\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 02, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/02\hfil Structural stability] {Structural stability for Brinkman-Forchheimer equations} \author[Y. Liu, C. Lin\hfil EJDE-2007/02\hfilneg] {Yan Liu, Changhao Lin} \address{Yan Liu \newline Department of Applied Mathematics, Guangdong University of Finance, Guangzhou, 510520, China} \email{liuyan99021324@tom.com} \address{Changhao Lin \newline School of Mathematical Sciences, South China Normal University, 510631, China} \email{linchh@scnu.edu.cn} \thanks{Submitted December 7, 2006. Published January 2, 2007.} \subjclass[2000]{35B40, 35K50,35K45} \keywords{Continuous dependence; Brinkman-Forchheimer equations; \hfill\break\indent Brinkman coefficient; Forcheimer coefficient; structural stability} \begin{abstract} In this paper, we obtain the continuous dependence and convergence results for the Brinkman and Forchheimer coefficients of a differential equation that models the flow of fluid in a saturated porous medium. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} The concept of structural stability in which the study of continuous dependence (or stability) is on changes in the model itself rather than the initial data, has been the subject of much recent study. Many references to the work of the nature are given in the monograph of Ames and Straughan \cite{a1}, which stress that continuous dependence on the model itself, or structural stability, is every bit as important as stability with respect to perturbations of the initial data. In particularly, the stability of flow in porous media has attracted much more attention in the literature; see \cite{g1,p1,p2,p3,s1,s2} and their references. In this paper, we are interested in the Brinkman-Forchheimer equations governing the flow of fluid in a saturated porous medium, \begin{equation} \label{e1.1} \begin{gathered} \frac{\partial u_i}{\partial t}=\lambda \Delta u_i-au_i-b| u | u_i-p_{, i}\\ \frac{\partial u_i}{\partial x_i}=0 \end{gathered} \end{equation} where $u_i$ is the average fluid velocity in the porous medium, a is the Darcy coefficient, $\lambda$ is the Brinkman coefficient, $b$ is the Forchheimer coefficient, and $p$ is the pressure. $\lambda$, $a$ and $b$ are positive constants. Here also $\Delta$ is the laplace operator, and $\|\cdot\|$ denotes the norm of $L^2$. We assume that $\Omega$ is a bounded, simply connected domain with boundary $\partial \Omega$ in $R^3$. Associated with \eqref{e1.1}, we imposed the boundary condition \begin{equation} u_i=0\quad \text{on } \partial \Omega\times \{t>0\} \end{equation} and the initial condition \begin{equation} u_i(x, 0)=f_i(x). \end{equation} In this paper, the usual summation convection is employed with repeated Latin subscripts summed from 1 to 3. The comma is used to indicated partial differentiation and the differentiation with respect to the direction $x_k$ is denoted as ``$,k$''. \section{Continuous dependence