\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 99, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/99\hfil Stable time periodic solutions] {Stable time periodic solutions for damped Sine-Gordon equations} \author[J. Zhu, Z. Li, Y. Liu \hfil EJDE-2006/99\hfilneg] {Jianmin Zhu, Zhixiang Li, Yicheng Liu} \address{Jianmin Zhu \newline Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha, 410073, China} \email{zhujmmath@hotmail.com} \address{Zhixiang Li \newline Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha, 410073, China} \email{zhxli02@yahoo.com.cn} \address{Yicheng Liu \newline Department of Mathematics and System Science, College of Science, National University of Defense Technology, Changsha, 410073, China} \email{liuyc2001@hotmail.com} \date{} \thanks{Submitted May 2, 2006. Published August 31, 2006.} \subjclass[2000]{34K13, 35K50} \keywords{Schaefer's fixed-point theorem; time periodic solutions; \hfill\break\indent Sine-Gordon equations; uniformly asymptotic stability} \begin{abstract} We investigate existence and stability of time periodic solutions for damped Sine-Gordon equations with delay under reasonable assumptions. The key-step is constructing suitable Lyapunov functionals and establishing the priori bound for all possible periodic solutions. We also use the Schaefer fixed-point theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In this paper, we are interested in obtaining existence and stability of time periodic solutions for the following damped Sine-Gordon equations with delay \begin{gather*} \begin{aligned} \frac{\partial^2}{\partial t^2}u(t,x) &=\frac{\partial^2 }{\partial x^2}u(t,x) -\delta\frac{\partial }{\partial t}u(t,x) -\int_{t-\tau}^te^{-\alpha(t-s)}\frac{\partial }{\partial s}u(s,x)ds\\ &\quad +\beta\sin(u(t,x))+g(t,x),\quad 0< x< 1,\; t>0, \end{aligned}\\ u(t,0)=u(t,1)=0, \quad t>0, \end{gather*} where $0<\tau< +\infty$, $\beta$ and $\delta$ are two constants. The Sine-Gordon equation appears in a number of physical applications, including the propagation of junction between two superconductors, the motion of rigid pendula attached to a stretched wire, and the dislocations in crystals. The existence of periodic solutions of nonlinear partial differential equations with delay has been considered in several works, see for example \cite{b1,f1,h1,h2,h5,j1,j2,j3,y1} and references listed therein. Most of these results are established by applying semigroup theory \cite{h2,h5}, Leray-Schauder continuation theorem \cite{j2}, coincidence degree theory \cite{j3} and so on. Hino, Naito et al. \cite{h5} investigated the existence of (almost) periodic solutions for damped wave equations by using the key assumption that there exists a bounded solution. Burton and