\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 09, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/09\hfil Existence of non-oscillatory solutions] {Existence of non-oscillatory solutions to higher-order mixed difference equations} \author[Q. Li, H. Liang, Z. Zhang \hfil EJDE-2007/09\hfilneg] {Qiaoluan Li, Haiyan Liang, Wenlei Dong, Zhenguo Zhang} % in alphabetical order \address{Qiaoluan Li, Haiyan Liang, Wenlei Dong, Zhenguo Zhang \newline College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050016, China} \email[Qiaoluan Li]{qll71125@163.com} \email[Haiyan Liang]{Liang730110@eyou.com} \address{ Zhenguo Zhang \newline Information College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, China} \email[Zhenguo Zhang]{Zhangzhg@mail.hebtu.edu.cn} \thanks{Submitted April 30, 2006. Published January 2, 2007.} \thanks{Supported by the Natural Science Foundation of Hebei Province and by the \hfill\break\indent Main Foundation of Hebei Normal University} \subjclass[2000]{39A05, 39A10} \keywords{Nonoscillatory; existence; neutral equation} \begin{abstract} In this paper, we consider the higher order neutral nonlinear difference equation \begin{gather*} \Delta^{m}(x(n)+p(n)x(\tau(n)))+f_1(n,x(\sigma_{1}(n))) -f_2(n,x(\sigma_{2}(n)))=0, \\ \Delta^{m}(x(n)+p(n)x(\tau(n)))+f_1(n,x(\sigma_{1}(n))) -f_2(n,x(\sigma_{2}(n)))=g(n), \\ \Delta^{m}(x(n)+p(n)x(\tau(n)))+\sum_{i=1}^{l}b_i(n)x(\sigma_i(n))=0. \end{gather*} We obtain sufficient conditions for the existence of non-oscillatory solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Consider the difference equations \begin{gather} \Delta^{m}(x(n)+p(n)x(\tau(n)))+f_1(n,x(\sigma_{1}(n))) -f_2(n,x(\sigma_{2}(n)))=0, \label{e1.1}\\ \Delta^{m}(x(n)+p(n)x(\tau(n)))+f_1(n,x(\sigma_{1}(n))) -f_2(n,x(\sigma_{2}(n)))=g(n), \label{e1.2}\\ \Delta^{m}(x(n)+p(n)x(\tau(n)))+\sum_{i=1}^{l}b_i(n)x(\sigma_i(n))=0, \label{e1.3} \end{gather} for $n\geq n_0$, where $\tau(n),\sigma_{i}(n)$ are sequences of positive integers with $\tau(n)\leq n$, $\lim_{n\to\infty}\tau(n)=\infty$, $\lim_{n\to\infty}\sigma_{i}(n)=\infty$, $i=1,2,\dots, l$. Also where $p(n), g(n), b_j(n)$, $j=1,2,\dots, l$ are sequences of real numbers, $f_i(n,x)$, $i=1,2$ are continuous and nondecreasing for $x$, $f_1(n,x)f_2(n,x)>0$. There exists $b\neq 0$ such that \begin{gather} \sum_{s=n}^{\infty}(s-n)^{(m-1)}|f_i(s,b)|<\infty,\quad i=1,2,\label{e1.4}\\ \sum_{s=n}^{\infty}(s-n)^{(m-1)}|g(s)|<\infty,\label{e1.5} \\ \sum_{s=n}^{\infty}(s-n)^{(m-1)}|b_j(s)|<\infty.