{2}\Big[\frac{K(\theta,0)}{2K(\theta+t_{0},0) +(2^{-\alpha}+1)K(t_{0},0)}\Big]^{d/\alpha}$ with $N_{2}=2^{-d}\int_{\mathbb{R}^{d}}p(K(t_{0},0),\\2y)\varphi_{2}(y)dy$. Letting $N=\min\{\overline{N}_{1},\overline{N}_{2}\}$, we get \begin{align*} f_{1}(t)&\geq N+2^{-d/\alpha}\int_{\theta}^{t}\min_{i\in \left\{ 1,2\right\} }K^{-d(\beta_{i}-1)/\alpha}(r+t_{0},0)g_{1}^{\beta_{1}}(r)dr,\quad t\geq\theta,\\ g_{1}(t)&\geq N+2^{-d/\alpha}\int_{\theta}^{t}\min_{i\in \left\{ 1,2\right\} }K^{-d(\beta_{i}-1)/\alpha}(r+t_{0},0)f_{1}^{\beta_{2}}(r)dr,\quad t\geq\theta. \end{align*} Let $(f_{2}(t),g_{2}(t))$ be the solution of the system integral equations \begin{align*} f_{2}(t)&= N+2^{-d/\alpha}\int_{\theta}^{t}\min_{i\in \left\{ 1,2\right\} }K^{-d(\beta_{i}-1)/\alpha}(r+t_{0},0)g_{2}^{\beta_{1}}(r)dr,\quad t\geq\theta,\\ g_{2}(t)&= N+2^{-d/\alpha}\int_{\theta}^{t}\min_{i\in \left\{ 1,2\right\} }K^{-d(\beta_{i}-1)/\alpha}(r+t_{0},0)f_{2}^{\beta_{2}}(r)dr,\quad t\geq\theta, \end{align*} whose differential expression is \begin{equation} \label{estthm2} \begin{aligned} f_{2}'(t)&= 2^{-d/\alpha}\min_{i\in \left\{ 1,2\right\} }K^{-d(\beta_{i}-1)/\alpha}(t+t_{0},0)g_{2}^{\beta_{1}}(t),\quad t>\theta,\\ g_{2}'(t)&= 2^{-d/\alpha}\min_{i\in \left\{ 1,2\right\} }K^{-d(\beta_{i}-1)/\alpha}(t+t_{0},0)f_{2}^{\beta_{2}}(t),\quad t>\theta,\\ f_{2}(\theta)&= N,\quad g_{2}(\theta)=N. \end{aligned} \end{equation} From (\ref{estthm2}) it follows that \begin{equation*} \int_{\theta}^{t}f_{2}^{\beta_{2}}(r)f_{2}'(r)dr=\int_{\theta}^{t} g_{2}^{\beta_{1}}(r)g_{2}'(r)dr, \end{equation*} that is, \begin{equation*} \frac{1}{\beta_{2}+1}[f_{2}^{\beta_{2}+1}(t)-N^{\beta_{2}+1}] =\frac{1}{\beta_{1}+1}[g_{2}^{\beta_{1}+1}(t)-N^{\beta_{1}+1}]. \end{equation*}% Fix $\theta>0$ such that $01$) \begin{equation*} f_{2}(t)\geq\Big[N^{\frac{1-\beta_{1}\beta_{2}}{\beta_{1}+1}}-2^{-d/\alpha}\Big(\frac{1-\beta_{1} \beta_{2}}{\beta_{1}+1}\Big)\Big(\frac{\beta_{1}+1}{\beta_{2}+1}\Big)^{\frac{\beta_{1}}{\beta_{1}+1}}H(t)\Big]^ {\frac{\beta_{1}+1}{1-\beta_{1}\beta_{2}}}, \end{equation*} where \begin{equation*} H(t)\equiv\int_{\theta}^{t}\min_{i\in \left\{ 1,2\right\} }K^{-\frac{d(\beta_{i}-1)}{\alpha}}(r+t_{0},0)dr,\quad t\geq\theta. \end{equation*} From (\ref{condk}) we have \begin{equation*} H(t)\geq\int_{\theta}^{t}\min_{i\in \left\{ 1,2\right\} }(\varepsilon_{2}(r+t_{0})^{\rho})^{-\frac{d(\beta_{i}-1)}{\alpha}}dr. \end{equation*} Using the fact that $0< d\rho\left( \beta_{2} -1\right)/ \alpha <1$ we get \begin{align*} H(t)&\geq\min_{i\in \left\{ 1,2\right\} }\varepsilon_{2}^{-\frac{d(\beta_{i}-1)}{\alpha}}\int_{\theta}^{t} (r+t_{0})^{-\frac{d\rho(\beta_{2}-1)}{\alpha}}dr\\ &=\frac{\alpha}{\alpha-d\rho(\beta_{2}-1)}\min_{i\in \left\{ 1,2\right\} }\varepsilon_{2}^{-\frac{d(\beta_{i}-1)}{\alpha}} \Big[(t+t_{0})^{\frac{\alpha-d\rho(\beta_{2}-1)}{\alpha}} -(\theta+t_{0})^{\frac{\alpha-d\rho(\beta_{2}-1)}{\alpha}}\Big]. \end{align*} Thus $H(t)\to\infty$ when $t\to\infty$. So, we have that there exists $T_{0}\geq\theta$ such that $f_{2}(t)=\infty$ for $t=T_{0}$. By comparison we have \begin{equation*} K^{d/\alpha}(t+t_{0},0)u(t+t_{0})=f_{1}(t)\geq f_{2}(t)=\infty\quad \mbox{for } t=T_{0}, \end{equation*} which implies by Lemma \ref{Lemma2} that $v(t,x)=\infty$ for all $t\geq(10\frac{\varepsilon_{2}}{\varepsilon_{1}})^{1/\rho}(T_{0} +t_{0})$ and $x\in\mathbb{R}^{d}$. \end{proof} \begin{thebibliography}{99} \bibitem{A-H-V} D. Andreucci, M. A. Herrero, and J. J. L. Vel\'{a}zquez. