\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 113, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/113\hfil A blow-up result] {A blow-up result for a viscoelastic system in $\mathbb{R}^n$} \author[M. Kafini, S. A. Messaoudi \hfil EJDE-2007/113\hfilneg] {Mohammad Kafini, Salim A. Messaoudi} % in alphabetical order \address{Mohammad Kafini \newline Dammam Community College\\ Dammam, Saudi Arabia} \email{mkafini@kfupm.edu.sa} \address{Salim A. Messaoudi \newline Mathematical Sciences Department\\ KFUPM, Dhahran 31261, Saudi Arabia} \email{messaoud@kfupm.edu.sa} \thanks{Submitted February 14, 2007. Published August 18, 2007.} \thanks{Supported by Project SABIC-2006/01 from KFUPM} \subjclass[2000]{35B05, 35L05, 35L15, 35L55} \keywords{Blow up; coupled system; relaxation function; viscoelastic} \begin{abstract} In this paper we consider a coupled system of nonlinear viscoelastic equations. Under suitable conditions on the initial data and the relaxation functions, we prove a finite-time blow-up result. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In \cite{m1}, Messaudi considered the following initial-boundary value problem \begin{equation} \label{e1} \begin{gathered} u_{tt}-\Delta u+\int_{0}^{t}g(t-\tau )\Delta u(\tau )d\tau +u_{t}|u_{t}|^{m-2}=u|u|^{p-2},\quad \text{in }\Omega \times (0,\infty ) \\ u(x,t)=0,\quad x\in \partial \Omega, \; t\geq 0 \\ u(x,0)=u_{0}(x),\quad u_{t}(x,0)=u_{1}(x),\quad x\in \Omega , \end{gathered} \end{equation} where $\Omega $ is a bounded domain of $\mathbb{R}^n $ ($n\geq 1$) with a smooth boundary $\partial \Omega $, $p>2$, $m\geq 1$, and $g: \mathbb{R}^{+}\to \mathbb{R}^{+}$ is a positive non-increasing function. He showed, under suitable conditions on $g$, that solutions with initial negative energy blow up in finite time if $p>m$ and continue to exist if $m\geq p$. This result has been later pushed, by the same author \cite{m5}, to certain solutions with positive initial energy. A similar result been also obtained by Wu \cite{w1} using a different method. In the absence of the viscoelastic term ($g=0$), problem \eqref{e1} has been extensively studied and many results concerning global existence and nonexistence have been proved. For instance, for the equation \begin{equation} \label{e2} u_{tt}-\Delta u+au_{t}|u_{t}|^{m}=b|u|^{\gamma }u,\quad \text{in }\Omega \times (0,\infty ) \end{equation} $m,\gamma \geq 0$, it is well known that, for $a=0$, the source term $bu|u|^{\gamma }$, ($\gamma >0$) causes finite time blow up of solutions with negative initial energy (see \cite{b1}). The interaction between the damping and the source terms was first considered by Levine \cite{l2}, and in \cite{l3} the linear damping case ($m=0$). He showed that solutions with negative initial energy blow up in finite time. Georgiev and Todorova \cite{g1} extended Levine's result to the