\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 117, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/117\hfil Existence of almost periodic solutions] {Square-mean almost periodic solutions nonautonomous stochastic differential equations} \author[P. H. Bezandry, T. Diagana \hfil EJDE-2007/117\hfilneg] {Paul H. Bezandry, Toka Diagana} % in alphabetical order \address{Paul H. Bezandry \newline Department of Mathematics, Howard University, Washington, DC 20059, USA} \email{pbezandry@howard.edu} \address{Toka Diagana \newline Department of Mathematics, Howard University, Washington, DC 20059, USA} \email{tdiagana@howard.edu} \thanks{Submitted May 1, 2007. Published September 2, 2007.} \subjclass[2000]{34K14, 60H10, 35B15, 34F05} \keywords{Stochastic differential equation; stochastic processes;\hfill\break\indent square-mean almost periodic; Wiener process; Acquistapace-Terreni conditions} \begin{abstract} This paper concerns the square-mean almost periodic solutions to a class of nonautonomous stochastic differential equations on a separable real Hilbert space. Using the so-called `Acquistapace-Terreni' conditions, we establish the existence and uniqueness of a square-mean almost periodic mild solution to those nonautonomous stochastic differential equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} Let $(\mathbb{H}, \|\cdot\|)$ be a real (separable) Hilbert space. The present paper is mainly concerned with the existence of mean-almost periodic solutions to the class of nonautonomous semilinear stochastic differential equations \begin{equation}\label{I} dX(t)= A(t) X(t) \,dt + F(t, X(t))\,dt + G(t, X(t))\,dW(t), \quad t\in\mathbb{R}, \end{equation} where $A(t)$ for $t \in \mathbb{R}$ is a family of densely defined closed linear operators satisfying the so-called `Acquistapace-Terreni' conditions \cite{AT}, that is, there exist constants $\lambda_0\geq 0, \theta\in (\frac{\pi}{2},\pi), L, K\geq 0$, and $\alpha$, $\beta\in (0, 1]$ with $\alpha +\beta > 1$ such that \begin{equation}\label{K} \Sigma_\theta\cup\{0\}\subset \rho (A(t) - \lambda_0), \quad \|R(\lambda, A(t) - \lambda_0)\|\leq\frac{K}{1+|\lambda|} \end{equation} and $$ \|(A(t) -\lambda_0) R(\lambda, A(t) - \lambda_0)[R(\lambda_0, A(t)) - R(\lambda_0, A(s))]\|\leq L|t-s|^{\alpha}|\lambda|^{\beta} $$ for $t, s\in \mathbb{R}, \lambda\in \Sigma_\theta :=\{\lambda\in {\bf C} - \{0\}: |\mathop{\rm arg}\lambda|\leq\theta\}$, $F: \mathbb{R} \times L^2 ({\bf P}, \mathbb{H}) \to L^2 ({\bf P}, \mathbb{H})$ and $G: \mathbb{R} \times L^2 ({\bf P}, \mathbb{H}) \to L^2 ({\bf P}, L_2^0)$ are jointly continuous satisfying some additional conditions, and $W(t)$ is a Wiener process. The existence of almost periodic (respectively, periodic) solutions to autonomous stochastic differential equations has been studied by many authors, see, e.g. \cite{AT, BD,D,t3}. In Da Prato-Tudor \cite{da}, the existence of an almost periodic solution to \eqref{I} in the case when $A(t)$ is periodic, that is, $A(t+T) = A(t)$ for each $t \in \mathbb{R}$ for some $T >0$ was established. In this paper, it goes back to study the existence and uniqueness of a square-mean almost periodic solution to \eqref{I} when the operators $A(t)$ satisfy `Acquistapace-Terreni' conditions (Theorem \ref{thm1}). Next, we make extensive use of our abstract result to establish the existence of mean-almost periodic solutions to a $n$-dimensional system of some stochastic (parabolic) partial differential equations. The organization of this work is as follows: in Section 2, we recall some preliminary results that we will use in the sequel. In Section 