\documentclass[reqno]{amsart} \usepackage{amssymb} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 07, pp. 1--20.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/07\hfil Global periodic solutions for NLS-KdV systems] {Global well-posedness of NLS-KdV systems for periodic functions} \author[C. Matheus\hfil EJDE-2006/07\hfilneg] {Carlos Matheus} \address{Carlos Matheus \newline %Instituto Nacional de Matem\'atica Pura e Aplicada IMPA, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320, Brazil} \email{matheus@impa.br} \thanks{Submitted November 13, 2006. Published January 2, 2007.} \subjclass[2000]{35Q55} \keywords{Global well-posedness; Schr\"odinger-Korteweg-de Vries system; \hfill\break\indent I-method} \begin{abstract} We prove that the Cauchy problem of the Schr\"odinger-Korteweg-deVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space $H^1\times H^1$. More precisely, we show that the non-resonant NLS-KdV system is globally well-posed for initial data in $H^s(\mathbb{T})\times H^s(\mathbb{T})$ with $s>11/13$ and the resonant NLS-KdV system is globally well-posed with $s>8/9$. The strategy is to apply the I-method used by Colliander, Keel, Staffilani, Takaoka and Tao. By doing this, we improve the results by Arbieto, Corcho and Matheus concerning the global well-posedness of NLS-KdV systems. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction}\label{s.intro} We consider the Cauchy problem of the Schr\"odinger-Korteweg-deVries (NLS-KdV) system \begin{equation}\label{e.nls-kdv} \begin{gathered} i\partial_tu + \partial_x^2u = \alpha uv + \beta |u|^2u,\\ \partial_tv + \partial_x^3v + \tfrac{1}{2}\partial_x(v^2) = \gamma \partial_x(|u|^2),\\ u(x,0)=u_0(x),\quad v(x,0)=v_0(x), \quad t\in\mathbb{R}. \end{gathered} \end{equation} This system appears naturally in fluid mechanics and plasma physics as a model of interaction between a short-wave $u=u(x,t)$ and a long-wave $v=v(x,t)$. In this paper we are interested in global solutions of the NLS-KdV system for rough initial data. Before stating our main results, let us recall some of the recent theorems of local and global well-posedness theory of the Cauchy problem \eqref{e.nls-kdv}. For continuous spatial variable (i.e., $x\in\mathbb{R}$), Corcho and Linares \cite{Corcho} recently proved that the NLS-KdV system is locally well-posed for initial data $(u_0,v_0)\in H^k(\mathbb{R})\times H^s(\mathbb{R})$ with $k\geq 0$, $s>-3/4$ and \begin{gather*} k-1\leq s\leq 2k-1/2 \quad\text{if }k\leq 1/2 ,\\ k-1\leq s1/2. \end{gather*} Furthermore, they prove the global well-posedness of the NLS-KdV system in the energy $H^1\times H^1$ using three conserved quantities discovered by Tsutsumi \cite{MTsutsumi}, whenever $\alpha\gamma>0$. Also, Pecher \cite{Pecher} improved this global well-posedness result by an application of the I-method of Colliander, Keel, Stafillani, Takaoka and Tao (see for instance \cite{CKSTT1}) combined with some refined bilinear estimates. In particular, Pecher proved that, if $\alpha\gamma>0$, the NLS-KdV system is globally well-posed for initial data $(u_0,v_0)\in H^s\times H^s$ with $s>3/5$ in the resonant case $\beta=0$ and $s>2/3$ in the non-resonant case $\beta\neq 0$. On the other hand, in the periodic setting (i.e., $x$ isn the space of periodic functions $\mathbb{T}$), Arbieto, Corcho and Matheus \cite{ACM} proved the local well-posedness of the NLS-KdV system for initial data $(u_0,v_0)\in H^k\times H^s$ with $0\leq s\leq 4k-1$ and $-1/2\leq k-s\leq 3/2$. Also, using the same three conserved quantities discovered by Tsutsumi, one obtains the global well-posedness of NLS-KdV on $\mathbb{T}$ in the energy space $H^1\times H^1$ whenever $\alpha\gamma>0$. Motivated by this scenario, we combine the new bilinear estimates of Arbieto, Corcho and Matheus \cite{ACM} with the I-method of Tao and his collaborators to prove the following result. \begin{theorem}\label{t.A} The NLS-KdV system \eqref{e.nls-kdv} on $\mathbb{T}$ is globally well-posed for initial data $(u_0,v_0)\in H^s(\mathbb{T})\times H^s(\mathbb{T})$ with $s>11/13$ in the non-resonant case $\beta\neq 0$ and $s>8/9$ in the resonant case $\beta=0$, whenever $\alpha\gamma>0$. \end{theorem} The paper is organized as follows. In the section \ref{s.preliminaries}, we discuss the preliminaries for the proof of the theorem \ref{t.A}: Bourgain spaces and its properties, linear estimates, standard estimates for the non-linear terms $|u|^2 u$ and $\partial_x (v^2)$, the bilinear estimates of Arbieto, Corcho and Matheus \cite{ACM} for the coupling terms $uv$ and $\partial_x(|u|^2)$, the I-operator and its properties. In the section \ref{s.local}, we apply the results of the section \ref{s.preliminaries} to get a variant of the local well-posedness result of \cite{ACM}. In the section \ref{s.conservation}, we recall some conserved quantities of \eqref{e.nls-kdv} and its modification by the introduction of the I-operator; moreover, we prove that two of these modified energies are almost conserved. Finally, in the section \ref{s.global}, we combine the almost conservation results in section \ref{s.conservation} with the local well-posedness result in section \ref{s.local} to conclude the proof of the theorem \ref{t.A}. \section{Preliminaries}\label{s.preliminaries} A successful procedure to solve some dispersive equations (such as the nonlinear Schr\"odinger and KdV equations) is to use the Picard's fixed point method in the following spaces: \begin{gather*} \|f\|_{X^{k,b}}:= \Big(\int\sum_{n\in\mathbb{Z}} \langle n\rangle^{2k} \langle\tau+n^2\rangle^{2b}|\widehat{f}(n,\tau)| d\tau\Big)^{1/2} = \|U(-t) f\|_{H_t^b(\mathbb{R},H_x^k)},\\ \|g\|_{Y^{s,b}}:= \Big(\int\sum_{n\in\mathbb{Z}} \langle n\rangle^{2s} \langle\tau-n^3\rangle^{2b}|\widehat{g}(n,\tau)| d\tau\Big)^{1/2} = \|V(-t) f\|_{H_t^b(\mathbb{R},H_x^s)}, \end{gather*} where $\langle\cdot\rangle:= 1+ |\cdot|$, $U(t)=e^{it\partial_x^2}$ and $V(t)=e^{-t\partial_x^3}$. These spaces are called Bourgain spaces. Also, we introduce the restriction in time norms \begin{equation*} \|f\|_{X^{k,b}(I)}:=\inf_{\widetilde{f}|_I=f} \|\widetilde{f}\|_{X^{k,b}} \quad \text{and} \quad \|g\|_{Y^{s,b}(I)}:=\inf_{\widetilde{g}|_I=g} \|\widetilde{g}\|_{Y^{s,b}} \end{equation*} where $I$ is a time interval. The interaction of the Picard method has been based around the spaces $Y^{s,1/2}$. Because we are interested in the continuity of the