\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 111, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/111\hfil A sub-super critical Dirichlet problem] {Infinitely many radial solutions for a sub-super critical Dirichlet boundary value problem in a ball} \author[A. Castro, J. Kwon, C. M. Tan\hfil EJDE-2007/111\hfilneg] {Alfonso Castro, John Kwon, Chee Meng Tan} % in alphabetical order \address{Departament of Mathematics\\ Harvey Mudd College \\ Claremont, CA 91711, USA} \email[A. Castro]{castro@math.hmc.edu} \email[J. Kwon]{kwonjy@math.uci.edu} \email[C. M. Tan]{ctan@hmc.edu} \thanks{Submitted February 4, 2007. Published August 14, 2007.} \subjclass[2000]{35J65, 34B16} \keywords{Sub-super critical; radial solutions; nonlinear elliptic equation; \hfill\break\indent Pohozaev identity} \begin{abstract} We prove the existence of infinitely many solutions to a semilinear Dirichlet boundary value problem in a ball for a nonlinearity $g(u)$ that grows subcritically for $u$ positive and supercritically for $u$ negative. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \begin{section}{Introduction} In this paper we consider the {\it sub-super critical} boundary-value problem \begin{equation}\label{bvp} \begin{gathered} \Delta u+g(u(x))=0, \quad x \in \mathbb{R}^N, \; \|x\| \leq 1\\ u(x) =0 \quad \hbox{for } \|x\| = 1, \end{gathered} \end{equation} where \begin{equation}\label{defg} g(u) = \begin{cases} u^{p}, & u \geq 0\\ |u|^{q-1}u, & u < 0, \end{cases} \end{equation} with \begin{equation}\label{defpq} 1 < p < \frac{N+2}{N-2} < q < \infty, \end{equation} that is, $g$ has subcritical growth for $u >0$ and supercritical growth for $u < 0$. Our results hold for more general nonlinearities. For example, it is easy to see that (\ref{defg}) may be replaced by $\lim_{u \to +\infty} g(r,u)/u^p \in (0, \infty)$ and $\lim_{u \to -\infty} g(r,u)/(|u|^{q-1}u) \in (0, \infty)$, uniformly for $r \in [0,1]$. Our main result is as follows. \begin{theorem} \label{main} Problem \textup{(\ref{bvp})} has infinitely many radial solutions. \end{theorem} This theorem extends the results of \cite{ca-ka1} where it was established that if $1 < p < (N+1)/(N-1)$ and $q >1$, or $p,q \in (1, (N+2)/(N-2))$, or $p \in (1, (N+2)/(N-2))$ and $q = (N+2)/(N-2)$, then (\ref{bvp}) has infinitely many radial solutions. This result is optimal in the sense that if $p,q \in [(N+2)/(N-2), \infty)$ then $u =0$ is the only solution to (\ref{bvp}) (see \cite{ps}). For related results for quasilinear equations the reader is referred to \cite{eha-dtf} and \cite{gm-mr-zf}. Studies on positive solutions for sub-super critical problems may be found in \cite{el-tm}. For other studies on the critical case, $p = q = (N+2)/(N-2)$ and $\lim_{|u| \to \infty}/(u|u|^{p-1}) \in \mathbb{R}$, see \cite{af-bh-pl,bh-nl,ca-ka1,ca-ka3,cg-ss-sm}. In \cite{br-dj-em} the reader can find a complete classification of the radial solutions to (\ref{bvp}) for $1< p=q < (N+2)/(N-2)$. For a recent survey of radial solutions for elliptic boundary-value problems that includes the case where the Laplacian operator is replaced by the more general {\it $k$-Hessian} operator, see \cite{jj-sk}. Radial solutions to \eqref{bvp} are the solutions to the singular ordinary differential equation \begin{equation}\label{odebvp} \begin{gathered} u''+\frac{n}{t} u'+g(u(t))=0\\ u'(0)= u(1) = 0, \end{gathered} \end{equation} where, and henceforth, $n= N-1$. For $d >0$ let $u(t,d)$ be the solution to the initial-value problem \begin{equation}\label{ivp} \begin{gathered} u''+\frac{n}{t} u'+g(u(t))=0\\ u(0)= d, \ u'(0) = 0. \end{gathered} \end{equation} We define the {\it energy } function \begin{equation}\label{defE} E(t,d) \equiv \frac{(u'(t,d))^2}{2} + G(u(t,d)), \end{equation} where $G(u) = \int_0^u g(s) ds$. For future reference we note that \begin{equation}\label{derE} \frac{dE}{dt} (t) = -\frac{n}{t}(u'(t))^2 \leq 0. \end{equation} The proof of Theorem \ref{main} is based on the properties of the energy and the {\it argument} function defined below (see (\ref{deftheta})). \begin{theorem} \label{enertheo} There exists $D>0$ such that if $d \geq D$, then \begin{equation}\label{defxi} t^{N-1}\Big(tE(t) + \frac{N-2}{2}u(t) u'(t)\Big) \geq cd^{\xi} \quad \hbox{for all } t \geq \sqrt{N}d^{(1-p)/2}, \end{equation} where $\xi = \frac{N+2 -p(N-2)}{2}$. Also $u(t) \geq d/2$ for $t \in [0, \sqrt{N}d^{(1-p)/2}]$. \end{theorem} As a consequence of Theorem \ref{enertheo} we see that, for $d \geq D$, $\rho(t,d) \equiv u^2(t,d) + (u'(t,d))^2 > 0$ for all $t \in [0,1]$. Hence there exists a continuous function $\theta:[0,1] \times [D, \infty) \to \mathbb{R}$ such that \begin{equation} \label{deftheta} u(t,d) = \rho(t,d) \cos(\theta(t,d)) \quad \hbox{and} \quad u'(t,d) = -\rho(t,d) \sin(\theta(t,d)). \end{equation} In section 7 we prove that \begin{equation}\label{argtheo} \lim_{d \to \infty} \theta(1,d) = +\infty, \end{equation} see (\ref{thetaprove}) below. \end{section} \begin{section}{First zero} Let $d>0$ and $t_0 >0$ be such that $u(t_0) = d/2$, and $u(t) > d/2$ for $t \in (0, t_0)$. Following the arguments in \cite{ca-ka1}, based on \begin{equation}\label{u'} -u'(t) = t^{-n}\int_0^t s^n g(u(s)) ds, \end{equation} it is easily seen that \begin{equation}\label{estt0} \sqrt{N} d^{(1-p)/2} \leq t_{0} \leq \sqrt{2^p N} d^{(1-p)/2}. \end{equation} Multiplying (\ref{ivp}) by $r^{N-1}u$ and integrating on $[s, t]$, then multiplying the same equation by $r^N u'$ and integrating also on $[s,t]$ one has the following identity, known as Pohozaev's identity, \begin{equation}\label{poho} t^{n}H(t) = s^{n}H(s) + \int_{s}^{t}r^{n}\Big(NG(u(r)) -\frac{N-2}{2}u(r)g(u(r)) \Big) \,dr, \end{equation} where $H(x) \equiv xE(x)\ + \frac{N-2}{2}\, \,u'(x)\,u(x)$. In particular, taking $s=0$ and $t=t_0$ we have \begin{equation} \begin{aligned}\label{pohot0} t_0^nH(t_0) & \geq \frac{t_0^N \gamma