3, we give some sufficient conditions for the existence and uniqueness of a square-mean almost periodic solution to \eqref{I}. Finally, an example is given to illustrate our main results. \section{Preliminaries} Throughout the rest of this paper, we assume that $(\mathbb{K}, \|\cdot\|_{K})$ and $(\mathbb{H}, \|\cdot\|)$ are real separable Hilbert spaces, and $(\Omega, {\mathcal F}, {\bf P})$ is a probability space. The space $L_2(\mathbb{K}, \mathbb{H})$ stands for the space of all Hilbert-Schmidt operators acting from $\mathbb{K}$ into $\mathbb{H}$, equipped with the Hilbert-Schmidt norm $\|\cdot\|_2$. For a symmetric nonnegative operator $Q\in L_2(\mathbb{K}, \mathbb{H})$ with finite trace we assume that $\{W(t), t\in\mathbb{R}\}$ is a $Q$-Wiener process defined on $(\Omega, {\mathcal F}, {\bf P})$ with values in $\mathbb{K}$. Recall that $W$ can obtained as follows: let $\{W_i(t),t\in\mathbb{R}\}$, $i=1, 2$, be independent $K$-valued $Q$-Wiener processes, then \[ W(t)= \begin{cases} W_1(t) & \mbox{if }t\geq 0, \\ W_2(-t) & \mbox{if }t\leq 0, \end{cases} \] is $Q$-Wiener process with $\mathbb{R}$ as time parameter. We let $\mathcal{F}_t=\sigma\{W(s), s\leq t\}$. The collection of all strongly measurable, square-integrable $\mathbb{H}$-valued random variables, denoted by $L^2({\bf P}, \mathbb{H})$, is a Banach space when it is equipped with norm $\|X\|_{L^2({\bf P}, \mathbb{H})}=({\bf E}\|X\|^2)^{1/2}$, where the expectation ${\bf E}$ is defined by $$ {\bf E}[g]=\int_{\Omega}g(\omega)d{\bf P}(\omega). $$ Let $\mathbb{K}_0=Q^{1/2}K$ and let $L^0_2=L_2(\mathbb{K}_0, \mathbb{H})$ with respect to the norm $$ \|\Phi\|^2_{\mathbb{L}^0_2}=\|\Phi\,Q^{1/2}\|_2^2= \mathop{\rm Trace} (\Phi\,Q \Phi^{*})\,. $$ Throughout, we assume that $A(t): D(A(t))\subset L^2({\bf P};\mathbb{H})\to L^2({\bf P}; \mathbb{H})$ is a family of densely defined closed linear operators on a common domain $D = D(A(t))$, which is independent of $t$ and dense in $L^2({\bf P}; \mathbb{H})$, and $F: \mathbb{R} \times L^2({\bf P}; \mathbb{H}) \mapsto L^2({\bf P}; \mathbb{H})$ and $G: \mathbb{R} \times L^2({\bf P}; \mathbb{H}) \mapsto L^2({\bf P}; L^0_2)$ are jointly continuous functions. We suppose that the system \begin{equation}\label{J} \begin{gathered} u'(t)= A(t)u(t) \quad t\geq s, \\ u(s) =x\in L^2({\bf P}; \mathbb{H}), \end{gathered} \end{equation} has an associated evolution family of operators $\{U(t,s): t\geq s \mbox{ with } t,s\in \mathbb{R}\}$, which is uniformly asymptotically stable. If $\mathbb{B}_1, \mathbb{B}_2$ are Banach spaces, then the notation ${\mathcal L}(\mathbb{B}_1, \mathbb{B}_2)$ stands for the Banach space of bounded linear operators from $\mathbb{B}_1$ into $B_2$. When $\mathbb{B}_1 = B_2$, this is simply denoted ${\mathcal L}(\mathbb{B}_1)$. \begin{definition} \label{def2.1} \rm A family of bounded linear operators $\{U(t,s): t\geq s \mbox{ with } t,s\in \mathbb{R}\}$ on $L^2({\bf P}; \mathbb{H})$ is called an evolution family of operators for \eqref{J} whenever the following conditions hold: \begin{itemize} \item[(a)] $U(t,s)U(s,r)=U(t,r)$ for every $ r \leq s \leq t $; \item[(b)] for each $x \in \mathbb{X}$ the function $(t,s)\to U(t,s)x$ is continuous and $U(t,s)\in {\mathcal L}(L^2({\bf P}; \mathbb{H}), D)$ for every $t> s$; and \item[(c)] the function $(s,t]\to {\mathcal L}(L^2({\bf P}; \mathbb{H})) $, $t\to U(t,s)$ is differentiable with $$ \frac{\partial }{\partial t}U(t,s)= A(t)U(t,s). $$ \end{itemize} \end{definition} For additional details on evolution families, we refer the reader to the book by Lunardi \cite{Al2}. For the reader's convenience, we review