flow associated to \eqref{e.nls-kdv} and the $Y^{s,1/2}$ norm do not control the $L_t^{\infty}H_x^s$ norm, we modify the Bourgain spaces as follows: \begin{gather*} \|u\|_{X^k}:= \|u\|_{X^{k,1/2}} + \|\langle n\rangle^k\widehat{u}(n,\tau)\|_{L_n^2 L_{\tau}^1} ,\\ \|v\|_{Y^{s}}:=\|v\|_{Y^{s,1/2}} + \|\langle n\rangle^s\widehat{v}(n,\tau)\|_{L_n^2 L_{\tau}^1} \end{gather*} and, given a time interval $I$, we consider the restriction in time of the $X^k$ and $Y^s$ norms \begin{equation*} \|u\|_{X^{k}(I)}:=\inf_{\widetilde{u}|_I=u} \|\widetilde{u}\|_{X^{k}} \quad \text{and} \quad \|v\|_{Y^{s}(I)}:=\inf_{\widetilde{v}|_I=v} \|\widetilde{v}\|_{Y^{s}} \end{equation*} Furthermore, the mapping properties of $U(t)$ and $V(t)$ naturally leads one to consider the companion spaces \begin{gather*} \|u\|_{Z^k}:=\|u\|_{X^{k,-1/2}}+ \Big\|\frac{\langle n\rangle^k\widehat{u}(n,\tau)}{\langle\tau+n^2\rangle}\Big\|_{L_n^2 L_{\tau}^1} , \\ \|v\|_{W^s}:=\|v\|_{Y^{s,-1/2}}+ \Big\|\frac{\langle n\rangle^s\widehat{v}(n,\tau)}{\langle\tau-n^3\rangle}\Big\|_{L_n^2 L_{\tau}^1} \end{gather*} In the sequel, $\psi$ denotes a non-negative smooth bump function supported on $[-2,2]$ with $\psi=1$ on $[-1,1]$ and $\psi_{\delta}(t):=\psi(t/\delta)$ for any $\delta>0$. \noindent\textbf{Notation}. Fix $(k,s)$ a pair of indices such that the local well-posedness of the periodic NLS-KdV system holds. Given two non-negative real numbers $A$ and $B$, we write $A\lesssim B$ whenever $A\leq C\cdot B$, where $C=C(k,s)$ is a constant which may depend only on $(k,s)$. Also, we write $A\gtrsim B$ if $A\geq c\cdot B$, where $c=c(k,s)$ is sufficiently small (depending only on $(k,s)$), and $A\sim B$ if $A\lesssim B\lesssim A$. Furthermore, we use $A\ll B$ to mean $A\leq c\dot B$ where $c=c(k,s)$ is a small constant (depending only on $(k,s)$), and $A\gg B$ to denote $A\geq C\cdot B$ with $C=C(k,s)$ a large constant. Finally, given, for instance, a function $\psi$ and a number $b$, we put also $A\lesssim_{\psi,b} B$ to mean $A\leq C\cdot B$ where $C=C(k,s,\psi,b)$ is a constant depending also on the specified function $\psi$ and number $b$ (besides $(k,s)$). \bigskip Next, we recall some properties of the Bourgain spaces: \begin{lemma}\label{l.Strichartz} $X^{0,3/8}([0,1]), Y^{0,1/3}([0,1])\subset L^4(\mathbb{T}\times [0,1])$. More precisely, \begin{equation*} \|\psi(t) f\|_{L_{xt}^4}\lesssim \|f\|_{X^{0,3/8}} \quad \text{and} \quad \|\psi(t) g\|_{L_{xt}^4}\lesssim \|g\|_{Y^{0,1/3}}. \end{equation*} \end{lemma} For the proof of the above lemma see \cite{Bourgain}. Another basic property of these spaces are their stability under time localization: \begin{lemma}\label{l.time-localization} Let $X^{s,b}_{\tau = h(\xi)}:= \{f : \langle\tau-h(\xi)\rangle^b\langle\xi\rangle^s |\widehat{f}(\tau,\xi)|\in L^2\}$. Then \begin{equation*} \|\psi(t) f\|_{X^{s,b}_{\tau=h(\xi)}}\lesssim_{\psi,b} \|f\|_{X^{s,b}_{\tau=h(\xi)}} \end{equation*} for any $s,b\in\mathbb{R}$. Moreover, if $-1/20$ and $n\geq 1$. Suppose $Z, X_1, \dots, X_n$ are translation-invariant Banach spaces and $T$ is a translation invariant $n$-linear operator such that \begin{equation*} \|I_1^{\alpha} T(u_1,\dots, u_n)\|_{Z}\lesssim \prod_{j=1}^n \|I_1^{\alpha}u_j\|_{X_j}, \end{equation*} for all $u_1,\dots,u_n$ and $0\leq\alpha\leq\alpha_0$. Then \begin{equation*} \|I_N^{\alpha} T(u_1,\dots, u_n)\|_{Z}\lesssim \prod_{j=1}^n \|I_N^{\alpha}u_j\|_{X_j} \end{equation*} for all $u_1,\dots,u_n$, $0\leq\alpha\leq\alpha_0$ and $N\geq 1$. Here the implicit constant is independent of $N$. \end{lemma} After these preliminaries, we can proceed to the next section where a variant of the local well-posedness of Arbieto, Corcho and Matheus is obtained. In the sequel we take $N\gg 1$ a large integer and denote by $I$ the operator $I=I_N^{1-s}$ for a given $s\in\mathbb{R}$. \section{A variant local well-posedness result}\label{s.local} This section is devoted to the proof of the following proposition. \begin{proposition}\label{p.local} For any $(u_0,v_0)\in H^s(\mathbb{T})\times H^s(\mathbb{T})$ with $\int_{\mathbb{T}} v_0 = 0$ and $s\geq 1/3$, the periodic NLS-KdV system \eqref{e.nls-kdv} has a unique local-in-time solution on the time interval $[0,\delta]$ for some $\delta\leq 1$ and \begin{equation}\label{e.local} \delta\sim \begin{cases} (\|Iu_0\|_{X^1}+\|Iv_0\|_{Y^1})^{-\frac{16}{3}-}, &\text{if } \beta\neq 0, \\ (\|Iu_0\|_{X^1}+\|Iv_0\|_{Y^1})^{-8-}, &\text{if } \beta = 0. \end{cases} \end{equation} Moreover, we have $\|Iu\|_{X^1}+\|Iv\|_{Y^1}\lesssim \|Iu_0\|_{X^1}+\|Iv_0\|_{Y^1}$. \end{proposition} \begin{proof} We apply the I-operator to the NLS-KdV system \eqref{e.nls-kdv} so that \begin{gather*} i Iu_t + Iu_{xx} = \alpha I(uv) + \beta I(|u|^2 u), \\ Iv_t + Iv_{xxx} + I(v v_x) = \gamma I(|u|^2)_x, \\ Iu(0) = Iu_0, \quad Iv(0) = Iv_0. \end{gather*} To solve this equation, we seek for some fixed point of the integral maps \begin{gather*} \Phi_1(Iu, Iv):= U(t) Iu_0 -i\int_0^t U(t-t') \{\alpha I(u(t')v(t')) + \beta I(|u(t')|^2 u(t'))\} dt', \\ \Phi_2(Iu, Iv):= V(t)Iv_0 -\int_0^t V(t-t')\{I(v(t')v_x(t')) - \gamma I(|u(t')|^2)_x\} dt'. \end{gather*} The interpolation lemma \ref{l.interpolation} applied to the linear and multilinear estimates in the lemmas \ref{l.linear}, \ref{l.u2u}, \ref{l.dv2}, \ref{l.uv} and \ref{l.du2} yields, in view of the lemma \ref{l.time-localization}, \begin{gather*} \|\Phi_1(Iu, Iv)\|_{X^1}\lesssim \|Iu_0\|_{H^1} + \alpha\delta^{\frac{1}{8}-} \|Iu\|_{X^1}\|Iv\|_{Y^1} + \beta\delta^{\frac{3}{8}-}\|Iu\|_{X^1}^3, \\ \|\Phi_2(Iu, Iv)\|_{Y^1}\lesssim \|Iv_0\|_{H^1} + \delta^{\frac{1}{6}-}\|Iv\|_{Y^1}^2 + \gamma\delta^{\frac{1}{8}-}\|Iu\|_{X^1}^2. \end{gather*} In particular, these integrals maps are contractions provided that $\beta\delta^{\frac{3}{8}-}(\|Iu_0\|_{H^1}+\|Iv_0\|_{H^1})^2 \ll 1$ and $\delta^{\frac{1}{8}-}(\|Iu_0\|_{H^1}+\|Iv_0\|_{H^1})\ll 1$. This completes the proof. \end{proof} \section{Modified energies}\label{s.conservation} We define the following three quantities: \begin{gather}\label{e.mass} M(u):=\|u\|_{L^2}, \\ \label{e.momentum} L(u,v):= \alpha \|v\|_{L^2}^2 + 2\gamma\int \Im (u\overline{u_x}) dx, \\ \label{e.energy} E(u,v):= \alpha\gamma\int v |u|^2 dx + \gamma\|u_x\|_{L^2}^2 + \frac{\alpha}{2} \|v_x\|_{L^2}^2 -\frac{\alpha}{6}\int v^3 dx + \frac{\beta\gamma}{2}\int |u|^4 dx. \end{gather} In the sequel, we suppose $\alpha\gamma>0$. Note that \begin{gather}\label{e.L1} |L(u,v)|\lesssim \|v\|_{L^2}^2 + M \|u_x\|_{L^2} ,\\ \label{e.L2} \|v\|_{L^2}^2\lesssim |L| + M \|u_x\|_{L^2}. \end{gather} Also, the Gagliardo-Nirenberg and Young inequalities implies \begin{gather}\label{e.E1} \|u_x\|_{L^2}^2+\|v_x\|_{L^2}^2\lesssim |E| + |L|^{\frac{5}{3}} + M^8 + 1,\\ \label{e.E2} |E|\lesssim \|u_x\|_{L^2}^2 + \|v_x\|_{L^2}^2 + |L|^{\frac{5}{3}} + M^8 + 1 \end{gather} In particular, combining the bounds (\ref{e.L1}) and (\ref{e.E2}), \begin{equation}\label{e.E3} |E|\lesssim \|u_x\|_{L^2}^2 + \|v_x\|_{L^2}^2 + \|v\|_{L^2}^{\frac{10}{3}} + M^{10} + 1. \end{equation} Moreover, from the bounds (\ref{e.L2}) and (\ref{e.E1}), \begin{equation}\label{e.E4} \|v\|_{L^2}^2\lesssim |L| + M |E|^{1/2} + M^6 + 1 \end{equation} and hence \begin{equation}\label{e.E5} \|u\|_{H^1}^2 + \|v\|_{H^1}^2\lesssim |E| + |L|^{5/3} + M^8 + 1 \end{equation} \begin{equation}\label{e.al} \begin{aligned} &\frac{d}{dt} L(Iu, Iv) \\ &= 2\alpha\int Iv (Iv Iv_x - I(v v_x)) dx + 2\alpha\gamma\int Iv (I(|u|^2)-|Iu|^2)_x dx \\ &\quad + 4\alpha\gamma\Re\int I\overline{u}_x (Iu Iv - I(uv)) dx + 4\beta\gamma\Re\int ((Iu)^2 I\overline{u} - I(u^2\overline{u})) I\overline{u}_x dx \\ &=: \sum_{j=1}^4 L_j. \end{aligned} \end{equation} and \begin{equation}\label{e.ae} \begin{aligned} &\frac{d}{dt} E(Iu, Iv) \\ &= \alpha\int (I(vv_x)-IvIv_x)Iv_{xx} dx + \frac{\alpha}{2}\int (Iv)^2 (I(vv_x)-IvIv_x) dx + \\ &\quad+ 2\beta\gamma\Im\int (I(|u|^2 u)_x - ((Iu)^2 I\overline{u})_x) I\overline{u}_x dx \\ &\quad+ \alpha\gamma\int |Iu|^2 (Iv Iv_x - I(v v_x)) dx + \alpha\gamma\int (|Iu|^2 - I(|u|^2))Iv Iv_x dx \\ &\quad+ \alpha\gamma\int Iv_{xx} (|Iu|^2-I(|u|^2))_x dx -2\alpha\gamma\Im\int Iu_x (I(\overline{u}v)-I\overline{u} Iv)_x dx \\ &\quad+ \alpha\gamma^2 \int (I(|u|^2) - |Iu|^2)_x |Iu|^2 dx + 2\alpha^2\gamma\Im\int Iv Iu (I(\overline{u}v - I\overline{u} Iv)) dx\\ &\quad + 2\beta^2\gamma\Im\int Iu(I\overline{u})^2 (I(|u|^2 u) - (Iu)^2 I\overline{u}) dx \\ &\quad -2\alpha\beta\gamma\Im\int Iv Iu (I(|u|^2 \overline{u}) - Iu (I\overline{u}))^2 dx -2\alpha\beta\gamma\Im\int (Iu)^2 I\overline{u} (I(\overline{u}v) - I\overline{u} Iv) dx \\ &=: \sum_{j=1}^{12} E_j \end{aligned} \end{equation} \subsection{Estimates for the modified L-functional}\label{s.l} \begin{proposition}\label{p.al} Let $(u,v)$ be a solution of \eqref{e.nls-kdv} on the time interval $[0,\delta]$. Then, for any $N\geq 1$ and $s>1/2$, \begin{equation}\label{e.aL} \begin{aligned} &|L(Iu(\delta), Iv(\delta)) - L(Iu(0), Iv(0))|\\ &\lesssim N^{-1+}\delta^{\frac{19}{24}-} (\|Iu\|_{X^{1,1/2}}+\|Iv\|_{Y^{1,1/2}})^3 + N^{-2+}\delta^{\frac{1}{2}-}\|Iu\|_{X^{1,1/2}}^4. \end{aligned} \end{equation} \end{proposition} \begin{proof} Integrating (\ref{e.al}) with respect to $t\in [0,\delta]$, it follows that we have to bound the (integral over $[0,\delta]$ of the) four terms on the right hand side. To simplify the computations, we assume that the Fourier transform of the functions are non-negative and we ignore the appearance of complex conjugates (since they are irrelevant in our subsequent arguments). Also, we make a dyadic decomposition of the frequencies $|n_i|\sim N_j$ in many places. In particular, it will be important to get extra factors $N_j^{0-}$ everywhere in order to sum the dyadic blocks. We begin with the estimate of $\int_{0}^{\delta} L_1$. It is sufficient to show that \begin{equation}\label{e.aL1} \begin{aligned} &\int_{0}^{\delta}\sum_{n_1+n_2+n_3=0} \Big|\frac{m(n_1+n_2) - m(n_1) m(n_2)}{m(n_1) m(n_2)}\Big| \widehat{v_1}(n_1,t) |n_2|\widehat{v_2}(n_2,t) \widehat{v_3}(n_3,t)\\ &\lesssim N^{-1}\delta^{\frac{5}{6}-}\prod_{j=1}^3 \|v_j\|_{Y^{1,1/2}} \end{aligned} \end{equation} \noindent $\bullet$ $|n_1|\ll |n_2|\sim |n_3|$, $|n_2|\gtrsim N$. In this case, note that \begin{gather*} \big|\frac{m(n_1+n_2) - m(n_1) m(n_2)}{m(n_1) m(n_2)}\big|\lesssim |\frac{\nabla m(n_2)\cdot n_1}{m(n_2)}|\lesssim \frac{N_1}{N_2}, \text{if } |n_1|\leq N, \\ \big|\frac{m(n_1+n_2) - m(n_1) m(n_2)}{m(n_1) m(n_2)}\big|\lesssim \big(\frac{N_1}{N}\big)^{1/2}, \text{if } |n_1|\geq N. \end{gather*} Hence, using the lemmas \ref{l.Strichartz} and \ref{l.time-localization}, we obtain \begin{equation*} \big|\int_{0}^{\delta} L_1\big|\lesssim \frac{N_1}{N_2} \|v_1\|_{L^4} \|(v_2)_x\|_{L^4} \|v_3\|_{L^2}\lesssim N^{-2+}\delta^{\frac{5}{6}-} N_{\rm max}^{0-} \prod_{j=1}^3\|v_i\|_{Y^{1,1/2}} \end{equation*} if $|n_1|\leq N$, and \begin{equation*} |\int_{0}^{\delta} L_1|\lesssim \big(\frac{N_1}{N}\big)^{1/2} \frac{1}{N_1 N_3} \delta^{\frac{5}{6}-}\prod_{j=1}^3\|v_i\|_{Y^{1,1/2}}\lesssim N^{-2+}\delta^{\frac{5}{6}-} N_{\rm max}^{0-} \prod_{j=1}^3\|v_i\|_{Y^{1,1/2}}. \end{equation*} \noindent $\bullet$ $|n_2|\ll |n_1|\sim |n_3|$, $|n_1|\gtrsim N$. This case is similar to the previous one. \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$. The multiplier is bounded by \begin{equation*} \big|\frac{m(n_1+n_2) - m(n_1) m(n_2)}{m(n_1) m(n_2)}\big|\lesssim \big(\frac{N_1}{N}\big)^{1-}. \end{equation*} In particular, using the lemmas \ref{l.Strichartz} and \ref{l.time-localization}, \begin{equation*} |\int_{0}^{\delta} L_1|\lesssim \big(\frac{N_1}{N}\big)^{1-} \|v_1\|_{L^2} \|(v_2)_x\|_{L^4} \|v_3\|_{L^4}\lesssim N^{-1+}\delta^{\frac{5}{6}-} N_{\rm max}^{0-}\prod_{j=1}^3 \|v_i\|_{Y^{1,1/2}}. \end{equation*} Now, we estimate $\int_{0}^{\delta} L_2$. Our task is to prove that \begin{equation}\label{e.aL2} \begin{aligned} &\int_0^{\delta}\sum_{n_1 + n_2 + n_3 = 0} \Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1) m(n_2)}\Big| |n_1+n_2| \widehat{u_1}(n_1,t) \widehat{u_2}(n_2,t) \widehat{v_3}(n_3,t) \\ &\lesssim N^{-1+}\delta^{\frac{19}{24}-}\|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}} \|v_3\|_{Y^{1,1/2}} \end{aligned} \end{equation} \noindent$\bullet$ $|n_2|\ll |n_1|\sim |n_3|\gtrsim N$. We estimate the multiplier by \begin{equation*} \Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1) m(n_2)}\Big|\lesssim \langle(\frac{N_2}{N})^{1/2}\rangle. \end{equation*} Thus, using $L^2_{xt}L^4_{xt}L^4_{xt}$ H\"older inequality and the lemmas \ref{l.Strichartz} and \ref{l.time-localization} \begin{align*} \int_0^{\delta}L_2 &\lesssim \langle\big(\frac{N_2}{N}\big)^{1/2}\rangle \frac{1}{\langle N_2\rangle N_3}\delta^{\frac{19}{24}-} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}} \|v_3\|_{Y^{1,1/2}} \\ &\lesssim N^{-1+}\delta^{\frac{19}{24}-} N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}\|v_3\|_{Y^{1,1/2}}. \end{align*} \noindent$\bullet$ $|n_1|\ll |n_2|\sim |n_3|$. This case is similar to the previous one. \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$. Estimating the multiplier by \begin{equation*} \Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1) m(n_2)}\Big|\lesssim \big(\frac{N_2}{N}\big)^{1-} \end{equation*} we conclude \begin{equation*} \begin{aligned} \int_0^{\delta} L_2&\lesssim \big(\frac{N_2}{N}\big)^{1-} \frac{1}{N_1 N_2} \delta^{\frac{19}{24}-}\|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}\|v_3\|_{Y^{1,1/2}} \\ &\lesssim N^{-2+}\delta^{\frac{19}{24}-}N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}\|v_3\|_{Y^{1,1/2}}. \end{aligned} \end{equation*} Next, let us compute $\int_0^{\delta} L_3$. We claim that \begin{equation}\label{e.aL3} \begin{aligned} &\int_0^{\delta}\sum_{n_1+n_2+n_3=0} \Big|\frac{m(n_1+n_2) - m(n_1) m(n_2)}{m(n_1) m(n_2)}\Big| \widehat{u_1}(n_1,t) \widehat{v_2}(n_2,t) |n_3|\widehat{u_3}(n_3,t) \\ &\lesssim N^{-2+}\delta^{\frac{19}{24}-} \|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}}\|u_3\|_{X^{1,1/2}} \end{aligned} \end{equation} \noindent$\bullet$ $|n_2|\ll |n_1|\sim |n_3|$, $|n_1|\gtrsim N$. The multiplier is bounded by \[ \big|\frac{m(n_1+n_2) - m(n_1) m(n_2)}{m(n_1) m(n_2)}\big|\lesssim \begin{cases} |\frac{\nabla m(n_1)\cdot n_2}{m(n_1)}|\lesssim \frac{N_2}{N_1}, &\text{if } |n_2|\leq N, \\ \big(\frac{N_2}{N}\big)^{1/2}, &\text{if } |n_2|\geq N. \end{cases} \] So, it is not hard to see that \begin{equation*} \int_0^{\delta} L_3 \lesssim N^{-2+}\delta^{\frac{19}{24}-} N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}}\|u_3\|_{X^{1,1/2}} \end{equation*} \noindent$\bullet$ $|n_1|\ll |n_2|\sim |n_3|$, $|n_2|\gtrsim N$. This case is completely similar to the previous one. \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$. Since the multiplier is bounded by $N_2 / N$, we get \begin{equation*} \int_0^{\delta} L_3 \lesssim N^{-2+}\delta^{\frac{19}{24}-} N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}}\|u_3\|_{X^{1,1/2}}. \end{equation*} Finally, it remains to estimate the contribution of $\int_0^{\delta} L_4$. It suffices to see that \begin{equation}\label{e.aL4} \begin{aligned} &\int_0^{\delta}\sum_{n_1 + n_2 + n_3 + n_4= 0} \Big|\frac{m(n_1+n_2+n_3)-m(n_1)m(n_2)m(n_3)}{m(n_1) m(n_2) m(n_3)} \Big| |n_4| \prod_{j=1}^4 \widehat{u_j}(n_j,t) \\ &\lesssim N^{-2+}\delta^{\frac{1}{2}-} \prod_{j=1}^4\|u_j\|_{X^{1,1/2}} \end{aligned} \end{equation} \noindent$\bullet$ $N_1, N_2, N_3\gtrsim N$. Since the multiplier verifies \begin{equation*} \Big|\frac{m(n_1+n_2+n_3)-m(n_1)m(n_2)m(n_3)}{m(n_1) m(n_2) m(n_3)}\Big| \lesssim \left(\frac{N_1}{N}\frac{N_2}{N}\frac{N_3}{N}\right)^{1/2}, \end{equation*} appliying $L^4_{xt}L^4_{xt}L^4_{xt}L^4_{xt}$ H\"older inequality and the lemmas \ref{l.Strichartz}, \ref{l.time-localization}, we have \begin{align*} \int_0^{\delta} L_4&\lesssim \left(\frac{N_1}{N}\frac{N_2}{N}\frac{N_3}{N}\right)^{1/2} \frac{\delta^{\frac{1}{2}-}}{N_1 N_2 N_3} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}\\ &\lesssim N^{-3+}\delta^{\frac{1}{2}-} N_{\rm max}^{0-} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{align*} \noindent$\bullet$ $N_1\sim N_2\gtrsim N$ and $N_3, N_4\ll N_1, N_2$. Here the multiplier is bounded by $\left(\frac{N_1}{N}\frac{N_2}{N}\right)^{1/2} \langle \big(\frac{N_3}{N}\big)^{1/2}\rangle$. Hence, \begin{align*} \int_0^{\delta} L_4 &\lesssim \left(\frac{N_1}{N}\frac{N_2}{N}\right)^{1/2} \langle \big(\frac{N_3}{N}\big)^{1/2}\rangle \frac{\delta^{\frac{1}{2}-}}{N_1 N_2 \langle N_3\rangle} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}\\ &\lesssim N^{-2+}\delta^{\frac{1}{2}-} N_{\rm max}^{0-} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{align*} \noindent$\bullet$ $N_1\sim N_4\gtrsim N$ and $N_2, N_3\ll N_1, N_4$. In this case we have the following estimates for the multiplier \begin{align*} &\Big|\frac{m(n_1+n_2+n_3)-m(n_1)m(n_2)m(n_3)}{m(n_1) m(n_2) m(n_3)} \Big| \\ &\lesssim \begin{cases} \big|\frac{\nabla m(n_1) (n_2+n_3)}{m(n_1)}\big|\lesssim \frac{N_2+N_3}{N_1}, &\text{if } N_2, N_3\leq N\\ \left(\frac{N_1}{N}\frac{N_2}{N}\right)^{1/2} \langle (\frac{N_3}{N})^{1/2} \rangle, &\text{if } N_2\geq N,\\ \left(\frac{N_1}{N}\frac{N_3}{N}\right)^{1/2} \langle (\frac{N_2}{N})^{1/2} \rangle, &\text{if } N_3\geq N. \end{cases} \end{align*} Therefore, it is not hard to see that, in any of the situations $N_2, N_3\leq N$, $N_2\geq N$ or $N_3\geq N$, we have \begin{equation*} \int_0^{\delta} L_4\lesssim N^{-2+}\delta^{\frac{1}{2}-} N_{\rm max}^{0-} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{equation*} \noindent$\bullet$ $N_1\sim N_2\sim N_4\gtrsim N$ and $N_3\ll N_1, N_2, N_4$. Here we have the following bound \begin{equation*} \int_0^{\delta} L_4 \lesssim \left(\frac{N_1}{N}\frac{N_2}{N}\right)^{1/2} \langle\big(\frac{N_3}{N}\big)^{1/2}\rangle \frac{\delta^{\frac{1}{2}-}}{N_1 N_2 N_3} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{equation*} At this point, clearly the bounds (\ref{e.aL1}), (\ref{e.aL2}), (\ref{e.aL3}) and (\ref{e.aL4}) concludes the proof of the proposition \ref{p.al}. \end{proof} \subsection{Estimates for the modified E-functional}\label{s.e} \begin{proposition}\label{p.ae} Let $(u,v)$ be a solution of \eqref{e.nls-kdv} on the time interval $[0,\delta]$ such that $\int_{\mathbb{T}}v =0$. Then, for any $N\geq 1$, $s>1/2$, \begin{equation}\label{e.aE} \begin{aligned} &|E(Iu(\delta), Iv(\delta))-E(Iu(0), Iv(0))|\\ &\lesssim \left(N^{-1+}\delta^{\frac{1}{6}-}+N^{-\frac{2}{3}+}\delta^{\frac{3}{8}-} + N^{-\frac{3}{2}+}\delta^{\frac{1}{8}-} \right) (\|Iu\|_{X^1}+ \|Iv\|_{Y^1})^3\\ &\quad +N^{-1+}\delta^{\frac{1}{2}-} (\|Iu\|_{X^1}+\|Iv\|_{Y^1})^4 + N^{-2+}\delta^{\frac{1}{2}-}\|Iu\|_{X^1}^4 (\|Iu\|_{X^1}^2+\|Iv\|_{Y^1}). \end{aligned} \end{equation} \end{proposition} \begin{proof} Again we integrate (\ref{e.ae}) with respect to $t\in [0,\delta]$, decompose the frequencies into dyadic blocks, etc., so that our objective is to bound the (integral over $[0,\delta]$ of the) $E_j$ for each $j=1,\dots, 12$. For the expression $\int_0^{\delta} E_1$, apply the lemma \ref{l.duality}. We obtain \begin{equation*} |\int_0^{\delta} E_1|\lesssim \|Iv_{xx}\|_{Y^{-1}} \|Iv Iv_x - I(v v_x)\|_{W^1} \lesssim \|Iv\|_{Y^1} \|Iv Iv_x - I(v v_x)\|_{W^1} \end{equation*} Writing the definition of the norm $W^1$, it suffices to prove the