d^{p+1}}{2^{p+1} N} &\geq \frac{N^{(N-2)/2} \gamma }{2^{p+1}} d^{\xi} & \equiv c_1d^{\xi}, \end{aligned} \end{equation} where $\gamma = N/(p+1) - (N-2)/2$ and $\xi$ is as in (\ref{defxi}). Also, from \eqref{poho}, if $u(r) \geq 0$ for all $r \in [0,t]$ we have \begin{equation}\label{pohot1} t^{N}(u'(t))^{2} = - {(N-2)u} \cdot t^{n}u' -2 t^{N} \frac{u^{p+1}}{p+1} + 2 \int_{0}^{t}\gamma r^{n}u^{p+1}\,dr. \end{equation} Thus from \eqref{pohot1} and the fact that $t^{-n} \int_{0}^{t} s^{n} u^{p+1} \,ds \geq -u(t)u'(t)$ we have \begin{equation}\label{esttu'overu} \begin{aligned} \big(\frac{-tu'}{u}\big)' &= \frac{(-tu''-u')u+t(u')^{2}}{u^{2}}\\ &= \frac{-t(-\frac{n}{t}u'-u^{p})u-uu'+t(u')^{2}}{u^{2}}\\ &= \frac{(\overbrace{n-1}^{N-2})uu'+tu^{p+1}+t(u')^{2}}{u^{2}}\\ &= \frac{2t^{-n} \int_{0}^{t} s^{n} \gamma u^{p+1} \,ds -2 \frac{tu^{p+1}}{p+1} +tu^{p+1}}{u^{2}}\\ &= \frac{2t^{-n} \int_{0}^{t} s^{n} \gamma u^{p+1} \,ds + t \big(\frac{p-1}{p+1}\big) u^{p+1}}{u^{2}}\\ & \geq \frac{2\gamma}{t}\big( \frac{-tu'(t)}{u(t)}\big), \end{aligned} \end{equation} provided $u(s) > 0$ for $s \in (0, t)$. Integrating (\ref{esttu'overu}) on $[t_0, t)$ we have \begin{equation*} \ln\left(\frac{{-tu'(t)}/{u(t)}}{{-t_0u'(t_0)}/{u(t_0)}}\right) \geq \ln\big(\frac{t}{t_0}\big)^{\gamma}. \end{equation*} Letting $\Gamma = -t_0u'(t_0)/u(t_0)$ we conclude that \begin{equation*} \frac{-tu'(t)}{u(t)} \geq \Gamma \big(\frac{t}{t_0}\big)^{\gamma}. \end{equation*} For future reference we note that \begin{equation}\label{estGamma} \Gamma \geq 2^{1-p}, \end{equation} where we have used (\ref{estt0}), and $-u'(t_0) \geq t_0d^p/(2^pN)$ (see (\ref{u'})). Integrating again in $[t_0, t]$ yields \begin{equation*} \ln\big(\frac{u(t_0)}{u(t)}\big) \geq \frac{\Gamma}{ \gamma t_0^{\gamma}}[t^{\gamma}-t_0^{\gamma}]. \end{equation*} Assuming that $u(t) \geq 0$ for all $t \in [t_0, t_0 \ln^{1/\gamma}(d)\equiv T]$ we have \begin{equation*} u(T) \leq u(t_0) (ed^{-1})^{\Gamma/\gamma} = \frac{e^{\Gamma/\gamma}}{2}d^{1-\Gamma/\gamma}. \end{equation*} Now we estimate $E$ for $t \geq t_0$ with $u(s) \geq 0$ for $s \in (t_0, t]$. Since $E'(t) \geq -2nE(t)/t$, \begin{equation}\label{endec} E(t) \geq E(s)(s/t)^{2n} \quad \hbox{for any } \quad 0 \leq s \leq t \leq 1. \end{equation} Thus \begin{equation}\label{u'T} \begin{aligned} \frac{(u'(T))^2}{2} & \geq E(t_0)\big(\frac{t_0}{T}\big)^{2n} - \frac{u^{p+1}(T)}{p+1} \\ & \geq \frac{d^{p+1}}{(p+1)2^{p+1}\ln^{2n/\gamma}(d)} - \frac{1}{p+1}\Big( \frac{e^{\Gamma/\gamma}}{2}d^{1-\Gamma/\gamma}\Big)^{p+1} \\ & \geq \frac{d^{p+1}}{(p+1)2^{p+2}\ln^{2n/\gamma}(d)}, \end{aligned} \end{equation} for $d$ sufficiently large. \medskip Let us suppose now that that $u(t) > 0$, for any $t\in [T, 2T]$. Arguing as in (\ref{u'T}) we have \begin{equation}\label{u't} \begin{aligned} \frac{(u'(t))^2}{2} & \geq E(T)\left(\frac{T}{t}\right)^{2n} - \frac{u^{p+1}(T)}{p+1} \\ & \geq \frac{d^{p+1}}{(p+1)2^{p+1+2n}\ln^{2n/\gamma}(d)} - \frac{1}{p+1}\left( \frac{e^{\Gamma/\gamma}}{2}d^{1-\Gamma/\gamma}\right)^{p+1} \\ & \geq \frac{d^{p+1}}{(p+1)2^{p+2+2n}\ln^{2n/\gamma}(d)}, \end{aligned} \end{equation} for $d$ large. Integrating on $[T,t]$ we have \begin{equation} \begin{aligned} 0 \leq u(t) & = u(T) + \int_T^t u'(s) ds \\ & \leq \frac{e^{\Gamma/\gamma}}{2}d^{1-\Gamma/\gamma} - (t-T)\frac{\sqrt{2} d^{(p+1)/2}}{2^{1 + n + (p/2)}\ln^{n/\gamma}(d)\sqrt{p+1}}. \end{aligned} \end{equation} Hence $u$ has a zero in $[d^{(1-p)/2},T + {e^{\Gamma/\gamma}}d^{(1-p)/2-\Gamma/\gamma} {2^{n + (p/2)}\ln^{n/\gamma}(d)\sqrt{p+1}}]$. We summarize the above in the following lemma. \begin{lemma} \label{lemmat1} For $d>0$ sufficiently large, there exists \begin{equation}\label{estt1} t_1 \in (\sqrt{N} d^{(1-p)/2}, 2\sqrt{N}d^{(1-p)/2}\ln^{1/\gamma}(d)) \end{equation} such that $u(t_1) =0$, $u(s) >0$ for $s \in [0, t_1)$, and \begin{equation}\label{Et1} \frac{d^{p+1}}{(p+1)2^{p+2+2n}\ln^{2n}(d)} \leq E(t_1) \leq \frac{d^{p+1}}{p+1} \end{equation} \end{lemma} \end{section} \begin{section}{First local minimum} Let $t \in (t_1, t_1 + (1/2)(2/(q+1))^{q/(q+1)}|u'(t_1)|^{(1-q)/(1+q)} \equiv t_1+\tau)$. From (\ref{estt1}) and (\ref{Et1}), \begin{equation}\label{t1/t} \begin{aligned} \frac{t_1}{t} & \geq 1 - \frac{\tau}{t_1 + \tau} \geq 1 - \frac{\tau}{t_1} \\ & \geq 1 - \frac{(1/2)(2/(q+1))^{q/(q+1)}|u'(t_1)|^{(1-q)/(1+q)} }{\sqrt{N} d^{(1-p)/2}} \\ & \geq 1 - \frac{(1/2)(2/(q+1))^{q/(q+1)}(d^{(p+1)/2}/\sqrt{p+1})^{(1-q)/(1+q)} }{\sqrt{N} d^{(1-p)/2}} \\ & \equiv 1 - md^{(p-q)/(1+q)} \geq 0.9^{1/n}. \end{aligned} \end{equation} for $d$ large. Hence for $d$ positive and large \begin{equation}\label{u't>t1} \begin{aligned} u'(t) & = t^{-n} \Big[t_1^nu'(t_1) - \int_{t_1}^t s^n |u(s)|^{q-1}u(s) ds \Big]\\ & \leq 0.9 u'(t_1) + (t-t_1)\big( \frac{q+1}{2}\big)^{q/(q+1)} |u'(t_1)|^{(2q)/(q+1)} \\ & \leq 0.4 u'(t_1), \end{aligned} \end{equation} where we have used that, since $E' \leq 0$, $|u(t)|^{q+1}\leq (q+1)(u'(t_1))^2/2$ for $t \geq t_1$ with $u(t) \leq 0$. This and (\ref{u't>t1}) yield \begin{equation}\label{utau1} u(t_1+ \tau ) \leq 0.4u'(t_1) \tau \leq -0.2(2/(q+1))^{q/(q+1)} |u'(t_1)|^{2/(1+q)}. \end{equation} Now for $t \geq t_1+\tau$ with $u(s) \leq -0.2(2/(q+1))^{q/(q+1)} |u'(t_1)|^{2/(1+q)}$ for all $s \in (t_1+\tau, t)$ we have \begin{equation}\label{u't>t1a} \begin{aligned} &u'(t)\\ & = t^{-n} \Big[t_1^n u'(t_1) - \int_{t_1}^t s^n |u(s)|^{q-1}u(s) ds\Big]\\ & \geq u'(t_1) + t^{-n} ( 0.2(2/(q+1))^{q/(q+1)} )^q |u'(t_1)|^{2q/(1+q)} \int_{t_1+\tau }^t s^n ds \\ & \geq -u'(t_1)\Big[-1 + t^{-n} ( 0.2(2/(q+1))^{q/(q+1)} )^q |u'(t_1)|^{(q-1)/(1+q)}\frac{t^N - (t_1+\tau)^N}{N}\Big] \\ & \geq -u'(t_1)\Big[-1 + \frac{ ( 0.2(2/(q+1))^{q/(q+1)} )^q}N |u'(t_1)|^{(q-1)/(1+q)}(t - (t_1+\tau))\Big]. \end{aligned} \end{equation} This and the definition of $\tau$ imply the following lemma. \begin{lemma}\label{lemmatau1} There exists $\tau_1 $ in \begin{align*} %32 & \Big(t_1, t_1+\big\{(1/2)(2/(q+1))^{q/(q+1)} + \frac{N}{( .2(2/(q+1))^{q/(q+1)} )^q}\big\}|u'(t_1)|^{(1-q)/(1+q)}\Big] \\ & \equiv \big(t_1, t_1 + \kappa_1 |u'(t_1)|^{(1-q)/(1+q)}\big] \end{align*} such that $u'(\tau_1) = 0$. \end{lemma} \end{section} \begin{section}{Second zero} Let $\tau_0 > \tau_1$ be such that $u(s) \leq 0.5 u(\tau_1)$ for all $s \in [\tau_1, \tau_0]$. Imitating the arguments leading to (\ref{estt0}) we see that \begin{equation} \tau_1+ |u(\tau_1)|^{(1-q)/2} \leq \tau_0 \leq \tau_1 + \sqrt{2^qN}|u(\tau_1)|^{(1-q)/2}. \end{equation} Hence \begin{equation}\label{estu'tau0} \begin{aligned} u'(\tau_0) & = \tau_0^{-n}\int_{\tau_1}^{\tau_0}s^n |u(s)|^q ds \\ & \geq \frac{|u(\tau_1)|^q(\tau_0^N - \tau_1^N)}{N2^q\tau_0^n} \\ & \geq \frac{|u(\tau_1)|^q(\tau_0 - \tau_1)}{ 2^qN} \\ & \geq \frac{|u(\tau_1)|^{(1+q)/2}}{2^qN}, \end{aligned} \end{equation} and \begin{equation}\label{tau0/t} \tau_0^n \geq .9 s^n \quad \hbox{for any } s \in (\tau_0, \tau_0 + 2^{q+2}N|u(\tau_1)|^{(1-q)/2}], \end{equation} for $d>0$ sufficiently large. Suppose now that for all $s \in [\tau_0, r \equiv \tau_0 + 2^{q+1}N|u(\tau_1)|^{(1-q)/2}]$ we have $u(s) \leq 0$. Then \begin{equation}\label{u's,s>tau0} u'(s) \geq 0.9 u'(\tau_0) \quad \hbox{for all } s \in [\tau_0, r]. \end{equation} This and and the definition of $r$ give \begin{align*} 0 \geq u(r) & \geq \frac{u(\tau_1)}{2} + .9(r-\tau_0)u'(r) \\ & \geq \frac{u(\tau_1)}{2} + .9(2^{q+1})N|u(\tau_1)|^{(1-q)/2} \frac{|u(\tau_1)|^{(1+q)/2}}{2^qN} \\ & = 1.3|u(\tau_1)|, \end{align*} which is a contradiction. From \eqref{utau1}, $|u(\tau_0)| \geq 0.2(2/(q+1))^{q/(q+1)} |u'(t_1)|^{2/(1+q)}$. Since also $\tau_0 \leq t_1 + (\kappa_1 +0.2\sqrt{2^qN}(2/(q+1))^{q/(q+1)}) |u'(t_1)|^{(1-q)/(1+q)}$ (see Lemma \ref{lemmatau1} and \eqref{estu'tau0}). Thus \begin{align*} &\tau_0+ 2^{q+1}N|u(\tau_1)|^{(1-q)/2} \\ & \leq t_1 + (\kappa_1 +.2( 2^{q+2}N)(2/(q+1))^{q/(q+1)})|u'(t_1)|^{(1-q)/(1+q)} \\ & \equiv t_1 + k_2 |u'(t_1)|^{(1-q)/(1+q)}. \end{align*} Thus we have proven the following lemma. \begin{lemma} \label{lemmat2} There exists $t_2 \in [t_1, t_1 + k_2|u'(t_1)|^{(1-q)/(1+q)}]$ such that $u(t_2) = 0$ and $u(s) < 0$ in $(t_1, t_2)$. \end{lemma} \end{section} \begin{section}{First positive maximum} Let $t >t_2$ be such that $u'(s)>0$ on $[t_2, t]$. Thus $u'' \leq 0$ in $[t_2,t]$. Hence $u(s) \leq u'(t_2)(s - t_2)$ for all $s \in [t_2, t]$. Integrating (\ref{ivp}) on $[t_2, s]$, we have \begin{equation} \label{u's>t_2} \begin{aligned} s^nu'(s) & = t_2^{n}u'(t_2) - \int_{t_2}^s r^n |u(r)|^{p-1}u(r) dr\\ & \geq t_2^n u'(t_2) - s^n \frac{|u'(t_2)|^p(s-t_2)^{p+1}}{p+1} \\ & \geq u'(t_2)\big( t_2^n - \frac{s^n}{p+1}\big), \end{aligned} \end{equation} for $s \leq t_2 + u'(t_2)^{(1-p)/(1+p)}$. Since $t_2^N |u'(t_2)|^2 \geq 2c_1 d^{\xi}$ (see (\ref{pohot0})) and $(u'(t_2))^2 \leq 2d^{p+1}/(p+1)$, we have \begin{equation}\label{estt_2} t_2^N \geq 2c_1\big(\frac{p+1}2\big)^{\xi/(p+1)}|u'(t_2)|^{N(1-p)/(1+p)}. \end{equation} Now