nonlinear damping case ($m>0$). In their work, the authors introduced a different method and showed that solutions with negative energy continue to exist globally ``in time'' if $m\geq \gamma $ and blow up in finite time if $\gamma >m$ and the initial energy is sufficiently negative. This last blow-up result has been extended to solutions with negative initial energy by Messaoudi \cite{m2} and others. For results of same nature, we refer the reader to Levine and Serrin \cite{l1}, and Vitillaro \cite{t1}, Messaoudi and Said-Houari \cite{m4}. For problem \eqref{e2} in $\mathbb{R}^n $, we mention, among others, the work of Levine Serrin and Park \cite{l4}, Todorova \cite{t1,t2}, Messaoudi \cite{m3}, and Zhou \cite{z1}. In this work, we are concerned with the Cauchy problem \begin{equation} \label{e3} \begin{gathered} u_{tt}-\Delta u+\int_{0}^{t}g(t-s)\Delta u(x,s)ds=f_{1}(u,v), \quad \text{in }\mathbb{R}^n \times (0,\infty ) \\ v_{tt}-\Delta v+\int_{0}^{t}h(t-s)\Delta v(x,s)ds=f_{2}(u,v), \quad \text{in }\mathbb{R}^n \times (0,\infty ) \\ u(x,0)=u_{0}(x),\quad u_{t}(x,0)=u_{1}(x),\quad x\in \mathbb{R}^{n} \\ v(x,0)=v_{0}(x),\quad v_{t}(x,0)=v_{1}(x),\quad x\in \mathbb{R}^{n} \end{gathered} \end{equation} where $g,h$, $u_{0}$, $u_{1,}$ $v_{0}$, $v_{1}$ are functions to be specified later. This type of problems arises in viscoelasticity and in systems governing the longitudinal motion of a viscoelastic configuration obeying a nonlinear Boltzmann's model. Our aim is to extend the result of \cite{z1}, established for the wave equation, to our problem. To achieve this goal some conditions have to be imposed on the relaxation functions $g$ and $h$. \section{Preliminaries} In this section we present some material needed in the proof of our main result. So, we make the following assumption \begin{itemize} \item[(G1)] $g,h:\mathbb{R}_{+}\to \mathbb{R}_{+}$ are nonincreasing differentiable functions satisfying \begin{gather*} 1-\int_{0}^{\infty }g(s)ds = l>0,\quad g'(t)\leq 0,\quad t\geq 0. \\ 1-\int_{0}^{\infty }h(s)ds = k>0,\quad h'(t)\leq 0,\quad t\geq 0. \end{gather*} \item[(G2)] There exists a function $I(u,v)\geq 0$ such that \[ \frac{\partial I}{\partial u}=f_{1}(u,v),\quad \frac{\partial I}{\partial v}=f_{2}(u,v). \] \item[(G3)] There exists a constant $\rho >2$ such that \[ \int_{\mathbb{R}^n }[uf_{1}(u,v)+vf_{2}(u,v)-\rho I(u,v)]dx\geq 0. \] \item[(G4)] There exists a constant $d>0$ such that \begin{gather*} | f_{1}(\xi ,\varsigma )| \leq d(| \xi | ^{\beta _{1}}+| \varsigma | ^{\beta _{2}}),\quad \forall (\xi ,\varsigma )\in \mathbb{R}^{2}, \\ | f_{2}(\xi ,\varsigma )| \leq d(| \xi | ^{\beta _{3}}+| \varsigma | ^{\beta _{4}}),\quad \forall (\xi ,\varsigma )\in \mathbb{R}^{2}, \end{gather*} where \[ \beta _{i}\geq 1,\quad (n-2)\beta _{i}\leq n,\quad i=1,2,3,4. \] \end{itemize} Note that (G1) is necessary to guarantee