Zhang \cite{b1} obtained the time periodic solution to some evolution equations with infinity delay by means of Granas's fixed point theorem \cite{s2}. The theory of partial differential equations with delay(s) has seen considerable development, see the monographs of Wu \cite{j1} and Hale \cite{h1,h3}, where numerous properties of their solutions are studied. For the more special work, we can read the references therein \cite{y1,f1,r1,h4}. The paper is organized as follows. In section 2 we will establish existence of time periodic solution for abstract differential equation in a certain Banach space. Some existence results for time periodic solutions are given in section 3. At last section, the uniformly asymptotic stable time periodic solution will be shown. For the remainder of the introduction, we state the following lemma which will be used in the sequel. \begin{lemma}[Schaefer \cite{s1}] \label{lem1.1} Let $(X,\|\cdot\|)$ be a normed linear space, $H$ a continuous mapping of $X$ into $X$ which is compact on each bounded subset $D$ of $X$. Then either \begin{itemize} \item[(i)] $x=\lambda Hx$ has a solution in $X$ for $\lambda=1$, or \item[(ii)] the set of all such solutions, $0<\lambda<1$, is unbounded. \end{itemize} \end{lemma} \section{Time periodic solutions for abstract equations} In this section, we obtain the existence results of periodic solutions for the wave equation \begin{equation} \label{e2.1} \begin{gathered} \frac{\partial^2}{\partial t^2}u(t,x)+\delta\frac{\partial }{\partial t}u(t,x)=\frac{\partial^2}{\partial x^2}u(t,x)+\lambda C(t,u), \quad 0< x< 1,\; t>0,\\ u(t,0)=u(t,1)=0,\quad t>0, \end{gathered} \end{equation} where $C(t+T,u)=C(t,u)$ for some $T>0$, $\lambda\in (0,1)$. Let $v(t,x)=\frac{\partial }{\partial t}u(t,x)$, we define a linear (unbounded) operator $A$ by $$ A \begin{pmatrix} u\\ v \end{pmatrix}=\begin{pmatrix} v\\ \frac{\partial^2 u}{\partial x^2}-\delta v \end{pmatrix},\quad \begin{pmatrix} u\\ v \end{pmatrix} \in D(A)=(H^2\cap H_0^1)\times H_0^1, $$ where $H_0^1=W_0^{1,2}(0,1)$, $H^2=W^{2,2}(0,1)$. Set $$ \tilde{C}(t,w)=\begin{pmatrix} 0\\ C(t,u) \end{pmatrix}\quad\text{for } w=\begin{pmatrix} u\\ v \end{pmatrix}\in L^2(0,1; R)\times L^2(0,1; R). $$ We rewrite \eqref{e2.1} as an abstract equation in $L^2(0,1; R)\times L^2(0,1; R)$. That is, \begin{equation} \label{e2.2} w'(t)=Aw(t)+\lambda \tilde{C}(t,w) . \end{equation} Let \begin{equation} \label{e2.3} \begin{gathered} X=\{w\in C(R,H_0^1\times H^0)|w(t+T)=w(t)\},\\ \|w\|_X=\sup\{(\int_0^1(u_x^2+v^2)dx)^{1/2}| 0\leq t\leq T\}. \end{gathered} \end{equation} Then $(X,\|\cdot\|_X)$ is a Banach space. \begin{theorem} \label{thm2.1} Suppose the following conditions hold: \begin{enumerate} \item There exists $D>0$ such that