for $$ s \in [t_2, \min\big\{2^{1/n}, 1 + (2c_1)^{-1/N} \big(\frac{2}{p+1}\big)^{\frac{\xi}{N(p+1)}}\big\}t_2\equiv \alpha t_2], $$ from (\ref{u's>t_2}) and (\ref{estt_2}), we have \begin{equation} u'(s) \geq u'(t_2) \big( \frac{t_2^n}{s^n} - \frac{1}{p+1}\big) \geq u'(t_2)\frac{p-1}{p+1}. \end{equation} Integration on $[t_2, \alpha t_2]$ yields \begin{equation} u(\alpha t_2) \geq \frac{p-1}{p+1}\alpha t_2 u'(t_2). \end{equation} Therefore, assuming again that $u'>0$ on $[t_2, t]$, we have \begin{equation} \label{u's>t2A} \begin{aligned} t^nu'(t) & \leq t_2^{n}u'(t_2) - \int_{\alpha t_2}^t r^n |u(r)|^{p-1}u(r) dr\\ & \leq t_2^n u'(t_2) - t_2^n (t - \alpha t_2) \Big(\frac{p-1}{p+1}\alpha t_2 u'(t_2)\Big)^p. \end{aligned} \end{equation} This and (\ref{estt_2}) imply \begin{equation} \begin{aligned} t - \alpha t_2 & \leq \big(\frac{p-1}{p+1}\alpha \big)^{-p}t_2^{-p}|u'(t_2)|^{1-p} \\ & \leq \big(\frac{p-1}{p+1}\alpha \big)^{-p}(2c_1)^{-p/N} \big(\frac{p+1}{2}\big)^{-p\xi/(N(p+1))}|u'(t_2)|^{(1-p)/(p+1)} \\ & \equiv \kappa_2|u'(t_2)|^{(1-p)/(p+1)}. \end{aligned} \end{equation} This proves the following result. \begin{lemma}\label{lemmatau2} There exists $\tau_2 \in [t_2, \alpha t_2 +\kappa_2|u'(t_2)|^{(1-p)/(p+1)}]$ such that $u'(\tau_2) = 0$ and $u'(s) > 0$ on $[t_2, \tau_2)$. \end{lemma} \end{section} \begin{section}{Energy on the interval $[t_0, \tau_2]$} Now we estimate the energy on $[t_0, \tau_2]$. \begin{lemma}\label{enerlemma} For $t\in [t_0, \tau_2]$, \begin{equation} t^nH(t) \geq c_1d^{\xi}. \end{equation} \end{lemma} \begin{proof} Let us prove first that \begin{equation}\label{Et2} \int_{t_0}^{t_1}t^n \gamma u^{p+1}(t) dt \geq \int_{t_1}^{t_2} t^n\gamma_1 |u(t)^{q+1}| dt, \end{equation} where $\gamma_1 = ((q+1)(N-2)-2N)/(2(q+1))$. Let $\hat t_0 \in [t_0, t_1]$ be such that $u(\hat t_0) = d/4$. Then, for $t \in [t_0,\hat t_0]$, we have \begin{equation} -u'(t) = t^{-n}\int_{0}^{t}s^n u^p(s)\, ds \leq \frac{td^p}{N}. \end{equation} Integrating on $[t_0, \hat t_0]$ we have $(d/4) \leq (\hat t_0^2 - t_0^2)d^p/(2N)$. This and (\ref{estt0}) yield \begin{equation} \hat t_0 \geq \sqrt{\frac{Nd^{1-p}}{2}+t_0^2} = t_0\sqrt{1+\frac{Nd^{1-p}}{2t_0^2}} \geq t_0\sqrt{1 + \frac{1}{2^{p+1}}}, \end{equation} which combined with (\ref{estt0}) gives \begin{equation}\label{Et-hat} \begin{aligned} \int_{t_0}^{t_1} t^n \gamma u^{p+1}(t) dt & \geq \int_{t_0}^{\hat t_0}t^n \gamma u^{p+1}(t) dt \\ & \geq \gamma (d/4)^{p+1} \frac{\hat t_0^N -t_0^N}{N} \\ & \geq \frac{\gamma}{4^{p+1}N} t_0^N\Big(\big(1+\frac{1}{2^{p+1}} \big)^{N/2}-1\Big) d^{p+1}\\ & \geq \frac{\gamma}{4^{p+1}N} \Big(\big(1+\frac{1}{2^{p+1}}\big)^{N/2}-1\Big) N^{N/2} d^{\xi}. \end{aligned} \end{equation} Using (\ref{derE}), we have $|u(t)|^{q+1} \leq (q+1)d^{p+1}/(p+1)$. Also from (\ref{poho}) and (\ref{pohot0}), we have $t_1^N |u'(t_1)|^2/2 = t_1H(t_1) \geq c_1 d^{\xi}$. This implies that $k_2|u'(t_1)|^{(1-q)/(1+q)}< t_1$ for $d > 0$ large. These inequalities and Lemma \ref{lemmat2} imply \begin{equation}\label{intt1t2} \begin{aligned} \int_{t_1}^{t_2} t^n |u(t)|^{q+1} dt & \leq \big(\frac{q+1}{p+1}d^{p+1} \big) \frac{t_2^N -t_1^N}{N} \\ & \leq \big(\frac{q+1}{p+1}d^{p+1} \big) \frac{(t_1+ k_2|u'(t_1)|^{(1-q)/(1+q)})^N -t_1^N}{N} \\ & \leq \big(\frac{q+1}{p+1}d^{p+1} \big) t_1^n \frac{(2^N-1) k_2|u'(t_1)|^{(1-q)/(1+q)} }{N} \\ & \leq \big(\frac{q+1}{p+1}d^{p+1} \big) \frac{(2^N-1) k_2 }{N} \, t_1^n \left(d^{\xi/2}t_1^{-N/2}\right)^{(1-q)/(1+q)} \\ & = \big(\frac{q+1}{p+1} \big) \frac{(2^N-1) k_2 }{N} \, d^{p+1+(\xi(1-q)/(2(1+q))} t_1^{N-1-N(1-q)/(2(1+q))} \\ & \leq \big(\frac{q+1}{p+1} \big) \frac{(2^N-1) k_2 }{N} \ln^{M/\gamma}(d) \, d^\eta, \end{aligned} \end{equation} where \begin{gather*} \eta = {p+1 + \frac{\xi(1-q) + (1-p)(2(N-1)(1+q) -N(1-q))}{2(1+q)}}, \\ M = (2(N-1)(1+q)-N(1-q))/(2(1+q)). \end{gather*} An elementary calculation shows that $\xi > \eta$. Thus from (\ref{Et-hat}) and (\ref{intt1t2}), (\ref{Et2}) follows. Thus for $t \in [t_1, \tau_2]$, \begin{equation}\label{pohotau2} \begin{aligned} t^nH(t) & = t_0^nH(t_0) + \int_{t_0}^t s^n\left(NG(u(s)) -\frac{N-2}2 u(s)g(u(s))\right)ds \\ & \geq t_0^nH(t_0) + \int_{t_0}^{t_2} s^n\left(NG(u(s)) -\frac{N-2}2 u(s)g(u(s))\right)ds \\ & \geq t_0^nH(t_0) \\ & \geq c_1d^{\xi}, \end{aligned} \end{equation} which proves the lemma. \end{proof} \end{section} \begin{section}{Proof of Theorem \ref{main}} Arguing as in Lemmas \ref{lemmat1} and \ref{lemmat2}, we see that for $d>0$ sufficiently large there exist numbers \begin{equation}\label{deftk} t_3 < \dots 0 \quad \hbox{in } (t_{2i}, t_{2i+1}), \; i = 1, \dots \min\{\frac{k}{2}, \frac{k+1}{2}\}. \end{equation} Imitating the arguments leading to (\ref{Et2}), one sees that \begin{equation}\label{Et2i} \int_{t_{2i}}^{t_{2i+1}}t^n \gamma u^{p+1}(t) dt \geq \int_{t_{2i+1}}^{t_{2i+2}} t^n\gamma_1 |u(t)^{q+1}| dt. \end{equation} This in turn (see (\ref{pohotau2})) leads to \begin{equation}\label{poho1} t^nH(t) \geq c_1d^{\xi} \quad \hbox{for all } t \in [t_0, 1]. \end{equation} This, together with Lemma \ref{lemmat1}, proves Theorem \ref{enertheo}. From (\ref{poho1}) we see that \begin{equation}\label{defro(t)} \rho^2(t) \equiv u^2(t) + (u'(t))^2 \to \infty \quad \hbox{as } d \to + \infty, \end{equation} uniformly for $t \in [0,1]$. Therefore, there exists a continuous {\it argument} function $\theta(t,d) \equiv \theta(t)$ such that \begin{equation}\label{deftheta(t)} u(t) = \rho(t)\cos(\theta(t)) \quad \hbox{and} \quad u'(t) = - \rho(t)\sin(\theta(t)). \end{equation} From this we see that $\theta'(t) = \{((n/t)u'(t) + g(u(t)))u(t) + (u'(t))^2\}/\rho^2(t)$. Thus $\theta'(t) > 0$ for $\theta(t) = j \pi/2$ with $j= 1, \dots $, which implies that if $\theta(t) = j \pi/2$ then $\theta(s) > j \pi/2$ for all $s \in (t, 1]$. Imitating the arguments of Lemmas \ref{lemmat1} and \ref{lemmat2}, we see that $t_{2i} - t_{2(i-1)} \leq