some basic definitions and results for the notion of square-mean almost periodicity. Let $(\mathbb{B}, \|\cdot\|)$ be a Banach space. \begin{definition} \label{def2.2} \rm A stochastic process $X: \mathbb{R} \to L^2({\bf P}; \mathbb{B})$ is said to be continuous whenever $$ \lim_{t\to s}{\bf E}\|X(t)-X(s)\|^2=0. $$ \end{definition} \begin{definition}\cite{BD} \rm A continuous stochastic process $X: \mathbb{R} \to L^2({\bf P}; \mathbb{B})$ is said to be square-mean almost periodic if for each $\varepsilon >0$ there exists $l(\varepsilon)>0$ such that any interval of length $l(\varepsilon)$ contains at least a number $\tau$ for which $$ \sup_{t\in {\bf R}}{\bf E}\|X(t+\tau) - X(t)\|^2 <\varepsilon. $$ \end{definition} The collection of all stochastic processes $X: \mathbb{R} \to L^2({\bf P}; \mathbb{B})$ which are square-mean almost periodic is then denoted by $AP({\mathbb{R}};L^2({\bf P}; \mathbb{B}))$. The next lemma provides with some properties of the square-mean almost periodic processes. \begin{lemma}[\cite{BD}] \label{lemPH} If $X$ belongs to $AP({\mathbb{R}};L^2({\bf P}; \mathbb{B}))$, then \begin{itemize} \item[(i)] the mapping $t\to {\bf E}\|X(t)\|^2$ is uniformly continuous; \item[(ii)] there exists a constant $M > 0$ such that ${\bf E}\|X(t)\|^2\le M$, for all $t\in \mathbb{R}$. \end{itemize} \end{lemma} Let $\mbox{\bf CUB}(\mathbb{R}; L^2({\bf P}; \mathbb{B}))$ denote the collection of all stochastic processes $X: \mathbb{R} \mapsto L^2({\bf P}; \mathbb{B})$, which are continuous and uniformly bounded. It is then easy to check that $\mbox{\bf CUB}(\mathbb{R};L^2({\bf P}; \mathbb{B}))$ is a Banach space when it is equipped with the norm: $$ \|X\|_{\infty}=\sup_{t \in \mathbb{R}}\left({\bf E}\|X(t)\|^2\right)^{1/2}. $$ \begin{lemma}[\cite{BD}] \label{lem2.5} $AP(\mathbb{R};L^2({\bf P}; \mathbb{B}))\subset \mbox{\bf CUB} (\mathbb{R};L^2({\bf P};\mathbb{B}))$ is a closed subspace. \end{lemma} In view of the above, the space $AP(\mathbb{R};L^2({\bf P}; \mathbb{B}))$ of square-mean almost periodic processes equipped with the norm $\|\cdot\|_\infty$ is a Banach space. Let $(\mathbb{B}_1, \|\cdot\|_1)$ and $(\mathbb{B}_2, \|\cdot\|_2)$ be Banach spaces and let $L^2({\bf P}; \mathbb{B}_1)$ and $L^2({\bf P}; \mathbb{B}_2)$ be their corresponding $L^2$-spaces, respectively. \begin{definition}\cite{BD} A function $F: \mathbb{R} \times L^2({\bf P};\mathbb{B}_1) \to L^2({\bf P}; \mathbb{B}_2))$, $(t, Y) \mapsto F(t, Y)$, which is jointly continuous, is said to be square-mean almost periodic in $t \in \mathbb{R}$ uniformly in $Y\in\mathbb{K}$ where $\mathbb{K} \subset L^2({\bf P}; \mathbb{B}_1)$ is a compact if for any $\varepsilon >0$, there exists $l(\varepsilon, \mathbb{K}) >0$ such that any interval of length $l(\varepsilon, \mathbb{K})$ contains at least a number $\tau$ for which $$ \sup_{t\in {\bf R}}{\bf E}\|F(t+\tau, Y) - F(t, Y)\|^2_2 <\varepsilon $$ for each stochastic process $Y: \mathbb{R} \to \mathbb{K}$. \end{definition} \begin{theorem}[\cite{BD}]\label{AB} Let $F: \mathbb{R} \times L^2({\bf P}; \mathbb{B}_1) \to L^2({\bf P}; \mathbb{B}_2)$, $(t, Y) \mapsto F(t, Y)$ be a square-mean almost periodic process in $t \in \mathbb{R}$ uniformly in $Y\in\mathbb{K}$, where $\mathbb{K} \subset L^2({\bf P}; \mathbb{B}_1)$ is compact. Suppose that $F$ is Lipschitz in the following sense: $$ {\bf E} \|F(t, Y) - F(t, Z)\|_2^2 \leq M {\bf E}\|Y -Z\|_1^2 $$ for all $Y, Z\in L^2({\bf P}; \mathbb{B}_1)$ and for each $t \in \mathbb{R}$, where $M >0$. Then for any square-mean almost periodic process $\Phi: \mathbb{R} \to L^2({\bf P}; \mathbb{B}_1)$, the stochastic