if $w(t)$ is a $T$-periodic solution of \eqref{e2.2} for some $\lambda\in (0,1)$, then $\|w\|_X0$, $\alpha>0$ such that $\alpha\in\rho(A)$ and $\|T(t)\|\leq ce^{\alpha t}$ for $t\geq 0$. Take $S(t)=T(t)e^{-\alpha t}$ for $t\geq 0$, then $\|S(t)\|\leq c$ for $t\geq 0$. Therefore, $\{S(t)\}_{t\geq 0}$ is bounded strongly continuous semigroup with the generator $A-\alpha I$. For the constant $T>0$, from the equality $\sigma(S(T))=\overline{e^{T\sigma(A-\alpha I)}}$ \cite[Theorem 1.8]{h5}, we conclude that $1\notin \sigma(S(T))$. Thus there exists a positive number $N$ such that $\|(I-S(T))^{-1}\|\leq N$. We will complete the proof with using the following two lemmas. \begin{lemma} \label{lem2.2} If $L: X\to X$ is defined by $$ Lw(t)=\int_{t-T}^tS(t-s)[I-S(T)]^{-1}[\lambda\tilde{C}(s,w(s))+\alpha w(s)]ds $$ and if $w$ is a fixed point of $L$ then $w$ satisfies \eqref{e2.2}. \end{lemma} \begin{proof} For any $w\in X$, since \begin{align*} Lw(t+T)&=\int_{t}^{t+T}S(t+T-s)[I-S(T)]^{-1}[\lambda\tilde{C}(s,w(s))+\alpha w(s)]ds \\ &= \int_{t-T}^{t}S(t-r)[I-S(T)]^{-1}[\lambda\tilde{C}(r+T,w(r+T))+\alpha w(r+T)]dr \\ &= \int_{t-T}^tS(t-s)[I-S(T)]^{-1}[\lambda\tilde{C}(s,w(s))+\alpha w(s)]ds=Lw(t), \end{align*} we see that $L$ is well-defined. On the other hand, if $w(t)$ is a fixed point of $L$, by the well-known equality $\frac{d}{dt}S(t)w=(A-\alpha I)S(t)w$ for any $w\in X$, we have \begin{align*} \frac{d}{dt}w(t) &=\frac{d}{dt}Lw(t)=[I-S(T)]^{-1}[\lambda\tilde{C}(t,w(t))+\alpha w(t)] \\ &\quad -S(T)[I-S(T)]^{-1}[\lambda\tilde{C}(t-T,w(t-T))+\alpha w(t-T)] \\ &\quad +(A-\alpha I)\int_{t-T}^tS(t-s)[I-S(T)]^{-1}[\lambda\tilde{C}(s,w(s))+\alpha w(s)]ds \\ &= Aw(t)+\lambda\tilde{C}(t,w(t)). \end{align*} This completes the proof. \end{proof} \begin{lemma} \label{lem2.3} The operator $L$ is a compact operator in $X$. \end{lemma} \begin{proof} Let $E(w(s))=\lambda\tilde{C}(s,w(s))+\alpha w(s)$, by assumption (2) of Theorem \ref{thm2.1}, $E(\cdot)$ is continuous. Then, for any $w_1,w_2\in X $, we obtain $$ Lw_1(t)-Lw_2(t)=\int_{t-T}^tS(t-s)[I-S(T)]^{-1}[E(w_1(s))-E(w_2(s))]ds. $$ Thus $$ \|Lw_1(t)-Lw_2(t)\|_{H^1_0\times H^0}\leq cTN \sup_{s\in[0, T]}\|E(w_1(s))-E(w_2(s))\|_{H^1_0\times H^0}. $$ Then the continuity of $E(\cdot)$ implies that $L$ is continuous. Next, we show $L$ maps the bounded sets into compact sets. Let $B$ be any bounded set in $X$ and $M=\sup_{(t,w)\in [0,T]\times B}|C(t,u(t))|_{H^0}$. Since $C$ takes $[0,T]\times B$ into a bounded set, we see that $$ \|Lw\|_X\leq cTN[\sup_{(t,w)\in [0,T]\times B}|C(t,u(t))|_{H^0}+\alpha K] \leq cTN[M+\alpha K], $$ where $K$ is the boundedness of $B$. This implies that $L(B)$ is uniformly bounded. On the other hand, for any $w\in B$, and $0\leq t_10, \end{aligned}\\ u(t,0)=u(t,1)=0, \quad t>0, \end{gathered} \end{equation} where $g$ is continuous. We assume that there exist positive constants $K$ and $T$ satisfying \begin{itemize} \item[(A1)] $a=\int_{{-\tau}}^{^0}e^{\alpha s}ds<\delta$; \item[(A2)] $\delta<\frac{\pi^2}{3} $ and $0<|\beta|<\sqrt{(2\delta-\frac{(2+\delta)\delta}{\pi^2}-a)(2\delta -\frac{\delta(5\delta+a)}{\pi^2})}$; \item[(A3)] $g\neq 0, g(t+T,x)=g(t,x) $ and $|g(t,x)|\leq K$. \end{itemize} First, we consider the homotopy equation of \eqref{e3.1}, \begin{equation} \label{e3.2} u_{tt}+\delta u_t=u_{xx}+\lambda[\beta\sin(u)+g(t,x) -\int_{t-\tau}^te^{-\alpha(t-s)}u_s(s,x)ds],\quad 0<\lambda<1. \end{equation} \begin{lemma} \label{lem3.1} Suppose that (A1), (A2) and (A3) hold. Then there is a constant $C_1>0$ such that all $T$-periodic solution $u(t)$ of \eqref{e3.2} satisfy $$ \sup_{0\leq t\leq T}\int_0^1{(u^2_x+u^2_t)dx}\leq C_1. $$ \end{lemma} \begin{proof} Let $u(t,x)$ be a $T$-periodic solution of \eqref{e3.2} and define $$ V(t)=\int_0^1[v^2+2kuv+u_x^2]dx, $$ where $v=u_t$, $k=\frac{\delta}{\pi^2}$. Since $\int_0^1\pi^2u^2dx\leq\int_0^1u_x^2dx$ for $u\in H^1_0$, we obtain \begin{equation} \label{e3.3} (1-k)\int_0^1[u_{x}^2+v^2]dx \leq V(t)\leq (1+k)\int_0^1[u_{x}^2+v^2]dx. \end{equation} Noting the assumptions (A2) and (A3), we see that $|\beta\sin(u)+g(t,x)|\leq |\beta\|u|+K $. On the other hand, since $$ 0<|\beta|<\sqrt{(2\delta-\frac{(2+\delta)\delta}{\pi^2}-a) (2\delta-\frac{\delta(5\delta+a)}{\pi^2})}, $$ then we choose positive constant $\varepsilon_1$ such that $$ \frac{|\beta|}{2\delta-\frac{(2+\delta)\delta}{\pi^2}-a} <\varepsilon_1<\frac{2\delta-\frac{\delta(5\delta+a)}{\pi^2}}{|\beta|}. $$ Thus we have $$ \frac{(2+\delta)\delta}{\pi^2}+a+|\beta|\varepsilon_1^{-1} <2\delta $$ and (since $|\beta|<2\delta$) $$ \frac{\delta}{\pi^2}(\delta+2|\beta|+a)+|\beta|\varepsilon_1 <\frac{\delta(5\delta+a)}{\pi^2}+|\beta|\varepsilon_1<2\delta. $$ Therefore, there exist constants $\varepsilon_2$ and $\varepsilon_3$ such that $$ \frac{(2+\delta)\delta}{\pi^2}+a+|\beta|\varepsilon_1^{-1}+\varepsilon_2 <2\delta $$ and $$ \frac{\delta}{\pi^2}(\delta+2|\beta|+a+\varepsilon_3)+|\beta|\varepsilon_1 <2\delta. $$ Hence, by choosing $k=\delta/\pi^2$, we have \begin{gather} (2\delta-2k)-(k\delta+|\beta|\varepsilon_1^{-1}+\varepsilon_2+a)>0, \label{e3.4}\\ 2k-\frac{1}{\pi^2}[k(\delta+2|\beta|+\varepsilon_3+a)+|\beta|\varepsilon_1]>0. \label{e3.5} \end{gather} So that \begin{align*} &V'(t)\\ &=2\int_0^1[vv_t+u_xu_{xt}+k(u_tv+uv_t)]dx \quad (\mbox{since }\int_0^1u_xu_{xt}dx=-\int_0^1vu_{xx}dx) \\ &=2\int_0^1[vu_{tt}-vu_{xx}+k(u_{tt}u+v^2)]dx \\ &=2\int_0^1[-\delta v^2+\lambda v[\beta\sin(u)+g(t,x)-\int_{t-\tau}^te^{-\alpha(t-s)}v(s,x)ds]]dx \\ &\quad+2k\int_0^1[v^2+u_{xx}u-\delta