\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 123, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/123\hfil Four-point boundary-value problems] {Solvability of a four-point boundary-value problem for fourth-order ordinary \\ differential equations} \author[J. Ge, C. Bai \hfil EJDE-2007/123\hfilneg] {Jing Ge, Chuanzhi Bai} \address{Jing Ge \newline Department of Mathematics \\ Huaiyin Teachers College\\ Huaian, Jiangsi 223300, China} \email{gejing0512@163.com} \address{Chuanzhi Bai \newline Department of Mathematics \\ Huaiyin Teachers College\\ Huaian, Jiangsi 223300, China} \email{czbai8@sohu.com} \thanks{Submitted May 10, 2007. Published September 21, 2007.} \thanks{Supported by grants NNSFC-10771212 and 06KJB110010.} \subjclass[2000]{34B10, 34B15} \keywords{Four-point boundary-value problem; existence of solutions; \hfill\break\indent fixed point theorem} \begin{abstract} In this paper we investigate the existence of solutions of a class of four-point boundary-value problems for fourth-order ordinary differential equations. Our analysis relies on a fixed point theorem due to Krasnoselskii and Zabreiko. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In recent years, boundary-value problems for second and higher order differential equations have been extensively studied. The monographs of Agarwal \cite{a1} and Agarwal, O'Regan, and Wong \cite{a2} contain excellent surveys of known results. Recently an increasing interest in studying the existence of solutions and positive solutions to boundary-value problems for higher order differential equations is observed; see for example \cite{a3, b1, g1, g2, g3, h1}. Very recently, Zhang, Chen and L\"u \cite{z1} by using the upper and lower solution method investigated the fourth order nonlinear ordinary differential equation \begin{equation} u^{(4)}(t) = f(t, u(t), u''(t)), \quad 0 < t < 1, \label{e1.1} \end{equation} with the four-point boundary conditions \begin{equation} \begin{gathered} u(0) = u(1) = 0, \\ a u''(\xi_1) - b u'''(\xi_1) = 0, \quad c u''(\xi_2) + d u'''(\xi_2) = 0, \end{gathered} \label{e1.2} \end{equation} where $a, b, c, d$ are nonnegative constants satisfying $a d + b c + a c(\xi_2 - \xi_1) > 0$, $0 \leq \xi_1 < \xi_2 \leq 1$ and $f \in C([0, 1] \times \mathbb{R} \times \mathbb{R})$. They proved the following Lemma (a key lemma): \begin{lemma}[{\cite[Lemma 2.2]{z1}}] \label{lem1.1} Suppose $a, b, c, d, \xi_1, \xi_2$ are nonnegative constants satisfying $0 \leq \xi_1 < \xi_2 \leq 1$, $b - a \xi_1 \geq 0$, $d - c + c \xi_2 \geq 0$ and $\delta = a d + b c + a c (\xi_2 - \xi_1) \not= 0$. If $u(t) \in C^4[0, 1]$ satisfies \begin{itemize} \item $u^{(4)}(t) \geq 0$, $t \in (0, 1)$, \item $u(0) \geq 0$, $u(1) \geq 0$, \item $a u''(\xi_1) - bu'''(\xi_1) \leq 0$, $ c u''(\xi_2) + d u'''(\xi_2) \leq 0$, \end{itemize} then $u(t) \geq 0$ and $u''(t) \leq 0$ for $t \in [0,1]$. \end{lemma} Unfortunately