\label{e1.6} \end{gather} Recently, there has been an increasing interest in the study of existence and oscillation of solutions to differential and difference equations. The papers \cite{e1,l2,w1,y1} discussed the existence of non-oscillatory solutions of differential equations. The papers \cite{s1,t1} discussed the oscillation of difference equations. But there are relatively few which guarantee the existence of non-oscillatory solutions of difference equations, see \cite{j1,l1}. This paper is motivated by the recent paper \cite{z1}, where the authors gave sufficient conditions for the existence of non-oscillatory solutions of some first-order neutral delay differential equations. The purpose of this paper is to present some new criteria for the existence of non-oscillatory solution of \eqref{e1.1}-\eqref{e1.3}. A solution of \eqref{e1.1} (\eqref{e1.2} \eqref{e1.3}) is said to be oscillatory if it has arbitrarily large zeros; otherwise it is said to be non-oscillatory. \section{Main Results} To obtain our main results, we need the following lemma. \begin{lemma}[\cite{c1}] \label{lem1} Let $K$ be a closed bounded and convex subset of $l^\infty$, the Banach space consisting of all bounded real sequences. Suppose $\Gamma$ is a continuous map such that $\Gamma(K) \subset K$, and suppose further that $\Gamma(K)$ is uniformly Cauchy. Then $\Gamma$ has a fixed point in $K$. \end{lemma} In the sequel, without loss of generality, we assume that $f_i(n,x)>0$, $i=1,2$ and \eqref{e1.4} holds for $b>0$. \begin{theorem} \label{thm1} Assume that $0\leq p(n)\leq p<1$, \eqref{e1.4} holds, then \eqref{e1.1} has a bounded non-oscillatory solution which is bounded away from zero. \end{theorem} \begin{proof} Choose $N>n_0$, such that $$ N_{0}:=\min\{\inf_{n\geq N}\{\tau(n)\}, \inf_{n\geq N} \{\sigma_{1}(n)\}, \inf_{n\geq N}\{\sigma_{2}(n)\}\}\geq n_{0}. $$ Let $BC$ be the collection of bounded real sequence in Banach space $l^{\infty}$ and $\|x(n)\|=\sup_{n\geq N}|x(n)|$. Define a set $ \Omega \subset BC$ as follows: \[ \Omega=\{x(n)\in BC,\,0N$, such that for $n>N_1$, $$ \sum_{s=n}^{\infty}\frac{(s-n+1)^{(m-1)}}{(m-1)!} f_i(s,b)\leq c,\quad i=1,2. $$ Define two maps $\Gamma_1$ and $\Gamma_2$ on $\Omega $ as follows: $$ (\Gamma_1x)(n)=\begin{cases} \alpha-p(n)x(\tau(n)), & n\geq N_1,\\ (\Gamma_1x)(N_1), & N_{0}\leq n\leq N_1 \end{cases} $$ $$ (\Gamma_2x)(n)=\begin{cases} \frac{(-1)^{m-1}}{(m-1)!} \sum_{s=n}^{\infty}(s-n+1)^{(m-1)}\\ \times [f_1(s, x(\sigma_{1}(s)))- f_2(s, x(\sigma_{1}(s)))],& n\geq N_1\\ (\Gamma_2x)(N_1),& N_{0}\leq n\leq N_1 \end{cases} $$ For any $x,y\in \Omega$, we have \begin{gather*} (\Gamma_1x)(n)+(\Gamma_2y)(n) \leq \alpha+c\leq M_2,\\ (\Gamma_1 x)(n)+(\Gamma_2y)(n) \geq \alpha-pM_2-c\geq M_1. \end{gather*} That is $\Gamma_1x+\Gamma_2y \in \Omega$. Since $0\leq p(n)\leq p<1$, it is easy to check that $\Gamma_1$ is a contraction mapping. Now we show that $\Gamma_2$ is continuous. For any $\varepsilon>0$, we can choose $n_{2}>N_1$, such that $$ \sum_{s=n_{2}}^{\infty}\frac{(s-n_{0}+1)^{(m-1)}}{(m-1)!}f_i(s,b) <\varepsilon,\quad i=1,2. $$ Let $\{x_{k}(n)\}$ be a sequence in $\Omega$, such that $\lim_{k\to\infty}\|x_{k}-x\|=0$. Since $\Omega $ is a closed set, we get that $x\in \Omega$ and \begin{align*} &|(\Gamma_2x_{k})(n)-(\Gamma_2x)(n)|\\ &\leq \big|\sum_{s=n}^{n_{2}-1}\frac{(s-n+1)^{(m-1)}}{(m-1)!