process $t \mapsto F(t, \Phi(t))$ is square-mean almost periodic. \end{theorem} \section{Main Result} Throughout this section, we require the following assumptions: \begin{itemize} \item[(H0)] The operators $A(t)$, $U(r,s)$ commute and that the evolution family $U(t,s)$ is asymptotically stable. Namely, there exist some constants $M, \delta > 0$ such that $$ \|U(t,s)\| \leq Me^{-\delta (t-s)} \quad \mbox{for every } t\geq s. $$ In addition, $R(\lambda_0, A(\cdot))\in AP(\mathbb{R}; {\mathcal L}(L^2({\bf P}, \mathbb{H})))$ for $\lambda_0$ in (\ref{K}); \item[(H1)] The function $F: \mathbb{R}\times L^2({\bf P}; \mathbb{H}) \to L^2({\bf P}; \mathbb{H})$, $(t, X) \mapsto F(t,X)$ be a square-mean almost periodic in $t \in \mathbb{R}$ uniformly in $X \in {\mathcal O}$ (${\mathcal O} \subset L^2({\bf P}; \mathbb{H})$ being a compact subspace). Moreover, $F$ is Lipschitz in the following sense: there exists $K > 0$ for which $$ {\bf E}\|F(t, X)-F(t, Y)\|^2\leq\,K {\bf E}\|X-Y\|^2 $$ for all stochastic processes $X, Y \in L^2({\bf P}; \mathbb{H})$ and $t\in\mathbb{R}$; \item[(H2)] The function $G: \mathbb{R}\times L^2({\bf P}; \mathbb{H}) \to L^2({\bf P}; \mathbb{L}^0_2)$, $(t, X) \mapsto F(t,X)$ be a square-mean almost periodic in $t \in \mathbb{R}$ uniformly in $X \in {\mathcal O}'$ (${\mathcal O}' \subset L^2({\bf P}; \mathbb{H})$ being a compact subspace). Moreover, $G$ is Lipschitz in the following sense: there exists $K'> 0$ for which $$ {\bf E}\|G(t, X)-G(t, Y)\|_{\mathbb{L}_2^0}^2\leq\,K' {\bf E}\|X-Y\|^2 $$ for all stochastic processes $X, Y \in L^2({\bf P}; \mathbb{H})$ and $t\in\mathbb{R}$. \end{itemize} In order to study \eqref{I} we need the following lemma which can be seen as an immediate consequence of \cite[Proposition 4.4]{MR}. \begin{lemma} \label{lemC} Suppose $A(t)$ satisfies the `Acquistapace-Terreni' conditions, $U(t, s)$ is exponentially stable and $R(\lambda_0, A(\cdot))\in AP(\mathbb{R}; {\mathcal L}(L^2({\bf P}, \mathbb{H})))$. Let $h>0$. Then, for any $\varepsilon >0$, there exists $l(\varepsilon)>0$ such that every interval of length $l$ contains at least a number $\tau$ with the property that $$ \|U(t+\tau, s+\tau)-U(t, s)\|\leq\varepsilon e^{-\frac{\delta}{2}(t-s)} $$ for all $t-s\geq h$. \end{lemma} \begin{definition} \label{def3.2} \rm A ${\mathcal F}_t$-progressively process $\{X(t)\}_{t\in \mathbb{R}}$ is called a mild solution of $\eqref{I}$ on $\mathbb{R}$ if \begin{equation}\label{L} \begin{aligned} X(t)&= U(t, s) X(s) + \int_{s}^t U(t, \sigma) F(\sigma,X(\sigma))\,d\sigma \\ &\quad + \int_{s}^tU(t,\sigma) G(\sigma, X(\sigma))\,dW(\sigma) \end{aligned} \end{equation} for all $t \geq s$ for each $s \in \mathbb{R}$. \end{definition} Now, we are ready to present our main result. \begin{theorem}\label{thm1} Under assumptions {\rm (H0)---(H2)}, then \eqref{I} has a unique square-mean almost period mild solution, which can be explicitly expressed as follows: $$ X(t)= \int_{-\infty}^t U(t,\sigma) F(\sigma,X(\sigma))\,d\sigma + \int_{-\infty}^t U(t,\sigma)G(\sigma, X(\sigma))\,dW(\sigma) \quad \mbox{for each } t \in \mathbb{R} $$ whenever $$ \Theta:= M^2\Big(2\frac{K}{\delta^2}\,+ \frac{K^\prime\cdot\mathop{\rm Tr}(Q)}{\delta}\Big) < 1. $$ \end{theorem} \begin{proof} First of all, note that \begin{equation}\label{ab} X(t)= \int_{-\infty}^t U(t, \sigma) F(\sigma,X(\sigma))\,d\sigma + \int_{-\infty}^t U(t, \sigma) G(\sigma, X(\sigma))\,dW(\sigma) \end{equation} is well-defined and satisfies $$ X(t)= U(t, s) X(s) + \int_{s}^t U(t,\sigma) F(\sigma,X(\sigma))\, d\sigma + \int_{s}^t U(t,\sigma)G(\sigma, X(\sigma))\, dW(\sigma) $$ for all $t \geq s$ for each $s \in \mathbb{R}$, and hence $X$ given by (\ref{L}) is a mild solution to \eqref{I}. Define \begin{gather*} \Phi X(t) := \int_{-\infty}^t U(t,\sigma) F(\sigma,X(\sigma))\,d\sigma,\\ \Psi X(t) := \int_{-\infty}^t U(t,\sigma) G(\sigma, X(\sigma))\,dW(\sigma). \end{gather*} Let us show that $\Phi X(\cdot)$ is square-mean almost periodic whenever $X$ is. Indeed, assuming that $X$ is square-mean almost periodic and using (H1), Theorem \ref{AB}, and Lemma \ref{lemC}, given $\varepsilon > 0$, one can find $l(\varepsilon) >0$ such that any interval of length $l(\varepsilon)$ contains at least $\tau$ with the property that $$ \|U(t+\tau, s+\tau) - U(t, s)\|\leq\varepsilon e^{-\frac{\delta}{2}(t-s)} $$ for all $t-s\geq\varepsilon$, and $$ {\bf E} \left\|F(\sigma + \tau, X(\sigma +\tau)) - F(\sigma, X(\sigma))\right\|^2 <\eta $$ for each $\sigma \in \mathbb{R}$, where $\eta(\varepsilon)\to 0$ as $\varepsilon\to 0$. Moreover, it follows from Lemma \ref{lemPH} (ii) that there exists a positive constant $K_1$ such that $$ \sup_{\sigma\in\mathbb{R}}{\bf E}\|F(\sigma, X(\sigma))\|^2\leq K_1\,. $$ Now \begin{align*} & \big\|(\Phi X)(t + \tau)-(\Phi X)(t)\big\|\\ & = \big\|\int_{-\infty}^{t+\tau} U(t+\tau,s)F(s, X(s))\,ds-\int^t_{-\infty}U(t, s)F(s, X(s))\,ds\big\| \\ & = \|\int_{0}^{\infty} U(t+\tau,t+\tau-s)\,F(t+\tau-s, X(t+\tau-s))\,ds\\ &\quad -\int_0^{\infty}U(t, t-s)\,F(t-s, X(t-s))\,ds\|\\ &\leq \big\|\int_{0}^{\infty} U(t+\tau,t+\tau-s)[F(t+\tau-s, X(t+\tau-s))-F(t-s, X(t-s))]\,ds\big\|\\ &\quad + \big\|\Big(\int_{\varepsilon}^{\infty}+\int_0^{\varepsilon}\Big) [U(t+\tau, t+\tau-s))-U(t, t-s)] F(t-s, X(t-s))\,ds \big\|. \end{align*} Consequently, \begin{align*} & {\bf E} \|\Phi X(t+\tau) - \Phi X(t)\|^2 \\ &\leq 3 {\bf E}\Big[\int_0^{\infty}\|U(t+\tau, t +\tau-s)\| \|F(t+\tau-s, X(t+\tau-s))\\ &\quad -F(t-s, X(t-s))\|\,ds\Big]^2\\ &\quad+ 3 {\bf E}\Big[\int_{\varepsilon}^{\infty}\|U(t+\tau, t+\tau-s) - U(t, t-s)\| \|F(t-s, X(t-s))\|\,ds\Big]^2\\ &\quad+ 3 {\bf E}\Big[\int_0^{\varepsilon}\|U(t+\tau, t+\tau-s) - U(t, t-s)\| \|F(t-s, X(t-s))\|\,ds\Big]^2\\ &\leq 3 M^2 {\bf E} \Big[\int_0^{\infty}e^{-\delta s}\|F(t+\tau-s, X(t+\tau-s))-F(t-s, X(t-s))\|\,ds\Big]^2\\ &\quad + 3 \varepsilon^2 {\bf E} \Big[\int_{\varepsilon}^{\infty}e^{-\frac{\delta}{2}s}\|F(t-s, X(t-s))\|\,ds\Big]^2 \\ &\quad + 3M^2{\bf E} \Big[\int_0^{\varepsilon}2e^{-\delta s} \|F(t-s, X(t-s))\|\, ds\Big]^2. \end{align*} Using Cauchy-Schwarz inequality it follows that \begin{align*} & {\bf E} \|\Phi X(t+\tau) - \Phi X(t)\|^2\\ &\leq 3 M^2 \Big(\int_0^{\infty}e^{-\delta s}\,ds\Big)\\ &\quad\times \Big(\int_0^{\infty}e^{-\delta s} {\bf E}\|F(t+\tau-s, X(t+\tau-s))-F(t-s, X(t-s))\|^2\,ds\Big) \\ &\quad + 3 \varepsilon^2 \Big(\int_{\varepsilon}^{\infty}e^{-\frac{\delta}{2}s}\,ds\Big) \Big(\int_{\varepsilon}^{\infty}e^{-\frac{\delta}{2}s} {\bf E}\|F(t-s, X(t-s))\|^2\,ds\Big) \\ &\quad + 12 M^2 \Big(\int_0^{\infty}e^{-\delta s}\,ds\Big) \Big(\int_0^{\varepsilon}e^{-\delta s} {\bf E}\|F(t-s, X(t-s))\|^2\, ds\Big)^2\\ &\quad \leq 3 M^2 \Big(\int_0^{\infty}e^{-\delta s}\,ds\Big)^2 \sup_{\sigma\in\mathbb{R}}{\bf E} \|F(\sigma + \tau, X(\sigma +\tau)) - F(\sigma, X(\sigma))\|^2 \\ &\quad + 3 \varepsilon^2 \Big(\int_{\varepsilon}^{\infty}e^{-\frac{\delta}{2}s}\,ds\Big) \sup_{\sigma\in\mathbb{R}}{\bf E}\|F(\sigma, X(\sigma))\|^2\\ &\quad + 12 M^2 \Big(\int_0^{\infty}e^{-\delta s}\,ds\Big) \sup_{\sigma\in\mathbb{R}}{\bf E}\|F(\sigma, X(\sigma))\|^2 \\ &\leq 3 \frac{M^2}{\delta^2}\eta +3 \varepsilon^2\frac{4}{\delta^2}K_1+12M^2\varepsilon^2K_1\,, \end{align*} which implies that $\Phi X(\cdot)$ is