the hyperbolicity of the system \eqref{e3}. As an example of functions satisfying (G2)-(G4), we have \[ I(u,v)=\frac{a}{\rho }| u-v| ^{\rho },\quad \rho >2,\quad (n-2)\rho \leq 2(n-1). \] Condition (G4) is necessary for the existence of a local solution to \eqref{e3}. We introduce the ``modified'' energy functional \begin{equation} \label{e4} \begin{aligned} E(t) &:=\frac{1}{2}\| u_{t}\| _{2}^{2}+\frac{1}{2}\| v_{t}\| _{2}^{2}+\frac{1}{2}(1-\int_{0}^{t}g(s)ds)\| \nabla u\| _{2}^{2}+\frac{1}{2}(1-\int_{0}^{t}h(s)ds) \| \nabla v\| _{2}^{2} \\ &\quad +\frac{1}{2}(g\circ \nabla u)+\frac{1}{2}(h\circ \nabla v)-\int_{\mathbb{R}^n }I(u,v)dx, \end{aligned} \end{equation} where \begin{equation} \label{e5} \begin{gathered} (g\circ \nabla u)(t) =\int_{0}^{t}g(t-\tau )||u(t)-\nabla u(\tau )||_{2}^{2}d\tau . \\ (h\circ \nabla v)(t) =\int_{0}^{t}h(t-\tau )||\nabla v(t)-\nabla v(\tau )||_{2}^{2}d\tau . \end{gathered} \end{equation} \section{Blow up results} In this section we state and prove our main result. \begin{theorem} \label{thm1} Assume that {\rm (G1)--(G4)} hold and that \begin{equation} \label{e6} \max \Big\{ \int_{0}^{+\infty }g(s)ds,\int_{0}^{+\infty }h(s)ds\Big\} \leq \frac{\rho (\rho -2)}{1+\rho (\rho -2)}. \end{equation} Then for initial data $(u_{0},v_{0}),(u_{1},v_{1})\in H^{1}( \mathbb{R}^{N})\times L^{2}(\mathbb{R}^{N})$, with compact support, satisfying \begin{equation} \label{e7} E(0)=\frac{1}{2}\| u_{1}\| _{2}^{2}+\frac{1}{2}\| \nabla u_{0}\| _{2}^{2}+\frac{1}{2}\| v_{1}\| _{2}^{2}+\frac{1}{2}\| \nabla v_{0}\| _{2}^{2} -\int_{\mathbb{R}^n }I(u_{0},v_{0})dx<0, \end{equation} the corresponding solution (of (1.3))blows up in finite time. \end{theorem} \begin{proof} Multiplying \eqref{e3} by $u_{t}$ and $v_{t}$ respectively, integrating over $\mathbb{R}^n $, using integration by parts, and repeating the same computations as in \cite{m1}, we obtain \begin{equation} \label{e8} E'(t)=\frac{1}{2}(g'\circ \nabla u)+\frac{1}{2} (h'\circ \nabla v)-\frac{1}{2}g(s)\| \nabla u\| _{2}^{2}-\frac{1}{2}h(s)\| \nabla v\| _{2}^{2}\leq 0. \end{equation} Hence, \begin{equation} \label{e9} E(t)\leq E(0)<0. \end{equation} We then define \begin{equation} \label{e10} F(t)=\frac{1}{2}\int_{\mathbb{R}^n }[| u(x,t)| ^{2}+| v(x,t)| ^{2}]dx+\frac{1}{2}\beta (t+t_{0})^{2}, \end{equation} for $t_{0}\smallskip >0$ and $\beta >0$ to be chosen later. By differentiating $F$ twice we get \begin{gather} F'(t)=\int_{\mathbb{R}^n }(u_{t}u+v_{t}v)dx+\beta (t+t_{0}), \label{e11}\\ F''(t)=\int_{\mathbb{R}^n }(u_{tt}u+v_{tt}v)dx+ \int_{\mathbb{R}^n }(| u_{t}| ^{2}+| v_{t}| ^{2})dx+\beta . \label{e12} \end{gather} To estimate the term $\int_{\mathbb{R}^n }(u_{tt}u+v_{tt}v)dx$ in (3.7), we multiply the equations in \eqref{e3} by $u$ and $v$ respectively and integrate by parts over $\mathbb{R}^n $ to get \begin{align*} \int_{\mathbb{R}^n }(uu_{tt}+vv_{tt})dx &=-\int_{\mathbb{R}^{n}}(| \nabla u| ^{2}+| \nabla v|^{2})dx +\int_{\mathbb{R}^n }[uf_{1}(u,v)+vf_{2}(u,v)]dx \\ &\quad +\int_{0}^{t}g(t-s)\int_{\mathbb{R}^n }\nabla u(x,t).