vu+\lambda u[\beta\sin(u)+g(t,x) -\int_{t-\tau}^te^{-\alpha(t-s)}v(s,x)ds]]dx \\ &\leq 2\int_0^1[-(\delta-k)v^2-ku_{x}^2-\delta kuv]dx \\ &\quad +2\int_0^1(ku+v)(|\beta\|u|+K+\int_{t-\tau}^te^{-\alpha(t-s)}|v(s,x)|ds)dx \\ &\leq \int_0^1[-(2\delta-2k)v^2-2ku_{x}^2+k\delta(u^2+v^2)]dx \\ &\quad +\int_0^1(2|\beta| ku^2+\varepsilon_3ku^2 +k\frac{K^2}{\varepsilon_3} +ak u^2 +k\int_{t-\tau}^te^{-\alpha(t-s)}v^2(s,x)ds)dx \\ &\quad +\int_0^1(|\beta|\varepsilon_1u^2+\frac{|\beta|}{\varepsilon_1}v^2 +\varepsilon_2v^2+\frac{K^2}{\varepsilon_2}+a v^2 +\int_{t-\tau}^te^{-\alpha(t-s)}v^2(s,x)ds)dx \\ &=\int_0^1[-(2\delta-2k)+k\delta+|\beta|\varepsilon_1^{-1} +\varepsilon_2+a]v^2dx \\ &\quad +\int_0^1-2ku_x^2+[k(\delta+2|\beta|+\varepsilon_3+a) +|\beta|\varepsilon_1]u^2dx \\ &\quad +\frac{K^2}{\varepsilon_2}+k\frac{K^2}{\varepsilon_3} +(1+k)\int_0^1\int_{t-\tau}^te^{-\alpha(t-s)}v^2(s,x)dsdx \\ & \quad (\mbox{since } \int_0^1\pi^2u^2dx\leq\int_0^1u_x^2dx) \\ &\leq -c_1\int_0^1v^2+u_x^2dx+c_2\int_0^1\int_{t-\tau}^t e^{-\alpha(t-s)}v^2(s,x)dsdx+c_3, \end{align*} where $c_2=1+k$, $c_3=\frac{K^2}{\varepsilon_2}+k\frac{K^2}{\varepsilon_3}$ and (by \eqref{e3.4} and \eqref{e3.5}) \begin{align*} c_1=\min\big\{&(2\delta-2k)-(k\delta+|\beta|\varepsilon_1^{-1}+\varepsilon_2+a), \\ &2k-\frac{1}{\pi^2}[k(\delta+2|\beta|+\varepsilon_3+a)+|\beta|\varepsilon_1] \big\}>0. \end{align*} By \eqref{e3.3}, we see that there exist three positive constants $r_1,r_2$ and $r_3$ such that \begin{equation} \label{e3.6} V'(t)\leq -r_1V(t) +r_2\int_0^1\int_{t-\tau}^te^{-\alpha(t-s)}v^2(s,x)ds\,dx+r_3. \end{equation} Since $V(t)$ and $v$ are $T$-periodic, we have \begin{equation} \label{e3.7} \begin{aligned} \int_0^TV(t)dt &\leq \frac{r_2}{r_1}\int_0^T\int_0^1\int_{t-\tau}^t e^{-\alpha(t-s)}v^2(s,x)dsdxdt+r_3T/r_1 \\ &=\frac{r_2a}{r_1}\int_0^T\int_0^1v^2(t,x)dx\,dt+r_3T/r_1. \end{aligned} \end{equation} To obtain the boundedness of $\int_{_0}^{^T}\int_{_0}^{^1}v^2dxdt$, we introduce the function $$ V_1(t)=\int_0^1[v^2+u_x^2+2\lambda\cos(u)]dx. $$ Then \begin{equation} \begin{aligned} V'_1(t)&=2\int_0^1\Big[-\delta v^2+\lambda v[\beta\sin(u)+g(t,x)\\ &\quad -\int_{t-\tau}^te^{-\alpha(t-s)}v(s,x)ds]-\lambda \beta\sin(u)v\Big]dx \\ &\leq \int_0^1\Big[-(2\delta-a-\varepsilon_4)v^2+ \int_{t-\tau}^te^{-\alpha(t-s)}v^2(s,x)ds\Big]dx +\frac{K}{\varepsilon_4}, \end{aligned} \end{equation} where $0<\varepsilon_4<2(\delta-a)$. Therefore, $$ \int_0^T\int_0^1v^2(t,x)dxdt\leq \frac{KT}{\varepsilon_4(2\delta-2a-\varepsilon_4)}:=K_1. $$ By \eqref{e3.7}, we obtain $$ \int_0^TV(t)dt\leq \frac{r_2a}{r_1}K_1+r_3T/r_1. $$ Since $v$ and $u_x$ are continuous, there is a $t_0\in[0,T]$ with $$ V(t_0)\leq \frac{\frac{r_2a}{r_1}K_1+r_3T/r_1}{T}:=K_2. $$ Hence, if $t_0\leq