square-mean almost periodic. Similarly, assuming that $X$ is square-mean almost periodic and using (H2), Theorem \ref{AB}, and Lemma \ref{lemC}, given $\varepsilon > 0$, one can find $l(\varepsilon) >0$ such that any interval of length $l(\varepsilon)$ contains at least $\tau$ with the property that $$ \|U(t+\tau, s+\tau) - U(t, s)\|\leq\varepsilon e^{-\frac{\delta}{2}(t-s)} $$ for all $t-s\geq\varepsilon$, and $$ {\bf E} \left\|G(\sigma + \tau, X(\sigma +\tau)) - G(\sigma, X(\sigma))\right\|_{\mathbb{L}_2^0}^2 <\eta $$ for each $\sigma \in \mathbb{R}$, where $\eta(\varepsilon)\to 0$ as $\varepsilon\to 0$. Moreover, it follows from Lemma \ref{lemPH} (ii) that there exists a positive constant $K_2$ such that $$ \sup_{\sigma\in\mathbb{R}}{\bf E}\|G(\sigma, X(\sigma))\|_{\mathbb{L}_2^0}^2\leq K_2. $$ The next step consists of proving the square-mean almost periodicity of $\Psi X(\cdot)$. Of course, this is more complicated than the previous case because of the involvement of the Wiener process $W$. To overcome such a difficulty, we make extensive use of the properties of ${\tilde W}$ defined by ${\tilde W}(s):=W(s+\tau)-W(\tau)$ for each $s$. Note that ${\tilde W}$ is also a Wiener process and has the same distribution as $W$. Now, let us make an appropriate change of variables to get \begin{align*} &{\bf E}\|(\Psi X)(t + \tau)-(\Psi X)(t)\|^2 \\ &=\|\int_{0}^{\infty} U(t+\tau,t+\tau-s)\,G(t+\tau-s, X(t+\tau-s))\,d{\tilde W}(s) \\ &\quad -\int_0^{\infty}U(t, t-s)\,G(t-s, X(t-s))\,d{\tilde W}(s)\|^2 \\ &\leq 3 {\bf E}\|\int_0^{\infty}U(t+\tau, t+\tau-s)\,[G(t+\tau-s, X(t+\tau-s))\\ &\quad -G(t-s, X(t-s))]\,d{\tilde W} (s)\|^2 \\ &\quad + 3 {\bf E}\|\int_{\varepsilon}^{\infty}[U(t+\tau, t+\tau-s) - U(t, t-s)]\,G(t-s, X(t-s))\,d{\tilde W}(s)\|^2 \\ &\quad + 3 {\bf E}\|\int_0^{\varepsilon}[U(t+\tau, t+\tau-s) - U(t, t-s)]\,G(t-s, X(t-s))\,d{\tilde W}(s)\|^2. \end{align*} Then using an estimate on the Ito integral established in \cite[Proposition 1.9]{I}, we obtain \begin{align*} &{\bf E}\|(\Psi X)(t + \tau)-(\Psi X)(t)\|^2 \\ & \leq3 \mathop{\rm Tr}Q \int_0^{\infty}\|U(t+\tau, t+\tau-s)\|^2 {\bf E}\|G(t+\tau-s, X(t+\tau-s)) \\ &\quad -G(t-s, X(t-s))\|_{\mathbb{L}^0_2}^2\,ds \\ &\quad + 3 \mathop{\rm Tr}Q\int_{\varepsilon}^{\infty}\|U(t+\tau, t+\tau-s) - U(t, t-s)\|^2 {\bf E}\|G(t-s, X(t-s))\|_{\mathbb{L}_2^0}^2\,ds \\ &\quad + 3 \mathop{\rm Tr}Q\int_0^{\varepsilon}\|U(t+\tau, t+\tau-s) - U(t, t-s)\|^2 {\bf E}\|G(t-s, X(t-s))\|_{\mathbb{L}_2^0}^2\,ds \\ &\leq 3 \mathop{\rm Tr} Q M^2 \Big(\int_0^{\infty}e^{-2\delta s}\,ds\Big) \sup_{\sigma\in\mathbb{R}}\|G(\sigma+\tau, X(\sigma+\tau)) -G(\sigma, X(\sigma))\|_{\mathbb{L}_2^0}^2\\ &\quad + 3 \mathop{\rm Tr}Q \varepsilon^2 \Big(\int_{\varepsilon}^{\infty}e^{-\delta\, s}\,ds\Big) \sup_{\sigma\in\mathbb{R}}{\bf E}\|G(\sigma, X(\sigma))\|_{\mathbb{L}_2^0}^2 \\ &\quad + 6 \mathop{\rm Tr}Q M^2 \Big(\int_0^{\varepsilon}e^{-2\delta s}\,ds\Big) \sup_{\sigma\in\mathbb{R}}{\bf E}\|G(\sigma, X(\sigma))\|_{\mathbb{L}_2^0}^2 \\ &\leq 3 \mathop{\rm Tr}Q\big[ \eta\frac{M^2}{2\delta}+\varepsilon\frac{K_2}{\delta} +2 \varepsilon\,K_2\big], \end{align*} which implies that $\Psi X(\cdot)$ is square-mean almost periodic. Define $$ (\Lambda X)(t):=\int_{-\infty}^t U(t, s) F(s, X(s))\,ds + \int_{-\infty}^t U(t,s) G(s, X(s))\, dW(s)\,. $$ In view of the above, it is clear that $\Lambda$ maps $AP(\mathbb{R}; L^2({\bf P}; \mathbb{H}))$ into itself. To complete the proof, it suffices to prove that $\Lambda$ has a unique fixed-point. Clearly, \begin{align*} &\|(\Lambda X)(t)-(\Lambda Y)(t)\| \\ &=\|\int_{-\infty}^t U(t, s) [F(s,X(s))-F(s, Y(s))]\, ds \\ &\quad + \int_{-\infty}^t U(t, s) [G(s, X(s))-G(s, Y(s))]\,dW(s)\| \\ & \leq M \int_{-\infty}^t e^{-\delta (t-s)} \|F(s,X(s))-F(s, Y(s))\|\,ds \\ &\quad +\|\int_{-\infty}^t U(t, s) [G(s, X(s))-G(s, Y(s))]\,dW(s)\|\,. \end{align*} Since $(a+b)^2\leq 2a^2+2b^2$, we can write \begin{align*} &{\bf E}\|(\Lambda X)(t)-(\Lambda Y)(t)\|^2 \\ & \leq 2M^2 {\bf E}\Big(\int_{-\infty}^t e^{-\delta(t-s)} \|F(s, X(s))-F(s, Y(s))\|\,ds\Big)^2\\ &\quad + 2{\bf E}\Big(\|\int_{-\infty}^t U(t, s)[G(s, X(s))-G(s, Y(s))]\,dW(s)\|\Big)^2\,. \end{align*} We evaluate the first term of the right-hand side as follows: \begin{align*} & {\bf E}\Big(\int_{-\infty}^te^{-\delta(t-s)}\|F(s, X(s))-F(s, Y(s))\|\, ds\Big)^2 \\ &\leq {\bf E}\Big[\Big(\int_{-\infty}^t\,e^{-\delta(t-s)} ds\Big) \Big(\int_{-\infty}^te^{-\delta(t-s)}\|F(s, X(s))-F(s, Y(s))\|^2\, ds\Big)\Big] \\ & \leq \Big(\int_{-\infty}^te^{-\delta(t-s)}\,ds\Big) \Big(\int_{-\infty}^te^{-\delta(t-s)} {\bf E}\| F(s, X(s))-F(s, Y(s))\|^2\,ds\Big) \\ & \leq K \cdot \Big(\int_{-\infty}^te^{-\delta(t-s)}\, ds\Big)\Big(\int_{-\infty}^te^{-\delta(t-s)} {\bf E}\| X(s))-Y(s))\|^2\,ds\Big) \\ &\leq K \cdot \Big(\int_{-\infty}^te^{-\delta(t-s)}\, ds\Big)^2 \sup_{t\in\mathbb{R}}{\bf E}\|X(t)-Y(t)\|^2 \\ &= K \cdot \Big(\int_{-\infty}^te^{-\delta(t-s)}\, ds\Big)^2\|X-Y\|_{\infty} \\ & \leq \frac{K}{\delta^2} \cdot \|X-Y\|_{\infty}\,. \end{align*} As to the second term, we use again an estimate on the Ito integral established in \cite{I} to obtain: \begin{align*} &{\bf E}\Big(\|\int_{-\infty}^t U(t, s)\, [G(s, X(s))-G(s, Y(s))]\,dW(s)\|\Big)^2 \\ &\quad \leq \mbox{Tr Q} \cdot {\bf E} \Big[\int_{-\infty}^t\|U(t, s)\,[G(s, X(s))-G(s, Y(s))]\|^2\, ds\Big]\\ & \leq \mathop{\rm Tr} Q \cdot {\bf E} \Big[\int_{-\infty}^t\|U(t, s)\|^2\|G(s, X(s))-G(s, Y(s))\|_{\mathbb{L}_2^0}^2\,ds\Big] \\ & \leq \mathop{\rm Tr} Q \cdot M^2\int_{-\infty}^te^{-2\delta(t-s)}{\bf E}\|G(s,X(s))-G(s, Y(s))\|_{\mathbb{L}_2^0}^2\,ds\\ & \leq \mathop{\rm Tr} Q \cdot M^2 K' \cdot \Big(\int_{-\infty}^te^{-2\delta(t-s)}\,ds\Big) \sup_{t\in R}{\bf E}\| X(s))-Y(s))\|^2\\ & \leq \mathop{\rm Tr} Q \cdot \frac{M^2 K'}{2\delta} \cdot \|X-Y\|_{\infty}\,. \end{align*} Thus, by combining, it follows that $$ {\bf E}\|(\Lambda X)(t)-(\Lambda Y)(t)\|\leq M^2 \Big(2\frac{K}{\delta^2}+ \frac{K^\prime\cdot\mathop{\rm Tr} Q}{\delta}\Big)\|X-Y\|_{\infty}, $$ and therefore, \[ \|\Lambda X-\Lambda Y\|_{\infty}\leq M^2 \Big(2\frac{K}{\delta^2}\,+ \frac{K^\prime\cdot\mathop{\rm Tr} Q}{\delta}\Big)\|X-Y\|_{\infty}= \Theta \cdot \|X-Y\|_\infty. \] Consequently, if $\Theta < 1$, then \eqref{I} has a unique fixed-point, which obviously is the unique square-mean almost periodic solution to \eqref{I}. \end{proof} \section{Example} Let ${\mathcal O} \subset \mathbb{R}^n$ be a bounded subset whose boundary $\partial {\mathcal O}$ is of class $C^2$ and being locally on one side of ${\mathcal O}$. Consider the parabolic stochastic partial differential equation \begin{gather}\label{H} d_tX(t, \xi)= \{A(t, \xi)X (t, \xi) + F(t, X(t, \xi))\}\,d_t + G (t, X(t, \xi))\,dW(t),\\ \sum_{i,j = 1}^n n_i(\xi) a_{ij}(t, \xi) d_i X(t, \xi) =0, \quad t \in \mathbb{R}, \; \xi \in \partial {\mathcal O}\label{H'}, \end{gather} where $ d_t = \frac{d}{dt}$, $ d_i = \frac{d}{d\xi_i}$, $n(\xi) = (n_1(\xi), n_2(\xi), \dots , n_n(\xi))$ is the outer unit normal vector, the family of operators $A(t, \xi)$ are formally given by $$ A(t, \xi)=\sum_{i,j=1}^n\frac{\partial}{\partial x_i} \Big(a_{ij}(t, \xi) \frac{\partial}{\partial x_j}\Big) + c(t, \xi), \quad t \in \mathbb{R}, \; \xi \in {\mathcal O}, $$ $W$ is a real valued Brownian