bound \begin{equation} \begin{aligned} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle^{1/2}} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3,\tau_3}} \\ &+ \Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L^1_{\tau_3}}\\ & \lesssim N^{-1+}\delta^{\frac{1}{6}-}\|v_1\|_{Y^{1,1/2}}\|v_2\|_{Y^{1,1/2}}. \end{aligned} \end{equation} Recall that the dispersion relation $\sum_{j=1}^3 \tau_j-n_j^3 = -3n_1 n_2 n_3$ implies that, since $n_1 n_2 n_3\neq 0$, if we put $L_j:=|\tau_j - n_j^3|$ and $L_{\rm max} = \max\{L_j;j=1,2,3\}$, then $L_{\rm max}\gtrsim \langle n_1\rangle \langle n_2\rangle \langle n_3\rangle$. \noindent$\bullet$ $|n_2|\sim |n_3|\gtrsim N$, $|n_1|\ll |n_2|$. The multiplier is bounded by \begin{equation*} \Big|\frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big|\lesssim \begin{cases} \frac{N_1}{N_2}, &\text{if } |n_1|\leq N, \\ \big(\frac{N_1}{N}\big)^{1/2}, &\text{if } |n_1|\geq N. \end{cases} \end{equation*} Thus, if $|\tau_3- n_3^3| = L_{\rm max}$, we have \begin{align*} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle^{1/2}} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3,\tau_3}} \\ &\lesssim \begin{cases} \frac{N_1}{N_2}\frac{N_3}{(N_1 N_2 N_3)^{1/2}} \|v_1\|_{L_{xt}^4}\|(v_2)_x\|_{L^4_{xt}}\\ \lesssim N^{-1+} \delta^{\frac{1}{3}-} N_{\rm max}^{0-} \|v_1\|_{Y^{1,1/2}} \|v_2\|_{Y^{1,1/2}}, &\text{if } |n_1|\leq N, \\[3pt] \big(\frac{N_1}{N_2}\big)^{1/2}\frac{N_3}{N_1} \frac{1}{(N_1 N_2 N_3)^{1/2}} \|v_1\|_{L_{xt}^4}\|(v_2)_x\|_{L^4_{xt}}\\ \lesssim N^{-\frac{3}{2}+} \delta^{\frac{1}{3}-} N_{\rm max}^{0-} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}, &\text{if } |n_1|\geq N. \end{cases} \end{align*} and \begin{align*} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L^1_{\tau_3}} \\ &\lesssim \begin{cases} \frac{N_1}{N_2}\frac{N_3}{(N_1 N_2 N_3)^{\frac{1}{2}-}}\|v_1\|_{L_{xt}^4} \|(v_2)_x\|_{L^4_{xt}}\\ \lesssim N^{-1+}\delta^{\frac{1}{3}-}N_{\rm max}^{0-} \|v_1\|_{Y^{1,1/2}} \|v_2\|_{Y^{1,1/2}}, &\text{if } |n_1|\leq N, \\ \big(\frac{N_1}{N_2}\big)^{1/2} \frac{N_3}{N_1} \frac{\delta^{\frac{1}{3}-}}{(N_1 N_2 N_3)^{\frac{1}{2}-}} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}\\ \lesssim N^{-\frac{3}{2}+}\delta^{\frac{1}{3}-}N_{\rm max}^{0-} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}, &\text{if } |n_1|\geq N. \end{cases} \end{align*} If either $|\tau_1-n_1^3|=L_{\rm max}$ or $|\tau_2-n_2^3|=L_{\rm max}$, we have \begin{align*} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle^{1/2}} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3,\tau_3}} \\ &\lesssim \begin{cases} \frac{N_1}{N_2}\frac{N_3}{(N_1 N_2 N_3)^{1/2}} \frac{\delta^{\frac{1}{6}-}}{N_1} \|v_1\|_{Y^{1,\frac{1}{2}}}\|v_2\|_{Y^{1,\frac{1}{2}}}\\ \lesssim N^{-1+} \delta^{\frac{1}{6}-} N_{\rm max}^{0-} \|v_1\|_{Y^{1,1/2}} \|v_2\|_{Y^{1,1/2}}, &\text{if } |n_1|\leq N, \\ \big(\frac{N_1}{N_2}\big)^{1/2}\frac{N_3}{N_1} \frac{1}{(N_1 N_2 N_3)^{1/2}} \delta^{\frac{1}{6}-}\|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}\\ \lesssim N^{-\frac{3}{2}+} \delta^{\frac{1}{3}-} N_{\rm max}^{0-} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}, &\text{if } |n_1|\geq N. \end{cases} \end{align*} and \begin{align*} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L^1_{\tau_3}} \\ &\lesssim \begin{cases} \frac{N_1}{N_2}\frac{N_3}{(N_1 N_2 N_3)^{\frac{1}{2}-}}\frac{\delta^{\frac{1}{6}-}}{N_1} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}\\ \lesssim N^{-1+}\delta^{\frac{1}{6}-}N_{\rm max}^{0-} \|v_1\|_{Y^{1,1/2}} \|v_2\|_{Y^{1,1/2}}, &\text{if } |n_1|\leq N, \\ \big(\frac{N_1}{N_2}\big)^{1/2} \frac{N_3}{N_1} \frac{\delta^{\frac{1}{6}-}}{(N_1 N_2 N_3)^{\frac{1}{2}-}} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}\\ \lesssim N^{-\frac{3}{2}+}\delta^{\frac{1}{6}-}N_{\rm max}^{0-} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}, &\text{if } |n_1|\geq N. \end{cases} \end{align*} \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$. Estimating the multiplier by \begin{equation*} \Big|\frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big|\lesssim \big(\frac{N_1}{N}\big)^{1-}, \end{equation*} we have that, if $|\tau_3-n_3^3|=L_{\rm max}$, \begin{align*} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle^{1/2}} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3,\tau_3}} \\ &+\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L^1_{\tau_3}} \\ &\lesssim \big\{\big(\frac{N_1}{N}\big)^{1-} \frac{N_3}{(N_1 N_2 N_3)^{1/2}} \frac{\delta^{\frac{1}{3}-}}{N_1} + \big(\frac{N_1}{N}\big)^{1-}\frac{N_3}{(N_1 N_2 N_3)^{\frac{1}{2}-}} \frac{\delta^{\frac{1}{3}-}}{N_1}\big\} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}} \\ &\lesssim N^{-\frac{3}{2}+}\delta^{\frac{1}{3}-}N_{\rm max}^{0-} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}} \end{align*} and, if either $|\tau_1-n_1^3|=L_{\rm max}$ or $|\tau_2-n_2^3|=L_{\rm max}$, \begin{align*} &\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle^{1/2}} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3,\tau_3}} \\ &+\Big\|\frac{\langle n_3 \rangle}{\langle\tau_3- n_3^3\rangle} \int \sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,\tau_1) \ n_2 \ \widehat{v_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L^1_{\tau_3}} \\ &\lesssim \big\{\big(\frac{N_1}{N}\big)^{1-} \frac{N_3}{(N_1 N_2 N_3)^{1/2}}\frac{\delta^{\frac{1}{6}-}}{N_1} + \big(\frac{N_1}{N}\big)^{1-} \frac{N_3}{(N_1 N_2 N_3)^{\frac{1}{2}-}}\frac{\delta^{\frac{1}{6}-}}{N_1} \big\}\|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}} \\ &\lesssim N^{-\frac{3}{2}+}\delta^{\frac{1}{6}-}N_{\rm max}^{0-} \|v_1\|_{Y^{1,\frac{1}{2}}} \|v_2\|_{Y^{1,\frac{1}{2}}}. \end{align*} For the expression $\int_0^{\delta}E_2$, it suffices to prove that \begin{equation}\label{e.aE2} \begin{aligned} &\big|\int_0^{\delta}\sum \frac{m(n_3+n_4)-m(n_3)m(n_4)}{m(n_3)m(n_4)} \widehat{v_1}(n_1,t)\widehat{v_2}(n_2,t)\widehat{v_3}(n_3,t) \ n_4 \ \widehat{v_4}(n_4,t)\big|\\ & \lesssim N^{-2+}\delta^{\frac{2}{3}-}\prod_{j=1}^4\|v_j\|_{Y^{1,1/2}}. \end{aligned} \end{equation} Since at least two of the $N_i$ are bigger than $N/3$, we can assume that $N_1\geq N_2\geq N_3$ and $N_1\gtrsim N$. Hence, \begin{equation*} \int_0^{\delta} E_2\lesssim \begin{cases} \big(\frac{N_1}{N}\big)^{1-}\frac{\delta^{\frac{2}{3}-}}{N_1 N_2 N_3} \prod_{j=1}^4 \|v_j\|_{Y^{1,1/2}}\lesssim N^{-2+}\delta^{\frac{2}{3}-} N_{\rm max}^{0-}\prod_{j=1}^4 \|v_j\|_{Y^{1,1/2}}, \\ \quad \text{if } |n_3|\sim |n_4|\gtrsim N, \\[3pt] \frac{N_3}{N_4}\frac{\delta^{\frac{2}{3}-}}{N_1 N_2 N_3} \prod_{j=1}^4 \|v_j\|_{Y^{1,1/2}}\lesssim N^{-2+}\delta^{\frac{2}{3}-} N_{\rm max}^{0-}\prod_{j=1}^4 \|v_j\|_{Y^{1,1/2}}, \\ \quad \text{if } |n_3|\ll |n_4|, |n_3|\leq N |n_4|\gtrsim N, \\[3pt] \big(\frac{N_3}{N}\big)^{1/2} \frac{\delta^{\frac{2}{3}-}}{N_1 N_2 N_3} \prod_{j=1}^4 \|v_j\|_{Y^{1,\frac{1}{2}}} \lesssim N^{-2+}\delta^{\frac{2}{3}-} N_{\rm max}^{0-}\prod_{j=1}^4 \|v_j\|_{Y^{1,\frac{1}{2}}},\\ \quad \text{if } |n_3|\ll |n_4|, |n_3|\geq N, |n_4|\gtrsim N. \end{cases} \end{equation*} Next, we estimate the contribution of $\int_0^{\delta} E_3$. We claim that \begin{equation}\label{l.aE3} \begin{aligned} &\int_{0}^{\delta}\sum\frac{m(n_1n_2n_3) - m(n_1)m(n_2)m(n_3)}{m(n_1)m(n_2)m(n_3)} \widehat{u_1}(n_1,t) \widehat{u_2}(n_2,t) \widehat{u_3}(n_3,t)\ |n_4|^2 \ \widehat{u_4}(n_4,t)\\ &\lesssim N^{-1+}\delta^{\frac{1}{2}-}\prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{aligned} \end{equation} \noindent$\bullet$ $|n_1|\sim |n_2|\sim |n_3|\sim |n_4|\gtrsim N$. Since the multiplier satisfies \begin{equation*} \frac{m(n_1n_2n_3) - m(n_1)m(n_2)m(n_3)}{m(n_1)m(n_2)m(n_3)} \lesssim \big(\frac{N_1}{N}\big)^{\frac{3}{2}} \end{equation*} we obtain \begin{equation*} \int_0^{\delta} E_3\lesssim \big(\frac{N_1}{N}\big)^{\frac{3}{2}} \frac{N_4}{N_1N_2N_3}\delta^{\frac{1}{2}-} \prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}\lesssim N^{-2+}\delta^{\frac{1}{2}-} N_{\rm max}^{0-}\prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{equation*} \noindent$\bullet$ Exactly two frequencies are bigger than $N/3$. We consider the most difficult case $|n_4|\gtrsim N$, $|n_1|\sim |n_4|$ and $|n_2|, |n_3|\ll |n_1|, |n_4|$. The multiplier is estimated by \begin{equation*} \frac{m(n_1n_2n_3) - m(n_1)m(n_2)m(n_3)}{m(n_1)m(n_2)m(n_3)}\lesssim \begin{cases} \langle\big(\frac{N_3}{N}\big)^{1/2}\rangle \big(\frac{N_2}{N}\big)^{1/2}, &\text{if } |n_2|\geq N,\\ \langle\big(\frac{N_2}{N}\big)^{1/2}\rangle \big(\frac{N_3}{N}\big)^{1/2}, &\text{if } |n_3|\geq N,\\ \frac{N_2+N_3}{N_1}, &\text{if } |n_2|, |n_3|\leq N. \end{cases} \end{equation*} Thus, \begin{equation*} \int_0^{\delta}E_3\lesssim N^{-1+}\delta^{\frac{1}{2}-} N_{\rm max}^{0-}\prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{equation*} \noindent$\bullet$ Exactly three frequencies are bigger than $N/3$. The most difficult case is $|n_1|\sim |n_2|\sim |n_4|\gtrsim N$ and $|n_3|\ll |n_1|, |n_2|, |n_4|$. Here the multiplier is bounded by \begin{equation*} \frac{m(n_1n_2n_3) - m(n_1)m(n_2)m(n_3)}{m(n_1)m(n_2)m(n_3)}\lesssim \left(\frac{N_1}{N}\frac{N_2}{N}\right)^{1/2} \langle\big(\frac{N_3}{N}\big)^{1/2}\rangle. \end{equation*} Hence, \begin{align*} &\int_0^{\delta} E_3\lesssim \left(\frac{N_1}{N}\frac{N_2}{N}\right)^{1/2} \langle\big(\frac{N_3}{N}\big)^{1/2}\rangle \frac{N_4}{N_1 N_2 N_3} \delta^{\frac{1}{2}-}\prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}\\ &\lesssim N^{-1+}\delta^{\frac{1}{2}-} N_{\rm max}^{0-}\prod_{j=1}^4 \|u_j\|_{X^{1,1/2}}. \end{align*} The contribution of $\int_0^{\delta} E_4$ is controlled if we are able to show that \begin{equation}\label{e.aE4} \begin{aligned} &\int_0^{\delta}\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{v_1}(n_1,t)\ |n_2| \ \widehat{v_2}(n_2,t) \widehat{u_3}(n_3,t) \widehat{u_4}(n_4,t)\lesssim \\ & N^{-1+}\delta^{\frac{7}{12}-}\prod_{j=1}^2 \|u_j\|_{X^{1,1/2}}\|v_j\|_{Y^{1,1/2}}. \end{aligned} \end{equation} We crudely bound the multiplier by \begin{equation*} |\frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)}|\lesssim \big(\frac{N_{\rm max}}{N}\big)^{1-}. \end{equation*} The most difficult case is $|n_2|\geq N$. We have two possibilities: \noindent$\bullet$ Exactly two frequencies are bigger than $N/3$. We can assume $N_3\ll N_2$. In particular, \begin{align*} \int_0^{\delta}E_4&\lesssim \big(\frac{N_{\rm max}}{N}\big)^{1-} \frac{\delta^{\frac{7}{12}}}{N_1 N_3 N_4}\prod_{j=1}^2 \|u_j\|_{X^{1,\frac{1}{2}}}\|v_j\|_{Y^{1,\frac{1}{2}}}\\ &\lesssim N^{-1+}\delta^{\frac{7}{12}-}N_{\rm max}^{0-}\prod_{j=1}^2 \|u_j\|_{X^{1,\frac{1}{2}}}\|v_j\|_{Y^{1,\frac{1}{2}}}. \end{align*} \noindent$\bullet$ At least three frequencies are bigger than $N/3$. In this case, \begin{equation*} \int_0^{\delta}E_4\lesssim N^{-2+}\delta^{\frac{7}{12}-}N_{\rm max}^{0-}\prod_{j=1}^2 \|u_j\|_{X^{1,\frac{1}{2}}}\|v_j\|_{Y^{1,\frac{1}{2}}}. \end{equation*} The expression $\int_0^{\delta}E_5$ is controlled if we are able to prove \begin{equation}\label{e.aE5} \begin{aligned} &\int_0^{\delta}\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,t) \widehat{u_2}(n_2,t) \widehat{v_3}(n_3,t) \ |n_4| \ \widehat{v_4}(n_4,t)\\ &\lesssim N^{-1+}\delta^{\frac{7}{12}-}\prod_{j=1}^2 \|u_j\|_{X^{1,1/2}}\|v_j\|_{Y^{1,1/2}}. \end{aligned} \end{equation} This follows directly from the previous analysis for (\ref{e.aE4}). For the term $\int_0^{\delta} E_6$, we apply the lemma \ref{l.duality} to obtain \begin{equation*} \int_{0}^{\delta}E_6\lesssim \|(Iv)_{xx}\|_{Y^{-1}}\|(|Iu|^2 - I(|u|^2))_x\|_{W^1}\lesssim \|Iv\|_{Y^1}\|(|Iu|^2 - I(|u|^2))_x\|_{W^1}. \end{equation*} So, the definition of the $W^1$ norm means that we have to prove \begin{equation}\label{e.aE6} \begin{aligned} &\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L_{n_3,\tau_3}^2} \\ &+\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L_{\tau_3}^1}\\ &\lesssim \left\{N^{-\frac{3}{2}+}\delta^{\frac{1}{8}-} + N^{-\frac{2}{3}}\delta^{\frac{3}{8}-}\right\} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}. \end{aligned} \end{equation} Note that $\sum\tau_j = 0$ and $\sum n_j = 0$. In particular, we obtain the dispersion relation \begin{equation*} \tau_3 - n_3^3 + \tau_2 + n_2^2 + \tau_1 + n_1^2 = -n_3^3+n_1^2+n_2^2. \end{equation*} \noindent$\bullet$ $|n_1|\gtrsim N$, $|n_2|\ll |n_1|$. Denoting by $L_1:=|\tau_1+n_1^2|$, $L_2:=|\tau_2+n_2^2|$ and $L_3:=|\tau_3-n_3^3|$, the dispersion relation says that in the present situation $L_{\rm max}:=\max\{L_j\}\gtrsim N_3^3$. Since the multiplier is bounded by \begin{equation*} \Big|\frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big|\lesssim \begin{cases} \frac{\nabla m(n_1) n_2}{m(n_1)}\lesssim \frac{N_2}{N_1}, &\text{if } |n_2|\leq N, \\ \big(\frac{N_2}{N}\big)^{1/2}, &\text{if } |n_2|\geq N, \end{cases} \end{equation*} we deduce that \begin{align*} &\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L_{n_3,\tau_3}^2} \\ &+\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L_{\tau_3}^1}\\ &\lesssim \frac{N_3^2}{N_3^{\frac{3}{2}-}}\frac{\delta^{\frac{1}{8}-}}{N N_1} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}} \\ &\lesssim N^{-\frac{3}{2}+}\delta^{\frac{1}{8}-} N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}. \end{align*} \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$, $|n_3|^3\gg |n_2|^2$. In the present case the multiplier is bounded by $\big(\frac{N_1}{N}\big)^{1-}$ and the dispersion relation says that $L_{\rm max}\gtrsim N_3^3$. Thus, \begin{align*} &\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L_{n_3,\tau_3}^2} \\ &+\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L_{\tau_3}^1}\\ &\lesssim \frac{N_3^2}{N_3^{\frac{3}{2}-}}\big(\frac{N_1}{N}\big)^{1-} \frac{\delta^{\frac{1}{8}-}}{N_1 N_2} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}} \\ &\lesssim N^{-\frac{3}{2}+}\delta^{\frac{1}{8}-} N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}. \end{align*} \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$ and $|n_3|^3\lesssim |n_2|^2$. Here the dispersion relation does not give useful information about $L_{\rm max}$. Since the multiplier is estimated by $\big(\frac{N_2}{N}\big)^{1/2}$, we obtain the crude bound \begin{align*} &\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L_{n_3,\tau_3}^2} \\ &+\Big\|\frac{\langle n_3\rangle}{\langle\tau_3-n_3^3\rangle^{1/2}} |n_3| \int\sum \frac{m(n_1+n_2) - m(n_1)m(n_2)}{m(n_1)m(n_2)} \widehat{u_1}(n_1,\tau_1) \widehat{u_2}(n_2,\tau_2)\Big\|_{L^2_{n_3}L_{\tau_3}^1}\\ &\lesssim N_3^2\big(\frac{N_2}{N}\big)^{1/2} \frac{\delta^{\frac{3}{8}-}}{N_1 N_2} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}} \\ &\lesssim N^{-\frac{2}{3}+}\delta^{\frac{3}{8}-} N_{\rm max}^{0-} \|u_1\|_{X^{1,1/2}}\|u_2\|_{X^{1,1/2}}. \end{align*} Next, the desired bound related to $\int_0^{\delta} E_7$ follows from \begin{equation}\label{e.aE7} \begin{aligned} &\int_0^{\delta}\sum\Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big| |n_1+n_2|\widehat{u_1}(n_1,t)\widehat{v_2}(n_2,t) |n_3|\widehat{u_3}(n_3,t) \\&\lesssim N^{-1+}\delta^{\frac{19}{24}-}\|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}} \|u_3\|_{X^{1,1/2}} \end{aligned} \end{equation} \noindent$\bullet$ $|n_1|\ll |n_2|\gtrsim N$. The multiplier is $\lesssim (|n_2|/N)^{1/2}$ so that \begin{align*} \int_0^{\delta}E_7&\lesssim \frac{1}{N^{1/2}} \int_0^{\delta}\sum |n_1+n_2| \widehat{u_1}(n_1,t) |n_2|^{1/2} \widehat{v_2}(n_2,t) |n_3|\widehat{u_3}(n_3,t) \\ &\lesssim N^{-1}\delta^{\frac{19}{24}-}\|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}} \|u_3\|_{X^{1,1/2}}. \end{align*} \noindent$\bullet$ $|n_1|\sim |n_2|\gtrsim N$. The multiplier is $\lesssim |n_2|/N$. Hence, \begin{equation*} \int_0^{\delta}E_7\lesssim N^{-1}\delta^{\frac{19}{24}-} \|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}}\|u_3\|_{X^{1,1/2}}. \end{equation*} \item $|n_1|\gtrsim N$, $|n_2|\leq N$. The multiplier is again $\lesssim N_2/N$, so that it can be estimated as above. Now we turn to the term $\int_0^{\delta}E_8$. The objective is to show that \begin{equation}\label{e.aE8} \int_0^{\delta}\Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big| |n_1+n_2|\prod_{j=1}^4\widehat{u_j}(n_j,t)\lesssim N^{-1+}\delta^{\frac{1}{2}-}\prod_{j=1}^4\|u_j\|_{X^{1,1/2}} \end{equation} \noindent$\bullet$ At least three frequencies are bigger than $N/3$. We can assume $|n_1|\geq |n_2|$. The multiplier is bounded by $N_{\rm max}/N$ so that \begin{equation*} \int_0^{\delta}E_8\lesssim \frac{N_{\rm max}}{N} \frac{\delta^{\frac{1}{2}-}}{N_2 N_3 N_4} \prod_{j=1}^4\|u_j\|_{X^{1,1/2}}\lesssim N^{-2+}\delta^{\frac{1}{2}-}N_{\rm max}^{0-} \prod_{j=1}^4\|u_j\|_{X^{1,1/2}}. \end{equation*} \noindent$\bullet$ Exactly two frequencies are bigger than $N/3$. Without loss of generality, we suppose $|n_1|\sim |n_2|\gtrsim N$ and $|n_3|, |n_4|\ll N$. Since the multiplier satisfies \begin{equation*} \Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big|\lesssim \big(\frac{N_{\rm max}}{N}\big)^{1-}, \end{equation*} we get the bound \begin{equation*} \int_0^{\delta}E_8\lesssim \big(\frac{N_{\rm max}}{N}\big)^{1-} \frac{\delta^{\frac{1}{2}-}}{N_2 N_3 N_4} \prod_{j=1}^4\|u_j\|_{X^{1,1/2}}\lesssim N^{-1+}\delta^{\frac{1}{2}-}N_{\rm max}^{0-} \prod_{j=1}^4\|u_j\|_{X^{1,1/2}}. \end{equation*} The contribution of $\int_0^{\delta}E_9$ is estimated if we prove that \begin{equation}\label{e.aE9} \begin{aligned} &\int_0^{\delta}\Big|\frac{m(n_1+n_2)-m(n_1)m(n_2)}{m(n_1)m(n_2)}\Big| \widehat{u_1}(n_1,t)\widehat{v_2}(n_2,t)\widehat{u_3}(n_3,t)\widehat{v_4}(n_4,t) \\ &\lesssim N^{-2+}\delta^{\frac{7}{12}-}\|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}} \|u_3\|_{X^{1,1/2}}\|v_4\|_{Y^{1,1/2}}. \end{aligned} \end{equation} This follows since at least two frequencies are bigger than $N/3$ and the multiplier is always bounded by $(N_{\rm max}/N)^{1-}$, so that \begin{align*} \int_0^{\delta}E_9&\lesssim \big(\frac{N_{\rm max}}{N}\big)^{1-} \|u_1\|_{L^4} \|v_2\|_{L^4}\|u_3\|_{L^4}\|v_4\|_{L^4}\\ &\lesssim \big(\frac{N_{\rm max}}{N}\big)^{1-} \frac{\delta^{\frac{1}{4}+ \frac{1}{3}-}}{N_1 N_2 N_3 N_4} \|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}} \|u_3\|_{X^{1,1/2}}\|v_4\|_{Y^{1,1/2}}\\ &\lesssim N^{-2+}\delta^{\frac{7}{12}-}\|u_1\|_{X^{1,1/2}}\|v_2\|_{Y^{1,1/2}} \|u_3\|_{X^{1,1/2}}\|v_4\|_{Y^{1,1/2}}. \end{align*} Now, we treat the term $\int_0^{\delta}E_{10}$. It is sufficient to prove \begin{equation}\label{e.aE10} \begin{aligned} &\int_0^{\delta}\sum \Big|\frac{m(n_4+n_5+n_6)-m(n_4)m(n_5)m(n_6)}{m(n_4)m(n_5)m(n_6)}\Big| \prod_{j=1}^6\widehat{u_j}(n_j,t)\\ &\lesssim N^{-2+}\delta^{\frac{1}{2}-}\prod_{j=1}^6\|u_j\|_{X^1}. \end{aligned} \end{equation} This follows easily from the facts that the multiplier is bounded by $(N_{\rm max}/N)^{3/2}$, at least two frequencies are bigger than $N/3$, say $|n_{i_1}|\geq |n_{i_2}|\gtrsim N$, the Strichartz bound $X^{0,3/8}\subset L^4$ and the inclusion\footnote{This inclusion is an easy consequence of Sobolev embedding.