t\leq t_0+T$, then by \eqref{e3.6}, we obtain \begin{align*} V(t)&= V(t_0)+\int_{t_0}^tV'(s)ds \\ &\leq K_2+r_2\int_{t_0}^{t_0+T}\int_0^1\int_{t-\tau}^t e^{-\alpha(t-s)}v^2(s,x)dsdxdt+r_3T \\ &\leq K_2+r_2a K_1+r_3T. \end{align*} Note that \eqref{e3.3} yields $$ \int_0^1{(u^2_x+v^2)dx}\leq \frac{K_2+r_2a K_1+r_3T}{1-\frac{\delta}{\pi^2}} :=C_1. $$ Thus $$ \sup_{0\leq t\leq T}\int_0^1{(u^2_x+v^2)dx}\leq C_1. $$ This completes the proof. \end{proof} \begin{theorem} \label{thm3.1} Suppose that (A1)--(A3) hold. Then \eqref{e3.1} admits a nontrivial $T$-periodic solution. \end{theorem} \begin{proof} Let $C(t,u)=\beta\sin(u)+g(t,x)-\int_{t-\tau}^te^{-\alpha(t-s)}u_s(s)ds$. Since \begin{align*} \int_{t-\tau}^te^{-\alpha(t-s)}u_s(s)ds &=\int_{-\tau}^0e^{\alpha s}u_s(t+s)ds \\ &=u(t)-u(t-\tau)e^{-\alpha\tau}-\alpha\int_{-\tau}^0e^{\alpha s}u(t+s)ds, \end{align*} from the assumptions (A1)--(A3), we see that $C$ is continuous and takes bounded sets into bounded sets. By Lemma \ref{lem3.1} and Theorem \ref{thm2.1}, we see that \eqref{e3.1} has a $T$-periodic solution. Since $g\neq 0$, we see that the $T$-periodic solution is nontrivial. This completes the proof. \end{proof} \section{Stable periodic solutions for Sine-Gordon equations} In this section, we investigate the uniformly asymptotic stability of time periodic solutions for Sine-Gordon equation \begin{equation} \label{e4.1} \begin{gathered} \frac{\partial^2 u(t,x)}{\partial t^2}=\frac{\partial^2 u(t,x)}{\partial x^2}-\delta\frac{\partial u(t,x)}{\partial t} +\beta\sin(u(t,x))+g(t,x),\quad 0< x< 1,\; t>0,\\ u(t,0)=u(t,1)=0, \quad t>0, \end{gathered} \end{equation} where $g$ is continuous. We assume that \begin{itemize} \item[(H1)] $0<\delta<\frac{2\pi^2}{5} $ and $0<|\beta|<\delta\sqrt{(2-\frac{(2+\delta)}{\pi^2})(2-\frac{5\delta}{\pi^2})}$. \end{itemize} \begin{theorem} \label{thm4.1} Assume that (H1) and (A3) hold. Then \eqref{e4.1} admits a nontrivial uniformly asymptotic stable $T$-periodic solution. \end{theorem} \begin{proof} By applying Theorem \ref{thm3.1} and assumptions (H1) and (A3), we conclude that \eqref{e4.1} admits a nontrivial $T$-periodic solution $\bar{u}(t)$. Let $ u(t)$ be a solution for \eqref{e4.1}, and define $$ V_2(t)=\int_0^1[(u_t-\bar{u}_t)^2+2k(u-\bar{u})(u_t-\bar{u}_t) +(u-\bar{u})_x^2]dx, $$ where $k=\frac{\delta}{\pi^2}$. By the similar arguments as in Lemma \ref{lem3.1}, we have \begin{align*} V_2'(t) &=2\int_0^1[(u_t-\bar{u}_t)(u_t-\bar{u}_t)_t+(u-\bar{u})_x(u-\bar{u})_{xt}]dx \\ &\quad +2k\int_0^1[(u_t-\bar{u}_t)^2+(u-\bar{u})(u_t-\bar{u}_t)_t]dx \\ &= 2\int_0^1[-\delta(u_t-\bar{u}_t)^2+\beta[(u_t-\bar{u}_t)+k(u-\bar{u})](\sin(u)-\sin(\bar{u}))]dx \\ &\quad +2k\int_0^1[(u_t-\bar{u}_t)^2+(u-\bar{u})_{xx}(u-\bar{u})-\delta(u_t-\bar{u}_t)(u-\bar{u})]dx \\ &\leq 2\int_0^1[-(\delta-k)(u_t-\bar{u}_t)^2-k(u-\bar{u})_{x}^2-k\delta(u-\bar{u})(u_t-\bar{u}_t)]dx \\ &\quad +2|\beta|\int_0^1(k(u-\bar{u})+(u_t-\bar{u}_t))|u-\bar{u}|dx \\ &\leq \int_0^1[-(2\delta-2k)(u_t-\bar{u}_t)^2-2k(u-\bar{u})_{x}^2+k\delta((u-\bar{u})^2+(u_t-\bar{u}_t)^2)]dx \\ &\quad +\int_0^1(2|\beta| k(u-\bar{u})^2+|\beta|\varepsilon(u-\bar{u})^2 +\frac{|\beta|}{\varepsilon}(u_t-\bar{u}_t)^2dx \\ &=\int_0^1[-(2\delta-2k)+k\delta+|\beta|\varepsilon^{-1}](u_t-\bar{u}_t)^2dx \\ &\quad +\int_0^1-2k(u-\bar{u})_x^2+[k(\delta+2|\beta|)+|\beta|\varepsilon](u-\bar{u})^2dx \\ &\leq -\tilde{c}\int_0^1(u_t-\bar{u}_t)^2+(u-\bar{u})_x^2dx, \end{align*} where $$ \frac{|\beta|}{2\delta-\frac{2\delta+\delta^2}{\pi^2}} <\varepsilon<\frac{2\delta-\frac{5\delta^2}{\pi^2}}{|\beta|} $$ and $$ \tilde{c}=\min\{2\delta-(\frac{2+|\beta|}{\pi^2}+|\beta|\varepsilon^{-1}), \frac{1}{\pi^2}[2\delta-(\frac{\delta}{\pi^2}(\delta+2|\beta|) +|\beta|\varepsilon)]\}. $$ Since $$ \frac{1}{2}\int_0^1(u_t-\bar{u}_t)^2+(u-\bar{u})_x^2dx\leq V_2(t)\leq 2\int_0^1(u_t-\bar{u}_t)^2+(u-\bar{u})_x^2dx, $$ we obtain that $$ V'_2(t)\leq -\frac{\tilde{c}}{2}V_2(t).$$ This implies that for any $t>t_0$, \begin{align*} &\|u(t)-\bar{u}(t)\|_{H^1_0}+\|u_t(t)-\bar{u}_t(t)\|_{H^0}\\ &\leq 2e^{-\frac{\tilde{c}}{2}(t-t_0)}[\|u(t_0)-\bar{u}(t_0)\|_{H^1_0} +\|u_t(t_0)-\bar{u}_t(t_0)\|_{H^0}]. \end{align*} Thus the $T$-periodic solution $\bar{u}(t)$ is uniformly asymptotic stable. Then the proof of Theorem \ref{thm4.1} is complete.\end{proof} Especially, in above arguments, let $u(t)$ be any $T$-periodic solution of \eqref{e4.1}. Then, for any positive integer $n$, we have \begin{align*} &\|u(t)-\bar{u}(t)\|_{H^1_0}+\|u_t(t)-\bar{u}_t(t)\|_{H^0} \\ &=\|u(t+nT)-\bar{u}(t+nT)\|_{H^1_0}+\|u_t(t+nT)-\bar{u}_t(t+nT)\|_{H^0}\\ &\leq 2e^{-\frac{\tilde{c}}{2}(t+nT-t_0)}[\|u(t_0)-\bar{u}(t_0)\|_{H^1_0} +\|u_t(t_0)-\bar{u}_t(t_0)\|_{H^0}]. \end{align*} Let $n\to +\infty$, we obtain $\|u(t)-\bar{u}(t)\|_{H^1_0}=0$ and $\|u_t(t)-\bar{u}_t(t)\|_{H^0}=0$, which implies that $u(t)=\bar{u}(t)$ a.e. in [0,T]. Thus we have the following result. \begin{corollary} Suppose that (H1) and (A3) hold. Then \eqref{e4.1} admits a unique uniformly asymptotic stable $T$-periodic solution. \end{corollary} Note that in Theorem \ref{thm4.1}, the assumption $0<|\beta|<\delta\sqrt{(2-\frac{(2+\delta)}{\pi^2})(2-\frac{5\delta}{\pi^2})}$ is necessary. If this condition is omitted, the time periodic solution maybe not uniformly asymptotic stable. Now, we show an example to explain this case. \noindent\textbf{Example} Consider the equation \begin{equation} \label{e4.2} \begin{gathered} \frac{\partial^2 u(t,x)}{\partial t^2}+2\frac{\partial u(t,x)}{\partial