} (f_1(s,x_k(\sigma_1(s)))-f_1(s,x(\sigma_1(s))))\big| \\ &\quad +|\sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!}(f_2(s,x_k(\sigma_2(s)))-f_2(s,x(\sigma_2(s))))| +4\varepsilon. \end{align*} Since $f_i$ is continuous for $x$, we get that $\lim_{k\to\infty}\|\Gamma_2x_k-\Gamma_2x\|=0$. We also know that $\Gamma_2$ is uniformly bounded and for for all $\varepsilon>0$, there exists $N_2$ such that for $m_1>m_2\geq N_2$ and for all $x(n)\in \Omega$, \begin{align*} & |\Gamma_2 x(m_1)-\Gamma_2 x(m_2)|\\ &\leq \sum_{s=m_2}^{m_1-1}\frac{(s-n_0+1)^{(m-1)}}{(m-1)!} |f_1(s,x(\sigma_1(s)))- f_2(s,x(\sigma_2(s)))|\leq \varepsilon. \end{align*} From the discrete Krasnoselskii's fixed point theorem, there exists $x\in \Omega$, such that $x=\Gamma x$, i.e. \begin{align*} x(n)&=\alpha-p(n)x(\tau(n))\\ &\quad +(-1)^{m-1}\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \Big(f_1(s,x(\sigma_1(s)))-f_2(s,x(\sigma_2(s)))\Big). \end{align*} Note that $x(n)$ is a bounded non-oscillatory solution of \eqref{e1.1} which is bounded away from zero. \end{proof} \begin{theorem} \label{thm2} Assume that $1n_0$, such that $$ N_{0}=\min\{\tau(N_1), \inf_{n\geq N_1}\{\sigma_{1}(n)\}, \inf_{n\geq N_1}\{\sigma_2(n)\}\}\geq n_{0}. $$ Let $BC$ be the collection of bounded real sequences in the Banach space $l^{\infty}$ and $\|x(n)\|=\sup_{n\geq N_1}|x(n)|$. Define a set $ X \subset BC$ as follows: \begin{align*} X=\big\{&x(n)\in BC: \Delta x(n)\leq 0, 00$, we can choose $n_{2}>N$, such that $$ \sum_{s=n_{2}}^{\infty}\frac{(s-n_{0}+1)^{(m-1)}}{(m-1)!}f_i(s,b) <\varepsilon, \quad i=1,2. $$ \begin{align*} &|\Gamma x_{k}(n)-\Gamma x(n)|\\ &\leq \sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!}\sum_{i=1}^{2}|f_i(s,\psi_k(\sigma_i(s)))- f_i(s,\psi(\sigma_i(s)))| +4\varepsilon. \end{align*} So $\lim_{k\to\infty}\|\Gamma x_{k}-\Gamma x\|=0$. \item[(c)] $\Gamma X$ is uniformly Cauchy. For all $\varepsilon>0$, there exists $ n_3$ such that for $m_1>m_2\geq n_3$ and for all $x(n)\in X$, \begin{align*} &|\Gamma x(m_{1})-\Gamma x(m_{2})|\\ &\leq \sum_{s=m_2}^{m_1-1}\frac{(s-n_0+1)^{(m-1)}}{(m-1)!} |f_1(s,\psi(\sigma_1(s)))-f_2(s,\psi(\sigma_2(s)))| \leq \varepsilon. \end{align*} This shows that $\Gamma X$ is uniformly Cauchy. \end{itemize} From Lemma \ref{lem1}, there exists $x\in X$, such that $x=\Gamma x$, i.e. $$ x(n)=\alpha+(-1)^{m-1}\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!}[f_1(s, \psi(\sigma_{1}(s)))-f_2(s,\psi(\sigma_{2}(s)))], $$ for $n\geq N$. Since $\psi(n)+p(n)\psi(\tau(n))=x(n)$, we obtain \begin{align*} &\psi(n)+p(n)\psi(\tau(n))\\ &=\alpha+(-1)^{m-1}\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!}[f_1(s, \psi(\sigma_{1}(s)))-f_2(s,\psi(\sigma_{2}(s)))]. \end{align*} So $\psi(n)$ satisfies \eqref{e1.1} for $n\geq N$, and $\frac{p_{1}-1}{p_{1}p_{2}}x(\tau^{-1}(n))\leq \psi(n)\leq x(n)$. \end{proof} \begin{theorem} \label{thm3} Assume that $-1