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. \emph{Ann. Inst. Henri Poincar\'{e}, Anal. Non Lin\'{e}aire\/} \textbf{14} (1997), No. 1, 1-53. \bibitem{B-L-W} M. Birkner, J. A. L\'{o}pez-Mimbela, and A. Wakolbinger. Blow-up of semilinear PDE's at the critical demension. A probabilistic approach. \emph{Proc. Amer. Math. Soc.} \textbf{130} (2002), 2431-2442. \bibitem{De} W. Deng. Global existence and finite time blow up for a degenerate reaction-diffusion system. \emph{Nonlinear Anal. Theory Methods Appl.} \textbf{60} (2005), No. 5(A), 977-991. \bibitem{E-H} M. Escobedo and M. A. Herrero. Boundedness and blow up for a semilinear reaction-diffusion system. \emph{J. Diff. Equations } \textbf{89 }(1991), 176-202. \bibitem{E-L} M. Escobedo and H. A. Levine. Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations. \emph{Arch. Ration. Mech. Anal.} \textbf{129} (1995), No. 1, 47-100. \bibitem{F-L-U} M. Fila, H. A. Levine, and Y. Uda. A Fujita-type global existence-global non-existence theorem for a system of reaction diffusion equations with differing diffusivities. \emph{Math. Methods Appl. Sci.} \textbf{17} (1994), No. 10, 807-835. \bibitem{G-K} M. Guedda and M. Kirane. A note on nonexistence of global solutions to a nonlinear integral equation. \emph{Bull. Belg. Math. Soc.} \textbf{6} (1999), 491-497. \bibitem{Gu-Ki} M. Guedda and M. Kirane. Critically for some evolution equations. \emph{Differ. Equ.} \textbf{37} (2001), No. 4, 540-550. \bibitem{K-Q} M. Kirane and M. Qafsaoui. Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems. \emph{J. Math. Anal. Appl.} \textbf{268} (2002), 217-243. \bibitem{Ko} Y. Kobayashi. The life span of blow-up solutions for a weakly coupled system of reaction-diffusion equations. \emph{Tokyo J. Math.} \textbf{24} (2001), No. 2, 487-498. \bibitem{L-W} J. A. L\'{o}pez-Mimbela and A. Wakolbinger. Lenght of Galton-Watson trees and blow-up of semilinear systems. \emph{J. Appl. Prob.} \textbf{35} (1998), 802-811. \bibitem{M-H} K. Mochizuki and Q. Huang. Existence and behaviour of solutions for a weakly coupled system of reaction-diffusion equations. \emph{Methods Appl. Anal.} \textbf{5} (1998), No. 2, 109-124. \bibitem{S-T} P. Souplet and S. Tayachi. Optimal condition for non-simultaneous blow-up in a reaction-diffusion system, \emph{J. Math. Soc. Japan} \textbf{56}, (2004), No. 2, 571-584. \bibitem{Su} S. Sugitani. On nonexistence of global solutions for some nonlinear integral equations. \emph{Osaka J. Math.} \textbf{12} (1975), 45-51. \bibitem{Wa} M. Wang. Blow-up rate estimates for semilinear parabolic systems. \emph{J. Diff. Equations } \textbf{170} (2001), 317-324. \bibitem{Zh} S. Zheng. Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system. \emph{J. Math. Anal. Appl.} \textbf{232} (1999), 293-311. \end{thebibliography} \end{document}