c_3 \ln^{1/\gamma}(d) d^{(1-p)/2}$. Thus $k \geq c_4 \ln^{-1/\gamma}(d)d^{(p-1)/2}$ (see (\ref{deftk})), which implies that \begin{equation}\label{thetaprove} \lim_{d \to + \infty} \theta(1,d) = + \infty. \end{equation} By the continuity of $\theta$ and the intermediate value theorem we see that there exists a sequence $d_1 < \dots < d_j < \dots \to \infty$ such that $\theta(1,d_j) = j \pi + (\pi/2)$. Hence $u(t, d_j)$ is a solution to (\ref{bvp}) having exactly $j$ zeroes in $(0,1)$, which proves Theorem \ref{main}. \end{section} \begin{thebibliography}{00} \bibitem{af-bh-pl} F.~Atkinson, H. Brezis and L. Peletier; {\it Solutions d'\'equations elliptiques avec exposant de Sobolev critique que changent de signe}, C. R. Acad. Sci. Paris Serie I {\bf 306} (1988), pp. 711-714. \bibitem{br-dj-em} R.~Benguria, J.~Dolbeault, and M.~Esteban; {\it Classification of the solutions of semilinear elliptic problems in a ball,} J. Differential Equations {\bf 167} (2000), no. 2, pp. 438-466. \bibitem{bh-nl} H.~Brezis and L.~Nirenberg; {\it Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, } Comm. Pure Appl. Math. {\bf 36} (1983), no. 4, pp. 437-477. \bibitem{ca-ka1} A.~Castro and A.~Kurepa; {\it Infinitely many solutions to a superlinear Dirichlet problem in a ball}, Proc. Amer. Math. Soc., {\bf 101} (1987), No. 1, pp. 57-64. \bibitem{ca-ka2} A.~Castro and A.~Kurepa; {\it Radially symmetric solutions to a superlinear Dirichlet problem with jumping nonlinearities,} Trans. Amer. Math. Soc. {\bf 315} (1989), pp. 353-372 \bibitem{ca-ka3} A.~Castro and A.~Kurepa, {\it Radially symmetric solutions to a Dirichlet problem involving critical exponents,} Trans. Amer. Math. Soc., {\bf 348} (1996), no. 2, pp. 781-798. \bibitem{cg-ss-sm} G.~Cerami, S.~Solimini, M.~Struwe, \textit{Some existence results for superlinear elliptic boundary value problems involving critical exponents, }J. Funct. Anal. \textbf{69} (1986), 289-306. \bibitem{eha-dtf} A.~El Hachimi and F. de Thelin; {\it Infinitely many radially symmetric solutions for a quasilinear elliptic problem in a ball,} J. Differential Equations {\bf 128} (1996), pp. 78-102. \bibitem{el-tm} L.~Erbe and M.~Tang; {\it Structure of positive radial solutions of semilinear elliptic equations,} J. Differential Equations {\bf 133} (1997), pp. 179-202. \bibitem{gm-mr-zf} M.~Garc\'{\i}a-Huidobro, R.~Man‡sevich, and F. Zanolin; {\it Infinitely many solutions for a Dirichlet problem with a nonhomogeneous $p$-Laplacian-like operator in a ball.} Adv. Differential Equations (1997), no. 2, pp. 203-230. \bibitem{jj-sk} J.~Jacobsen, and K.~Schmitt; {\it Radial solutions of quasilinear elliptic differential equations. Handbook of differential equations,} pp. 359-435, Elsevier/North-Holland, Amsterdam, (2004). \bibitem{ps} S. I. Pohozaev; {\it On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.} Dokl. Akad. Nauk SSSR {\bf 165} (1965), pp. 36-39. \end{thebibliography} \end{document}