} $X^{\frac{1}{2}+}\subset L_{xt}^{\infty}$. Indeed, if we combine these informations, it is not hard to get \begin{align*} \int_0^{\delta}E_{10}&\lesssim \big(\frac{N_{\rm max}}{N}\big)^{\frac{3}{2}} \frac{1}{N_{i_1} N_{i_2} N_{i_3} N_{i_4}}\delta^{\frac{1}{2}-}\frac{1}{(N_{i_5}N_{i_6})^{1/2-}} \prod_{j=1}^6\|u_j\|_{X^1}\\ &\lesssim N^{-2+}\delta^{\frac{1}{2}-}N_{\rm max}^{0-} \prod_{j=1}^6\|u_j\|_{X^1} \end{align*} For the expression $\int_0^{\delta}E_{11}$, we use again that the multiplier is bounded by $(N_{\rm max}/N)^{3/2}$, at least two frequencies are bigger than $N/3$ (say $|n_{i_1}|\geq |n_{i_2}|\gtrsim N$), the Strichartz bounds in lemma \ref{l.Strichartz} and the inclusions $X^{\frac{1}{2}+},Y^{\frac{1}{2}+}\subset L^{\infty}_{xt}$ to obtain \begin{equation} \begin{aligned} &\int_0^{\delta}\sum \Big|\frac{m(n_1+n_2+n_3)-m(n_1)m(n_2)m(n_3)}{m(n_1)m(n_2)m(n_3)}\Big| \prod_{j=1}^4\widehat{u_j}(n_j,t)\widehat{v_5}(n_5,t)\\ &\lesssim \big(\frac{N_{\rm max}}{N}\big)^{\frac{3}{2}} \frac{1}{N_{i_1} N_{i_2} N_{i_3} N_{i_4}} \frac{\delta^{\frac{1}{2}-}}{N_{i_5}^{1/2-}} \prod_{j=1}^4\|u_j\|_{X^1} \|v_5\|_{Y^1}\\ &\lesssim N^{-2+}\delta^{\frac{1}{2}-}\prod_{j=1}^4\|u_j\|_{X^1} \|v_5\|_{Y^1}. \end{aligned} \end{equation} The analysis of $\int_0^{\delta}E_{12}$ is similar to the $\int_0^{\delta}E_{11}$. This completes the proof. \end{proof} \section{Global well-posedness below the energy space}\label{s.global} In this section we combine the variant local well-posedness result in proposition \ref{p.local} with the two almost conservation results in the propositions \ref{p.al} and \ref{p.ae} to prove the theorem \ref{t.A}. \begin{remark} \label{rmk5.1}\rm Note that the spatial mean $\int_{\mathbb{T}} v(t,x) dx$ is preserved during the evolution \eqref{e.nls-kdv}. Thus, we can assume that the initial data $v_0$ has zero-mean, since otherwise we make the change $w= v-\int_{\mathbb{T}}v_0 dx$ at the expense of two harmless linear terms (namely, $u\int_{\mathbb{T}}v_0 dx$ and $\partial_x v \int_{\mathbb{T}}v_0$). \end{remark} The definition of the I-operator implies that the initial data satisfies $\|Iu_0\|_{H^1}^2 +\|Iv_0\|_{H^1}^2\lesssim N^{2(1-s)}$ and $\|Iu_0\|_{L^2}^2 +\|Iv_0\|_{L^2}^2\lesssim 1$. By the estimates (\ref{e.L1}) and (\ref{e.E3}), we get that $|L(Iu_0, Iv_0)|\lesssim N^{1-s}$ and $|E(Iu_0, Iv_0)|\lesssim N^{2(1-s)}$. Also, any bound for $L(Iu,Iv)$ and $E(Iu,Iv)$ of the form $|L(Iu,Iv)|\lesssim N^{1-s}$ and $|E(Iu,Iv)|\lesssim N^{2(1-s)}$ implies that $\|Iu\|_{L^2}^2\lesssim M$, $\|Iv\|_{L^2}^2\lesssim N^{1-s}$ and $\|Iu\|_{H^1}^2+\|Iv\|_{H^1}^2\lesssim N^{2(1-s)}$. Given a time $T$, if we can uniformly bound the $H^1$-norms of the solution at times $t=\delta$, $t=2\delta$, etc., the local existence result in proposition \ref{p.local} says that the solution can be extended up to any time interval where such a uniform bound holds. On the other hand, given a time $T$, if we can interact $T\delta^{-1}$ times the local existence result, the solution exists in the time interval $[0,T]$. So, in view of the propositions \ref{p.al} and \ref{p.ae}, it suffices to show \begin{equation}\label{e.L} (N^{-1+}\delta^{\frac{19}{24}-}N^{3(1-s)} + N^{-2+}\delta^{\frac{1}{2}-}N^{4(1-s)})T\delta^{-1}\lesssim N^{1-s} \end{equation} and \begin{equation}\label{e.E} \begin{aligned} &\big\{(N^{-1+}\delta^{\frac{1}{6}-} + N^{-\frac{2}{3}+}\delta^{\frac{3}{8}-} +N^{-\frac{3}{2}+}\delta^{\frac{1}{8}-})N^{3(1-s)}\\ &+N^{-1+}\delta^{\frac{1}{2}-}N^{4(1-s)} +N^{-2+}\delta^{\frac{1}{2}-}N^{6(1-s)}\big\}\frac{T}{\delta} \lesssim N^{2(1-s)} \end{aligned} \end{equation} At this point, we recall that the proposition \ref{p.local} says that $\delta\sim N^{-\frac{16}{3}(1-s)-}$ if $\beta\neq 0$ and $\delta\sim N^{-8(1-s)-}$ if $\beta=0$. Hence, \noindent $\bullet$ $\beta\neq 0$. The condition (\ref{e.L}) holds for \begin{equation*} -1+\frac{5}{24}\frac{16}{3}(1-s)+3(1-s)< (1-s), \quad \text{i.e. }, s>19/28 \end{equation*} and \begin{equation*} -2+\frac{1}{2}\frac{16}{3}(1-s)+4(1-s)< (1-s), \quad\text{i.e. }, s>11/17; \end{equation*} Similarly, condition (\ref{e.E}) is satisfied if \begin{gather*} -1+\frac{5}{6}\frac{16}{3}(1-s) + 3(1-s)< 2(1-s), \quad\text{i.e. }, s>40/49; \\ -\frac{2}{3}+\frac{5}{6}\frac{16}{3}(1-s)+3(1-s)< 2(1-s), \quad\text{i.e. }, s>11/13; \\ -\frac{3}{2}+\frac{7}{8}\frac{16}{3}(1-s)+3(1-s)< 2(1-s), \quad\text{i.e. }, s>25/34; \\ -1+\frac{1}{2}\frac{16}{3}(1-s)+4(1-s)< 2(1-s), \quad\text{i.e. }, s>11/14; \\ -2+\frac{1}{2}\frac{16}{3}(1-s)+6(1-s)< 2(1-s), \quad\text{i.e. }, s>7/10. \end{gather*} Thus, we conclude that the non-resonant NLS-KdV system is globally well-posed for any $s>11/13$. \noindent $\bullet$ $\beta=0$. Condition (\ref{e.L}) is fulfilled when \begin{equation*} -1+\frac{5}{24}8(1-s)+3(1-s)< (1-s), \quad\text{i.e. }, s>8/11 \end{equation*} and \begin{equation*} -2+\frac{1}{2}8(1-s)+4(1-s)< (1-s), \quad\text{i.e. }, s>5/7; \end{equation*} Similarly, the condition (\ref{e.E}) is verified for \begin{gather*} -1+\frac{5}{6}8(1-s) + 3(1-s)< 2(1-s), \quad\text{i.e. }, s>20/23; \\ -\frac{2}{3}+\frac{5}{6}8(1-s)+3(1-s)< 2(1-s), \quad\text{i.e. }, s>8/9; \\ -\frac{3}{2}+\frac{7}{8}8(1-s)+3(1-s)< 2(1-s), \quad\text{i.e. }, s>13/16; \\ -1+\frac{1}{2}8(1-s)+4(1-s)< 2(1-s), \quad\text{i.e. }, s>5/6; \\ -2+\frac{1}{2}8(1-s)+6(1-s)< 2(1-s), \quad\text{i.e. }, s>3/4. \end{gather*} Hence, we obtain that the resonant NLS-KdV system is globally well-posed for any $s>8/9$. \begin{thebibliography}{00} \bibitem{ACM}{A. Arbieto, A. Corcho and C. Matheus,} \emph{Rough solutions for the periodic Schr\"odinger - Korteweg - deVries system,} {Journal of Differential Equations, {\bf 230} (2006), 295--336.} \bibitem{Bourgain}{J. Bourgain,} \emph{Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations,} {Geometric and Functional Anal., {\bf 3} (1993), 107--156, 209--262.} \bibitem{CKSTT1}{J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,} \emph{Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$,} {J. Amer. Math. Soc., {\bf 16} (2003), 705--749.} \bibitem{CKSTT}{J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,} \emph{Multilinear estimates for periodic KdV equations, and applications,} {J. Funct. Analysis, {\bf 211} (2004), 173--218.} \bibitem{Corcho}{A. J. Corcho, and F. Linares,} \emph{Well-posedness for the Schr\"odinger - Kortweg-de Vries system,} {Preprint (2005).} \bibitem{Pecher}{H. Pecher,} \emph{The Cauchy problem for a Schr\"odinger - Kortweg - de Vries system with rough data,} {Preprint (2005).} \bibitem{MTsutsumi}{M. Tsutsumi,} \emph{Well-posedness of the Cauchy problem for a coupled Schr\"odinger-KdV equation,} {Math. Sciences Appl., {\bf 2} (1993), 513--528.} \end{thebibliography} \end{document}