\nabla u(x,s)\,dx\,ds \\ &\quad +\int_{0}^{t}h(t-s)\int_{\mathbb{R}^n }\nabla v(x,t).\nabla v(x,s)\,dx\,ds. \end{align*} Using Young's inequality and (G3) we arrive at \begin{equation} \label{e13} \begin{aligned} \int_{\mathbb{R}^n }(uu_{tt}+vv_{tt})dx &\geq \Big[ -1-\delta +\int_{0}^{t}g(s)ds\Big] \| \nabla u\|_{2}^{2}+\rho \int_{\mathbb{R}^n }I(u,v)dx \\ &\quad -\frac{1}{4\delta }\Big(\int_{0}^{t}g(s)ds\Big)(g\circ \nabla u)+\Big[ -1-\delta +\int_{0}^{t}h(s)ds\Big] \| \nabla v\| _{2}^{2} \\ &\quad -\frac{1}{4\delta }\Big(\int_{0}^{t}h(s)ds\Big)(h\circ \nabla v) +\int_{\mathbb{R}^n }\big(| u_{t}| ^{2}+|v_{t}| ^{2}\big)dx, \end{aligned} \end{equation} we then insert \eqref{e13} in \eqref{e12} to obtain \begin{equation} \label{e14} \begin{aligned} F''(t) &\geq (-1-\delta +\int_{0}^{t}g(s)ds)\| \nabla u\| _{2}^{2}-\frac{1}{4\delta }(\int _{0}^{t}g(s)ds)(g\circ \nabla u) \\ &\quad+(-1-\delta +\int_{0}^{t}h(s)ds)\| \nabla v\| _{2}^{2}-\frac{1}{4\delta }(\int_{0}^{t}h(s)ds)(h\circ \nabla v) \\ &\quad +\rho \int_{\mathbb{R}^n }I(u,v)dx+2\int_{\mathbb{R} ^{n}}(| u_{t}| ^{2}+| v_{t}| ^{2})dx+\beta . \end{aligned} \end{equation} Now, we exploit \eqref{e4} to substitute for $\int_{\mathbb{R} ^{n}}I(u,v)dx$ , thus \eqref{e14} takes the form \begin{equation} \label{e15} \begin{aligned} F''(t) &\geq -\rho E(t)+\beta +[(-1-\delta +\int_{0}^{t}g(s)ds)+\frac{\rho }{2}\Big(1-\int_{0}^{t}g(s)ds\Big)] \| \nabla u\| _{2}^{2} \\ &\quad +[(-1-\delta +\int_{0}^{t}h(s)ds)+\frac{\rho }{2} (1-\int_{0}^{t}h(s)ds)]\| \nabla v\| _{2}^{2} \\ &\quad +\Big[\frac{\rho }{2}-\frac{1}{4\delta }\big(\int_{0}^{t}g(s)ds\big)\Big](g\circ \nabla u) \\ &\quad +\Big[\frac{\rho }{2}-\frac{1}{4\delta }\big(\int_{0}^{t}h(s)ds\big)\Big] (h\circ\nabla v)+(\frac{\rho }{2}+2)[\| u_{t}\| _{2}^{2}+\| v_{t}\| _{2}^{2}]. \end{aligned} \end{equation} At this point, we introduce \[ G(t):=F^{-\gamma }(t), \] for $\gamma >0$ to be chosen properly. By differentiating $G$ twice we arrive at \[ G'(t)=-\gamma F^{-(\gamma +1)}(t)F'(t),\quad G''(t)=-\gamma F^{-(\gamma +2)}(t)Q(t), \] where \begin{equation} \label{e16} \begin{aligned} Q(t) &= F(t)F''(t)-(\gamma +1)(F')^ 2(t) \\ &\geq F(t)\Big\{-\rho E(t)+\beta +\Big[ (-1-\delta +\frac{\rho }{2})-( \frac{\rho }{2}-1)\int_{0}^{t}g(s)ds)\Big] \| \nabla u\| _{2}^{2} \\ &\quad +\Big[ (-1-\delta +\frac{\rho }{2})-(\frac{\rho }{2}-1)\int _{0}^{t}h(s)ds)\Big] \| \nabla v\| _{2}^{2} \\ &\quad +\big[\frac{\rho }{2}-\frac{1}{4\delta }(\int_{0}^{t}g(s)ds)\big] (g\circ \nabla u)+\big[\frac{\rho }{2}-\frac{1}{4\delta }(\int _{0}^{t}h(s)ds)\big](h\circ \nabla v) \\ &\quad +(\frac{\rho }{2}+2)[\| u_{t}\| _{2}^{2}+\| v_{t}\| _{2}^{2}]\Big\} -(\gamma +1)\Big[\int_{\mathbb{R} ^{n}}(u_{t}u+v_{t}v)dx+\beta (t+t_{0})\Big]^{2}. \end{aligned} \end{equation} Using Young's and Cauchy-Schwartz inequalities, we estimate the last term in (3.11) as follows: \begin{align*} &\Big[\int_{\mathbb{R}^n }(u_{t}u+v_{t}v)dx+\beta (t+t_{0})\Big]^{2} \\ &\leq \Big(\int_{\mathbb{R}^n }(u_{t}u+v_{t}v)dx\Big)^{2} +2\Big[\frac{ \varepsilon }{2}\Big(\int_{\mathbb{R}^n }(u_{t}u+v_{t}v)dx\Big)^{2} \\ &\quad +\frac{1}{2\varepsilon }\beta ^{2}(t+t_{0})^{2}\Big] +\beta ^{2}(t+t_{0})^{2} \\ &\leq (1+\varepsilon )(\int_{\mathbb{R} ^{n}}(u_{t}u+v_{t}v)dx)^{2}+(1+\frac{1}{\varepsilon })\beta ^{2}(t+t_{0})^{2} \\ &\leq (1+\varepsilon )\Big[ \int_{\mathbb{R}^n }u^{2}dx+\int_{ \mathbb{R}^n }v^{2}dx\Big] \Big[ \int_{\mathbb{R} ^{n}}u_{t}^{2}dx+\int_{\mathbb{R}^n }v_{t}^{2}dx\Big] \\ &\quad +(1+\frac{1}{\varepsilon })\beta ^{2}(t+t_{0})^{2} \\ &\leq 2F(x)\Big[ (1+\varepsilon )\big(\int_{\mathbb{R} ^{n}}u_{t}^{2}dx+\int_{\mathbb{R}^n }v_{t}^{2}dx\big)+(1+\frac{1}{ \varepsilon })\beta \Big] . \end{align*} Hence, \eqref{e16} becomes \begin{equation} \label{e17} \begin{aligned} Q(t) &\geq F(t)\Big\{ \Big[ (-1-\delta +\frac{\rho }{2})-(\frac{\rho }{2} -1)\int_{0}^{t}g(s)ds)\Big] \| \nabla u\|_{2}^{2} \\ &\quad+\Big[ (-1-\delta +\frac{\rho }{2})-(\frac{\rho }{2}-1)\int _{0}^{t}h(s)ds)\Big] \| \nabla v\| _{2}^{2} \\ &\quad +[\frac{\rho }{2}-\frac{1}{4\delta }\int_{0}^{t}g(s)ds](g\circ \nabla u) +[\frac{\rho }{2}-\frac{1}{4\delta }\int_{0}^{t}h(s)ds](h\circ \nabla v) \\ &\quad+\big[ \frac{\rho }{2}+2-2(\gamma +1)(1+\varepsilon \big] \big[ \| u_{t}\| _{2}^{2}+\| v_{t}\| _{2}^{2}\big] \\ &\quad-\rho E_{0}-2(\gamma +1)(1+\frac{1}{\varepsilon })\beta \Big\},\quad \forall \varepsilon >0. \end{aligned} \end{equation} We choose $\varepsilon <\rho/4$, $0<\gamma <(\rho -4\varepsilon)/(4(1+\varepsilon ))$, and $\beta $ small so that \[ -\rho E_{0}-[2+\frac{2}{\varepsilon }+\gamma (2+\frac{2}{\varepsilon } )]\beta \geq 0. \] Next, we choose $\delta >0$ so that \[ -1-\delta +\int_{0}^{t}g(s)ds+\frac{\rho }{2}(1-\int _{0}^{t}g(s)ds)\geq 0,\quad \frac{\rho }{2}-\frac{1}{4\delta } \int_{0}^{t}g(s)ds\geq 0, \] and \[ -1-\delta +\int_{0}^{t}h(s)ds +\frac{\rho }{2} \big(1-\int _{0}^{t}h(s)ds\big) \geq 0,\quad \frac{\rho }{2}-\frac{1}{4\delta }\int_{0}^{t}h(s)ds\geq 0. \] This is, of course, possible by \eqref{e6}, we then conclude, from \eqref{e17}, that $Q(t)\geq 0$, for all $t\geq 0$. Therefore $G''(t)\leq 0$ for all $t\geq 0;$ which implies that $G'$ is decreasing. By choosing $t_{0}$ large enough we get \[ F'(0)=\int_{\mathbb{R}^n }(u_{0}u_{1}+v_{0}v_{1})dx+ \beta t_{0}>0, \] hence $G'(0)<0$. Finally Taylor expansion of $G$ yields \[ G(t)\leq G(0)+tG'(0),\quad \forall t\geq 0, \] which shows that $G(t)$ vanishes at a time $t_{m}\leq -\frac{G(0)}{G'(0)}$. Consequently $F(t)$ must become infinite at time $t_{m}$. \end{proof} \subsection*{Acknowledgments} The