for the Brinkman coefficient} To study the continuous dependence on $\lambda$, we let $(u_i, p)$ and $(v_i, q)$ solve the following boundary initial-value problems for different Brinkman coefficients $\lambda_1$ and $\lambda_2$, \begin{equation} \label{e2.1} \begin{gathered} \frac{\partial u_i}{\partial t}=\lambda_1 \Delta u_i-au_i-b| u | u_i-p_{, i} \quad \text{in } \Omega\times\{t>0\}\\ \frac{\partial u_i}{\partial x_i}=0 \quad \text{in } \Omega\times\{t>0\}\\ u_i=0 \quad \text{on } \partial \Omega\times \{t>0\}\\ u_i(x, 0)=f_i(x), \quad x \in \Omega \end{gathered} \end{equation} and \begin{equation} \label{e2.2} \begin{gathered} \frac{\partial v_i}{\partial t}=\lambda_2 \Delta v_i-av_i-b| v | v_i-q_{, i} \quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial v_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ v_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ v_i(x, 0)=f_i(x), \quad x \in \Omega \end{gathered} \end{equation} We define the difference variables $w_i$, $\pi$ and $\lambda$ by \begin{equation} \label{e2.3} w_i=u_i-v_i, \pi=p-q, \lambda=\lambda_1-\lambda_2 \end{equation} and then $(w_i, \pi)$ satisfies the boundary initial-value problem \begin{equation} \label{e2.4} \begin{gathered} \frac{\partial w_i}{\partial t} =\lambda_1 \Delta u_i-\lambda_2 \Delta v_i-aw_i -b(|u| u_i-|v| v_i)-\pi_{, i} \quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial w_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ w_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ w_i(x, 0)=0, \quad x \in \Omega \end{gathered} \end{equation} Multiplying \eqref{e2.4}$_1$ by $w_i$ and integrating over $\Omega$, we get \begin{equation} \label{e2.5} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|w\|^2\\ &=-\int_\Omega \lambda_1\nabla u_i\nabla w_idx +\int_\Omega \lambda_2\nabla v_i\nabla w_idx-a\|w\|^2 -b\int_\Omega (|u|u_i -|v|v_i)w_idx \\ &=-\int_\Omega \lambda\nabla u_i\nabla w_idx +\int_\Omega\lambda_2\nabla w_i\nabla w_idx-a\|w\|^2 -b\int_\Omega (|u|u_i-|v|v_i)w_idx \end{aligned} \end{equation} Since \begin{equation} \label{e2.6} \begin{aligned} &(|u|u_i-|v|v_i)w_i\\ &=\frac{1}{2}|u|(u_i-v_i+v_i)w_i-\frac{1}{2}|v|v_iw_i+\frac{1}{2}|u| u_iw_i+\frac{1}{2}|v|w_i(u_i-v_i-u_i)\\ &=\frac{1}{2}(|u|+|v|)w_iw_idx+ \frac{1}{2}(|u|-|v|)^2(|u|+|v|) \end{aligned} \end{equation} Combining \eqref{e2.5} and \eqref{e2.6}, using the Cauchy-Schwarz inequality and dropping some negative items, we obtain \[ \frac{d}{dt}\|w\|^2\leq \frac{\lambda^2}{2\lambda_2}\|\nabla u\|^2 \] Integrating from 0 to t, we obtain \begin{equation} \label{e2.8} \|w\|^2\leq \frac{\lambda^2}{2\lambda_2}\int_0^t\|\nabla u\|^2d\eta \end{equation} Our next step is to bound $\int_0^t\|\nabla u\|^2d\eta $. Multiplying \eqref{e2.1}$_1$ by $u_i$ and integrating over $\Omega$, we see that \[ %2.9 \frac{d}{dt}\|u\|^2+2\lambda_1\|\nabla u\|^2\leq 0 \] Integrating from 0 to t, we obtain \begin{equation} \|u\|^2+2\lambda_1\int_0^t\|\nabla u\|^2d\eta\leq \|f\|^2 \end{equation} thus \begin{equation}\label{e2.10} \int_0^t\|\nabla u\|^2d\eta\leq \frac{\|f\|^2}{2\lambda_1} \end{equation} Combining \eqref{e2.8} and \eqref{e2.10}, we obtain \begin{equation}\label{e2.11} \|w\|^2\leq\frac{\lambda^2}{4\lambda_1\lambda_2}\|f\|^2\end{equation} Inequality \eqref{e2.11} shows the continuous dependence on $\lambda$. However, the convergence result can't follow from \eqref{e2.11} as $\lambda_1\to 0, \lambda_2=0$. \section{Convergence as $\lambda_1\to 0$, $\lambda_2=0$} Let $(u_i, p)$ be a solution of \eqref{e2.1} with $\lambda_1\to 0$, $(v_i, p)$ be a solution of \eqref{e2.1} with $\lambda_1\to 0$, $w_i, \pi$ are defined the same as in section 2. \begin{equation} \label{e3.1} \begin{gathered} \frac{\partial w_i}{\partial t} =\lambda_1 \Delta u_i-aw_i-b(|u| u_i-|v| v_i)-\pi_{, i} \quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial w_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ w_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ w_i(x, 0)=0, \quad x \in \Omega \end{gathered} \end{equation} Multiplying \eqref{e3.1}$_1$ by $w_i$ and integrating over $\Omega$, we find \begin{equation} \label{e3.2} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|w\|^2\\ &= -\lambda_1\int_\Omega \nabla u_i\nabla w_idx-a\|w\|^2-b\int_\Omega (|u| u_i-|v| v_i)w_idx\\ &= -\lambda_1\int_\Omega \nabla u_i\nabla u_idx +\lambda_1\int_\Omega \nabla u_i\nabla v_idx-a\|w\|^2 -b\int_\Omega (|u| u_i-|v| v_i)w_idx\\ &\leq \frac{\lambda_1}{4}\int_\Omega \nabla v_i\nabla v_idx-a\|w\|^2\,. \end{aligned} \end{equation} The next step is to bound $\int_\Omega v_{i, j}v_{i, j}dx$. We know \begin{equation}\label{e3.3} \int_\Omega v_{i, j}v_{i, j}dx=\int_\Omega v_{i, j}(v_{i, j}-v_{j, i})dx\,. \end{equation} Using \eqref{e2.2}$_1$ with $\lambda_2=0$, we get \begin{equation} \label{e3.4} \begin{aligned} &\int_0^t\int_\Omega v_{i, j}(v_{i, j}-v_{j, i})ds\,d\eta \\ &= \frac{1}{a}\int_0^t\int_\Omega (v_{i, j}-v_{j, i})(-v_{i, jt}-b(|v|v_i)_{, j}-q_{, ij})dx\,d\eta\\ &=-\frac{1}{a}\int_0^t\int_\Omega(v_{i, j}-v_{j, i})v_{i, jt}ds\,d\eta -\frac{b}{a}\int_0^t\int_\Omega(v_{i, j}-v_{j, i})\\ &\quad\times (\frac{v_kv_{k, j}}{|v|}v_i+|v|v_{i, j})ds\,d\eta +\frac{1}{a}\int_0^t\int_\Omega v_{i, ij}q_{, j}ds\,d\eta\\ &\quad -\frac{1}{a}\int_0^t\int_\Omega v_{j, ji}q_{, i}ds\,d\eta -\frac{1}{a}\int_0^t\int_{\partial\Omega} v_{i, j}q_{, j}n_idsd\eta +\frac{1}{a}\int_0^t\int_{\partial\Omega}v_{j, i}q_{, i}n_jdsd\eta\\ &=-\frac{1}{2a}\int_\Omega v_{i, j}v_{i, j}dx|_{\eta=t} +\frac{1}{2a}\int_\Omega f_{i, j}f_{i, j}dx\\ &\quad -\frac{b}{a}\int_0^t\int_\Omega\frac{v_kv_{k, j}v_iv_{i, j}}{|v|} ds\,d\eta-\frac{b}{a}\int_0^t\int_\Omega v_{i, j}|v|v_{i, j}ds\,d\eta \end{aligned} \end{equation} thus \begin{equation} \label{e3.5} \int_0^t\int_\Omega v_{i, j}v_{i, j}ds\,d\eta \leq \frac{1}{2a}\int_\Omega f_{i, j}f_{i, j}dx \end{equation} Combining \eqref{e3.2}, \eqref{e3.3} and \eqref{e3.5}, we get \[ \|w\|^2\leq\frac{\lambda_1}{8a}\int_\Omega f_{i, j}f_{i, j}ds\,d\eta \] This inequality demonstrates the convergence $u\to v$ when $\lambda_1\to 0$, $\lambda_2=0$. \section{Continuous dependence for the Forchheimer coefficient b} To study continuous dependence on $b$, we let $(u_i, p)$ and $(v_i, q)$ solve the following boundary initial-value problem for different coefficients $b_1$ and $b_2$. \begin{equation} \label{e4.1} \begin{gathered} \frac{\partial u_i}{\partial t}=\lambda \Delta u_i-au_i-b_1| u | u_i-p_{, i} \quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial u_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ u_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ u_i(x, 0)=f_i(x), \quad x \in \Omega \end{gathered} \end{equation} and \begin{equation} \label{e4.2} \begin{gathered} \frac{\partial v_i}{\partial t}=\lambda \Delta v_i-av_i-b_2| v | v_i-q_{, i} \quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial v_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ v_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ v_i(x, 0)=f_i(x), \quad x \in \Omega \end{gathered} \end{equation} We define the difference variables \begin{equation} w_i=u_i-v_i, \quad \pi=p-q, \quad b=b_1-b_2\,. \end{equation} Then $(w_i, \pi)$ satisfy the boundary initial-value problem \begin{equation} \label{e4.4} \begin{gathered} \frac{\partial w_i}{\partial t}=\lambda \Delta w_i-aw_i -(b_1| u | u_i-b_2| v | v_i)-\pi_{, i }\quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial w_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ w_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ w_i(x, 0)=0, \quad x \in \Omega \end{gathered} \end{equation} Multiplying \eqref{e4.4}$_1$ by $w_i$ and integrating over $\Omega$, we get \begin{equation} \label{e4.5} \frac{1}{2}\frac{d}{dt}\|w\|^2=-\lambda\int_\Omega|\nabla w|^2dx-a\|w\|^2- \int_\Omega (b_1|u|u_i-b_2|v|v_i)w_idx \end{equation} For we have \begin{equation} \label{e4.6} b_1|u|u_i-b_2|v|v_i=\frac{b}{2}(|u|u_i+|v|v_i)+\tilde{b}(|u|u_i-|v|v_i) \end{equation} where $\tilde{b}=\frac{b_1+b_2}{2}$. Combining \eqref{e4.5}, \eqref{e4.6} and \eqref{e2.6}, we obtain \begin{equation} \label{e4.7} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|w\|^2\\ &= -\lambda\int_\Omega|\nabla w|^2dx-a\|w\|^2- \frac{b}{2}\int_\Omega (|u|u_i+|v|v_i)w_idx- \tilde{b}(|u|u_i-|v|v_i)w_idx\\ &\leq -a\|w\|^2-\frac{b}{2}\int_\Omega (|u|u_i+|v|v_i)w_idx-\frac{\tilde{b}}{2}\int_\Omega (|u|+|v|)w_iw_idx \end{aligned} \end{equation} We then use the Cauchy-Schwarz and arithmetic geometric mean inequalities as follows \begin{equation} \label{e4.8} \frac{b}{2}|\int_\Omega (|u|u_i+|v|v_i)w_idx|\leq \frac{b^2}{8\tilde{b}}\int_\Omega(|u|^3+|v|^3)dx +\frac{1}{2}\tilde{b}\int_\Omega(|u|+|v|)w_iw_idx \end{equation} We now employ \eqref{e4.8} in \eqref{e4.7}, after an integration, that \begin{equation} \label{e4.9} \frac{1}{2}\|w\|^2+a\int_0^t\|w\|^2d\eta\leq\frac{b^2}{8\tilde{b}} \int_0^t\int_\Omega(|u|^3+|v|^3)ds\,d\eta \end{equation} From \eqref{e4.1}$_1$, one deduce that \begin{equation} \label{e4.10} \frac{1}{2}\|u\|^2+a\int_0^t\|u\|^2d\eta +b_1\int_0^t\int_\Omega|u|^3ds\,d\eta+\lambda \int_0^t\int_\Omega u_{i, j}u_{i, j}ds\,d\eta=\frac{1}{2}\|f\|^2 \end{equation} and so \begin{equation} \label{e4.11} \int_0^t\int_\Omega|u|^3ds\,d\eta\leq \frac{1}{2b_1}\|f\|^2 \end{equation} Similarly, from $\eqref{e4.2}_1$, we can also get \begin{equation} \label{e4.12} \int_0^t\int_\Omega|v|^3ds\,d\eta\leq \frac{1}{2b_1}\|f\|^2 \end{equation} Inserting \eqref{e4.11}, \eqref{e4.12} in \eqref{e4.10}, we find \begin{equation} \label{e4.13} \|w\|^2+2a\int_0^t\|w\|^2d\eta \leq\frac{b^2}{4b_1b_2}\|f\|^2 \end{equation} This inequality establish continuous dependence on $b$, we note, however, that convergence as $b_1\to 0$, $b_2=0$ is not established from \eqref{e4.13}. \section{Convergence as the Forchheimer coefficient $b_1\to0 $ and $b_2=0$} Now, let $(u_i, p)$ be the solution of \eqref{e4.1}, and $(v_i, q)$ be the solution of \eqref{e4.2} with $b_2=0$. The object of this section is to demonstrate convergence of the solution $u_i$ to the solution $v_i$ as $b_1\to 0$. We also define the variables $w_i$ and $\pi$ by \begin{equation} \label{e5.1} w_i=u_i-v_i, \quad \pi=p-q \end{equation} and then $(w_i, \pi)$ satisfy the boundary initial-value problems \begin{equation} \label{e5.2} \begin{gathered} \frac{\partial w_i}{\partial t}=\lambda \Delta w_i-aw_i -b_1|u| u_i-\pi_{, i }\quad\text{in } \Omega\times\{t>0\}\\ \frac{\partial w_i}{\partial x_i}=0 \quad\text{in }\Omega\times\{t>0\}\\ w_i=0 \quad\text{on }\partial \Omega\times \{t>0\}\\ w_i(x, 0)=0, \quad x \in \Omega \end{gathered} \end{equation} Multiplying by $w_i$ and integrating over $\Omega$, we obtain \begin{equation} \label{e5.3} \frac{1}{2}\frac{d}{dt}\|w\|^2=-\lambda \|\nabla w\|^2-a\|w\|^2-b_1\int_\Omega |u|u_iw_idx \end{equation} Using the H\"older inequality, we get \begin{equation} \label{e5.4} \frac{d}{dt}\|w\|^2\leq 2b_1\big(\int_\Omega |u|^3dx\Big)^{2/3}\Big(\int_\Omega |w|^3dx\Big)^{1/3}-2\lambda \|\nabla w\|^2-2a\|w\|^2 \end{equation} For a function $F$ such that $F=0$ on $\partial \Omega$ (see for example \cite{f1}), we have the Sobolev inequality \[ \int_\Omega |F|^4dx\leq c_1 \Big(\int_\Omega|F|^2dx\Big)^{1/2} \Big(\int_\Omega F_{i, j}F_{i, j}dx\Big)^{3/2} \] Then, we use the Cauchy-Schwarz inequality, to get \begin{equation} \label{e5.5} \begin{aligned} \int_\Omega |w|^3dx &\leq \Big(\int_\Omega |w|^2dx\Big)^{1/2} \Big(\int_\Omega |w|^4dx\Big)^{1/2}\\ &\leq c_1\Big(\int_\Omega w_iw_idx\Big)^{3/4} \Big(\int_\Omega w_{i, j}w_{i, j}dx\Big)^{3/4} \end{aligned} \end{equation} Similarly, \begin{equation} \label{e5.6} \int_\Omega |u|^3dx\leq c_1\Big(\int_\Omega u_iu_idx\Big)^{3/4}\Big(\int_\Omega u_{i, j}u_{i, j}dx\Big)^{3/4} \end{equation} In view of \eqref{e5.4} and \eqref{e5.5}, \eqref{e5.3} can be rewritten as \begin{align*} \|w\|^2 &\leq 2b_1c_1\int_0^t \Big[\Big(\int_\Omega w_iw_idx\Big)^{1/4} \Big(\int_\Omega w_{i, j}w_{i, j}dx\Big)^{1/4} \Big(\int_\Omega