t}=\frac{\partial^2u(t,x)}{\partial x^2}+4\pi^2u(t,x),\quad 0< x<1,\; t>0,\\ u(t,0)=u(t,1)=0, \quad t>0. \end{gathered} \end{equation} It is easy to see that $u(t,x)=\sin(2\pi x)$ is a time periodic solution of \eqref{e4.2}. On the other hand, when $p=\sqrt{3\pi^2+1}-1$, $u(t,x)=\sin(2\pi x)+e^{pt}\sin(\pi x)$ is a solution of \eqref{e4.2} too, but unbounded. Meanwhile $u(t,x)\equiv 0$ is time periodic solution of \eqref{e4.2}. Hence both $u(t,x)\equiv 0$ and $u(t,x)=\sin(2\pi x)$ are not uniformly asymptotic stable time periodic solutions. \begin{thebibliography}{00} \bibitem{b1} T. A. Burton, B. Zhang; \emph{Periodic solutions of abstract differential equations with infinite delay}, J. Diff. Eqns., \textbf{90}(1991), 357-396. \bibitem{f1} Freitas, D. Krej$\breve{c}$i$\breve{r}$ik, \emph{Instability results for the damped wave equation in unbounded domains}, J. Diff. Eqns., \textbf{211}(2005), 168-186. \bibitem{h1} J. K. Hale, \emph{Asymptotic behavior of dissipative systems}, Amer. Math. Soc., Providence, (1988). \bibitem{h2} D. Henry, \emph{Geometric Theory of Semilinear Parabolic Equations}, Springer-Verlag, Berlin-New York, 1981. \bibitem{h3} J. K. Hale and G. Raugel, \emph{A damped hyperbolic equation on thin domains}, Trans. Amer. Math. Soc. \textbf{329} (1992), 185-219. \bibitem{h4} E. Hernandez, J. C. Dos Santos, \emph{Asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations}, Electron. J. Diff. Eqns., 2006(2006),38: 1-8. \bibitem{h5} Y. Hino, T. Naito, N. V., Minh, J. S. Shin; \emph{Almost periodic solutions of differential equations in Banach spaces}, NY:Taylor and Francis, 2002. \bibitem{j1} Jianhong Wu, \emph{Theory and Application of Partial Functional Differential Equations}, Springer-Verlag, Berlin-New York, 1996. \bibitem{j2} Russell Johnson, Mikhail Kamenskii and Paolo Nistri, \emph{Bifurcation and multiplicity results for periodic solutions of a damped wave equation in a thin domain}, J. Comp. Appl. Math., \textbf{113}(2000) (1-2),123-139. \bibitem{j3} Russell Johnson, Paolo Nistri and Mikhail Kamenski, \emph{On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods}, J. Diff. Eqns., \textbf{140}(1997), 186-208. \bibitem{r1} Y. N. Raffoul, \emph{T-periodic solutions and a priori bounds}, Mathematical and Computer Modelling, \textbf{32}(2000)(5-6), 643-652. \bibitem{s1} H. Schaefer, \emph{Uber die methode der a priori-Schranken}, Math. Ann. \textbf{129}(1955),415-416. \bibitem{s2} D. R. Smart, \emph{Fixed Point Theorems}, Cambridge Univ. Press, Cambridge, 1980. \bibitem{y1} An Yukun, Chenkui Zhong; \emph{Periodic solutions of a nonlinear suspension bridge equation with damping and nonconstant load}, J. Math. Anal. Appl., \textbf{279} (2003) (2), 569-579 . \end{thebibliography} \end{document}