authors would like to express their sincere thanks to King Fahd University of Petroleum and Minerals for its support. \begin{thebibliography}{00} \bibitem{b1} J. Ball; Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, \textit{Quart. J. Math. Oxford} \textbf{28} (1977), 473-486. \bibitem{g1} V. Georgiev, G.Todorova; Existence of solutions of the wave equation with nonlinear damping and source terms, \textit{J. Diff. Eqs}. \textbf{109} (1994), 295-308. \bibitem{l1} H. A. Levine, J. Serrin; A global nonexistence theorem for quasilinear evolution equation with dissipation, \textit{Arch. Rational Mech. Anal}. \textbf{137} (1997), 341-361. \bibitem{l2} H. A. Levine; Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_{tt}=Au+F(u)$, \textit{Trans. Amer. Math. Soc}. \textbf{192} (1974), 1-21. \bibitem{l3} H. A. Levine; Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, \textit{SIAM J. Math. Anal}. \textbf{5} (1974), 138-146. \bibitem{l4} H. A. Levine, S. R. Park, J. Serrin; Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, \textit{J. Math. Anal. Appl.} \textbf{228} (1998), 181-205. \bibitem{m1} S. A. Messaoudi; Blow up and global existence in a nonlinear viscoelastic wave equation, \textit{Mathematische Nachrichten} Vol. \textbf{260} (2003), 58-66. \bibitem{m2} S. A. Messaoudi; Blow up in a nonlinearly damped wave equation, \textit{Mathematische Nachrichten} \textbf{231} (2001), 1-7. \bibitem{m3} S. A. Messaoudi; Blow up in the Cauchy problem for a nonlinearly damped wave equation , \textit{Comm. On Applied. Analysis }\textbf{7} no. \textbf{3} (2003), 379-386. \bibitem{m4} S. A. Messaoudi, B. Said-Houari;, Blow up of solutions of a class of wave equations with nonlinear damping and source terms, \textit{Math. Methods Appl. Sci.} no. \textbf{27} (2004), 1687-1696 \bibitem{m5} S. A. Messaoudi; Blow up of solutions with positive initial energy in a nonlinear viscoelastic equation, \textit{J. Math. Anal. Appl.} Vol. \textbf{320} (2006), 902-915 \bibitem{t1} G. Todorova; Cauchy problem for a nonlinear wave with nonlinear damping and source terms, \textit{C. R. Acad. Sci. Paris Ser. I } \textbf{326} (1998), 191-196. \bibitem{t2} G. Todorova; Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, \textit{J. Math. Anal. Appl}. \textbf{239} (1999), 213-226. \bibitem{v1} E. Vitillaro; Global nonexistence theorems for a class of evolution equations with dissipation, \textit{Arch. Rational Mech. Anal. }\textbf{149} (1999), 155-182. \bibitem{w1} S. T. Wu; Blow-up of solutions for an integro-differential equation with a nonlinear source, \textit{Electron. J. Diff. Eqs.} Vol. 2006 no. textbf{45} (2006), 1-9. \bibitem{z1} Y. Zhou; A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in $\mathbb{R}^n $, \textit{Applied Math Letters} \textbf{18} (2005), 281-286. \end{thebibliography} \end{document}