u_iu_idx\Big)^{1/2}\\ &\quad\times \Big(\int_\Omega u_{i, j}u_{i, j}dx\Big)^{1/2} \Big]d\eta -2\lambda \int_0^t\|\nabla w\|^2d\eta -2a\int_0^t w^2ds\,d\eta \\ &\leq 2\lambda\int_0^t\|\nabla w\|^2d\eta-2a\int_0^t\| w\|^2d\eta-2b_1c_1\int_0^t \Big[\Big(\varepsilon_1\int_\Omega w_iw_idx\Big)^{1/4}\\ &\quad\times \Big(\varepsilon_2\int_\Omega w_{i, j}w_{i, j}dx\Big)^{1/4} \Big(\max \int_\Omega u_iu_idx\cdot \int_\Omega \big(\varepsilon_1\varepsilon_2\big)^{-1/2} u_{i, j}u_{i, j}dx\Big)^{1/2}\Big]d\eta\\ &\leq\frac{1}{4}\varepsilon_1\int_0^t\int_\Omega w_iw_ids\,d\eta +\frac{1}{4}\varepsilon_2\int_0^t\int_\Omega w_{i, j}w_{i, j}ds\,d\eta \\ &\quad +\frac{4}{2}(b_1c_1)^2\cdot(\varepsilon_1\varepsilon_2)^{-1/2} \int_0^t\int_\Omega u_{i, j}u_{i, j}ds\,d\eta\\ &\quad -2a\max\int_\Omega u_iu_idx\int_0^t \int_\Omega w^2ds\,d\eta-2\lambda\int_0^t|\nabla w|^2d\eta-2a\int_0^t\| w\|^2d\eta \end{align*} If we choose $\varepsilon_1=8a$, $\varepsilon_2=8\lambda$, the above expression can be rewritten as \begin{equation} \label{e5.7} \|w\|^2\leq \frac{b_1^2c_1^2}{4(a\lambda)^{1/2}} \max\int_\Omega u_iu_idx\cdot \int_0^t\int_\Omega u_{i, j}u_{i, j}ds\,d\eta \end{equation} From \eqref{e4.10}, we have \[ \max\int_\Omega u_iu_idx\leq\|f\|^2, \quad \int_0^t\int_\Omega u_{i, j}u_{i, j}ds\,d\eta \leq\frac{1}{2\lambda}\|f\|^2; \] therefore, from \eqref{e5.7}, we have \[ \|w\|^2\leq \frac{(b_1c_1)^{2}}{8a^{1/2}\lambda^{3/2}}\|f\|^4, \] which shows the desired result.\subsection*{Acknowledgments} The authors would like to express their gratitude to Professor Hongliang Tu for his advice when in writing parts of this article. \begin{thebibliography}{0} \bibitem{a1} K. A. Ames and B. Straughan, {\em Non-standard and improperly posed problems,} Academic. Press. \bibitem{f1} J. N. Flavin and S. Rionero, {\em Qualitative Estimates for Partial Differential Equtions:An Introduction,} CRC Press, Boca Raton (1996). \bibitem{g1} J. Guo and P. N. Kaloni, {\em Double diffusive convection in a porous medium, nonlinear stability and the Brinkman effect}, Stud. Appl. Math. 94 (1995), 341-358. \bibitem{p1} L. E. Payne and B. Straughan, {\em Convergence and continuous dependence for the Brinkman-Forchheimer equations,} Stud. Appl. Math. 102 (1999), 419-439. \bibitem{p2} L. E. Payne and B. Straughan, {\em Structural stability for the Darcy equations of flow in porous media,} Proc, Roy, Soc, London A 454 (1998), 1691-1698. \bibitem{p3} L. E. Payne, J. C. Song and B. Straughan, {\em Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity,} Proc. R. Soc. Lond. A (1999)45S, 2173-2190. \bibitem{s1} B. Straughan, {\em Effect of property variation and modeling on convection in a fluid overlying a porous layer,}Int. J. num. Anal. Meth. Geomech, 26 (2002)75-97. \bibitem{s2} B. Straughan and K. Hutter, {\em A priori bounds and structure stability for double-diffusive convection in corporating the soret effect}, Proc. R. Soc. lond. A(1999)455, 767-777. \end{thebibliography} \end{document} o