motion, and $a_{ij}, c$ ($i,j = 1, 2, \dots , n$) satisfy the following conditions: \\ (H3) \begin{itemize} \item [(i)] The coefficients $(a_{ij})_{i,j=1,\dots ,n}$ are symmetric, that is, $a_{ij}=a_{ji}$ for all $i,j =1, \dots , n$. Moreover, $a_{ij} \in C_b^\mu (\mathbb{R}, L^2 ({\bf P}, C(\overline{\mathcal O}))) \cap C_b(\mathbb{R}, L^2 ({\bf P}, C^1(\overline{\mathcal O}))) \cap AP(\mathbb{R}; L^2 ({\bf P}, L^2({\mathcal O})))$ for all $i,j =1,\dots n$, and $c \in C_b^\mu (\mathbb{R}, L^2 ({\bf P}, L^2({\mathcal O}))) \cap C_b(\mathbb{R}, L^2 ({\bf P}, C(\overline{\mathcal O}))) \cap AP(\mathbb{R}; L^2 ({\bf P}, L^1({\mathcal O})))$ for some $\mu \in (1/2, 1]$. \item [(ii)] There exists $\varepsilon_0 >0$ such that $$ \sum_{i, j=1}^na_{ij} (t, \xi)\eta_i \eta_j\geq \varepsilon_0 |\eta|^2, $$ for all $(t, \xi)\in\mathbb{R}\times \overline{\mathcal O}$ and $\eta\in\mathbb{R}^n$. \end{itemize} Under above assumptions, the existence of an evolution family $U(t,s)$ satisfying (H0) is obtained, see, eg., \cite{MR}. Set $\mathbb{H}=L^2({\mathcal O})$. For each $t\in\mathbb{R}$ define an operator $A(t)$ on $L^2({\bf P}; H)$ by \[ {\mathcal D(A(t))}=\{X \in L^2({\bf P}, H^2({\mathcal O})): \sum_{i,j = 1}^n n_i(\cdot) a_{ij}(t, \cdot) d_i X(t, \cdot) =0\quad \mbox{on } \partial{\mathcal O}\} \] and $A(t)X=A(t, \xi) X(\xi)$ for all $ X\in {\mathcal D}(A(t))$. Thus under assumptions (H1)--(H3), then the system \eqref{H}--\eqref{H'} has a unique mild solution, which obviously is square-mean almost periodic, whenever $M$ is small enough. \begin{thebibliography}{10} \bibitem{AT} P. Acquistapace and B. Terreni; A Unified Approach to Abstract Linear Parabolic Equations, {\it Tend. Sem. Mat. Univ. Padova}, 78 (1987), 47-107. \bibitem{at} L. Arnold and C. Tudor; Stationary and Almost Periodic Solutions of Almost Periodic Affine Stochastic Differential Equations, {\it Stochastics and Stochastic Reports}, {\bf 64} (1998), 177-193. \bibitem{BD} P. Bezandry and T. Diagana; Existence of Almost Periodic Solutions to Some Stochastic Differential Equations. {\it Applicable Analysis} Vol. {\bf 86} (2007), no. 7, pp. 819 - 827. \bibitem{C} C. Corduneanu, {\it Almost Periodic Functions}, 2nd Edition, Chelsea-New York, 1989. \bibitem{da} G. Da Prato and C. Tudor; Periodic and Almost Periodic Solutions for Semilinear Stochastic Evolution Equations, {\it Stoch. Anal. Appl.} {\bf 13}(1) (1995), 13--33. \bibitem{D} A. Ya. Dorogovtsev and O. A. Ortega; On the Existence of Periodic Solutions of a Stochastic Equation in a Hilbert Space. {\it Visnik Kiiv. Univ. Ser. Mat. Mekh.} No. {\bf 30} (1988), 21-30, 115 \bibitem{I} A. Ichikawa; Stability of Semilinear Stochastic Evolution Equations. {\it J. Math. Anal. Appl.} {\bf 90} (1982), no.1, 12-44. \bibitem{K} T. Kawata; Almost Periodic Weakly Stationary Processes. {\it Statistics and probability: essays in honor of C. R. Rao}, pp. 383--396, North-Holland, Amsterdam-New York, 1982. \bibitem{Al2} A. Lunardi; {\it Analytic Semigroups and Optimal Regularity in Parabolic Problems}, PNLDE Vol. {\it 16}, Birkh\"{a}auser Verlag, Basel, 1995. \bibitem{MR} L. Maniar and S. Roland; {\it Almost Periodicity of Inhomogeneous Parabolic Evolution Equations}, Lecture Notes in Pure and Appl. Math. Vol. 234, Dekker, New York, 2003, pp. 299-318. \bibitem{S} R. J. Swift; Almost Periodic Harmonizable Processes, {\it Georgian Math. J.} {\bf 3} (1996), no. 3, 275--292. \bibitem{t3} C. Tudor; Almost Periodic Solutions of Affine Stochastic Evolutions Equations, {\it Stochastics and Stochastics Reports} {\bf 38} (1992), 251-266. \end{thebibliography} \end{document}