this Lemma is wrong as shown below. \subsection*{Counterexample to \cite[Lemma 2.2]{z1}} Let $u(t) = \frac{1}{3} t^4 + \frac{1}{4} t^3 - \frac{4}{3} t^2 + \frac{3}{4} t$ which belongs to $C^4[0, 1]$, $\xi_1 = \frac{1}{10}$, $\xi_2 = \frac{1}{8}$, $a, b, c, d$ be nonnegative constants satisfying $b \geq \frac{1}{10} a = a \xi_1$, $ d = \frac{15}{16} c > \frac{7}{8} c = (1 - \xi_2) c$ and $\delta = a d + b c + \frac{1}{40} a c \not= 0$. Then we have \begin{gather*} u^{(4)}(t) = 8 > 0, \quad t \in (0, 1), \\ u(0) = 0, \quad u(1) = 0, \\ \begin{aligned} a u''(\xi_1) - b u'''(\xi_1) & = a \Big[4 t^2 + \frac{3}{2} t - \frac{8}{3}\Big]_{t = 1/10} - b \Big[8 t + \frac{3}{2}\Big]_{t= 1/10} \\ & = - 2\frac{143}{300} a - 2\frac{3}{10} b \leq 0, \end{aligned} \end{gather*} and \begin{align*} c u''(\xi_2) + d u'''(\xi_2) &= c \Big[4 t^2 + \frac{3}{2} t - \frac{8}{3}\Big]_{t = 1/8} + d \Big[8 t + \frac{3}{2}\Big]_{t = 1/8} \\ &= - \frac{29}{12} c + \frac{5}{2} d = - \frac{29}{12} c + \frac{5}{2} \cdot \frac{15}{16} c = - \frac{7}{96} c \leq 0. \end{align*} But $$ u\big(\frac{8}{9}\big) = - 0.0031 < 0; $$ that is, \cite[Lemma 2.2]{z1} is incorrect. So the conclusions of \cite{z1} should be reconsidered. The aim of this paper is to investigate the existence of solutions of the BVP \eqref{e1.1}-\eqref{e1.2} by using a fixed point theorem due to Krasnoselskii and Zabreiko in \cite{k1}. \section{Main result} First, we give some lemmas which are needed in our discussion of the main results. \begin{lemma} \label{lem2.1} Suppose $a, b, c, d, \xi_1, \xi_2$ are nonnegative constants satisfying $0 \leq \xi_1 < \xi_2 \leq 1$ and $\delta = a d + b c + a c (\xi_2 - \xi_1) \not= 0$. If $h \in C[0, 1]$, then the boundary-value problem \begin{gather} v''(t) = h(t), \quad t \in [0, 1], \label{e2.1} \\ a v(\xi_1) - b v'(\xi_1) = 0, \quad c v(\xi_2) + d v'(\xi_2) = 0, \label{e2.2} \end{gather} has a unique solution \begin{equation} v(t) = \int_{\xi_1}^t (t - s) h(s) ds + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (a(\xi_1 - t) - b)(c(\xi_2 - s) + d)h(s) ds. \label{e2.3} \end{equation} \end{lemma} \begin{proof} By \eqref{e2.1}, it is easy to know that \begin{equation} v(t) = C_1 + C_2 t + \int_0^t (t - s) h(s) ds, \label{e2.4} \end{equation} where $C_1, C_2$ are any two constants. Substituting \eqref{e2.4} into boundary conditions \eqref{e2.2}, by a routine calculation, we get \begin{gather} C_1 = \int_0^{\xi_1} s h(s) ds + \frac{1}{\delta} (a \xi_1 - b) \int_{\xi_1}^{\xi_2} (c(\xi_2 - s) + d) h(s) ds, \label{e2.5} \\ C_2 = - \int_0^{\xi_1} h(s) ds - \frac{a}{\delta} \int_{\xi_1}^{\xi_2} (c(\xi_2 - s) + d) h(s) ds. \label{e2.6} \end{gather} Substituting \eqref{e2.5} and \eqref{e2.6} into \eqref{e2.4}, we obtain \eqref{e2.3} which implies lemma. \end{proof} \begin{remark} \label{rmk2.2} \rm Let $\xi_1 = 0$, $\xi_2 = 1$, then \eqref{e2.3} reduces to $$ v(t) = - \int_0^1 G(t, s) h(s) ds, $$ where \[ G(t, s) = \frac{1}{\delta} \begin{cases} (as + b)(d + c(1 - t)), & 0 \leq s \leq t \leq 1,\\ (at + b)(d + c(1 - s)), & 0 \leq t < s \leq 1. \end{cases} \] \end{remark} \begin{remark} \label{rmk2.3} \rm Let \begin{equation} \label{e2.7} \begin{gathered} R(t) = \frac{1}{\delta} ((a(t - \xi_1) + b)x_3 + (c(\xi_2 - t) + d) x_2), \\ G_1(t, s) = \begin{cases} s(1 - t), & 0 \leq s \leq t \leq 1, \\ t(1 - s), & 0 \leq t < s \leq 1, \end{cases} \\ G_2(t, s) = \frac{1}{\delta} \begin{cases} (a(s - \xi_1) + b)(d + c(\xi_2 - t)), & \xi_1 \leq s \leq t \leq \xi_2,\\ (a(t - \xi_1) + b)(d + c(\xi_2 - s)), & \xi_1 \leq t < s \leq \xi_2. \end{cases} \end{gathered} \end{equation} In \cite[Lemma 2.2]{z1} it is claimed that \begin{equation} u(t) = t x_1 + (1 - t) x_0 - \int_0^1 G_1(t, \xi) R(\xi) d \xi + \int_0^1 G_1(t, \xi) \int_{\xi_1}^{\xi_2} G_2(\xi, s) h(s) ds d \xi, \label{e2.8} \end{equation} is the solution of the boundary-value problem \begin{gather*} u^{(4)}(t) = h(t), \quad 0 < t < 1,\\ u(0) = x_0, \quad u(1) = x_1, \\ a u''(\xi_1) - b u'''(\xi_1) = x_2, \quad c u''(\xi_2) + d u'''(\xi_2) = x_3. \end{gather*} However \eqref{e2.8} is wrong. Indeed, by Lemma \ref{lem2.1}, \eqref{e2.8} should be replaced by $$ u(t) = t x_1 + (1 - t) x_0 - \int_0^1 G_1(t, \xi) R(\xi) d \xi - \int_0^1 G_1(t, \eta) v(\eta) d \eta, $$ where $$ v(\eta) = \int_{\xi_1}^{\eta} (\eta - s) h(s) ds + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (a(\xi_1 - \eta) - b)(c(\xi_2 - s) + d)h(s) ds. $$ \end{remark} \begin{remark} \label{rmk2.4} \rm In \cite[Theorem 3.1]{z1}, the operator $T : C[0, 1] \to C[0,1]$ is defined as $$ T u(t) = \int_0^1 G_1(t, \eta) \int_{\xi_1}^{\xi_2} G_2(\eta, s) f(s, u(s), u''(s)) ds d \eta, $$ where $G_1(t, s)$ and $G_2(t, s)$ are as in Remark \ref{rmk2.2}. By \ref{lem2.1} and Remark \ref{rmk2.2}, the definition of $T$ is incorrect. In fact, the operator $T$ should be defined as \begin{align*} T u(t) & = \int_0^1 G_1(t, \eta) \int_{\xi_1}^{\eta} (s - \eta) f(s, u(s), u''(s)) ds d \eta\\ & \quad + \frac{1}{\delta} \int_0^1 G_1(t, \eta) \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - \eta))(c(\xi_2 - s) + d) f(s, u(s), u''(s)) ds d \eta. \end{align*} \end{remark} The following well-known fixed point theorem \cite{k1} will play an important role in the proof of our theorem. \begin{lemma} \label{lem2.5} Let $X$ be a Banach space, and $F : X \to X$ be completely continuous. Assume that $A : X \to X$ is a bounded linear operator such that 1 is not an eigenvalue of $A$ and $$ \lim _{\|x\| \to \infty} \frac{\|F(x) - A(x)\|}{\|x\|} =0. $$ Then $F$ has a fixed point in $X$. \end{lemma} Let $X = C^2[0, 1]$ be endowed with the norm by $$ \|u\|_0 = \max \{\|u\|, \|u^{\prime \prime}\|\}, $$ where $\|u\| = \max_{0 \leq t \leq 1} |u(t)|$. We are now in a position to present and prove our main result. Let \begin{itemize} \item[(H1)] $a, b, c, d, \xi_1, \xi_2$ are nonnegative constants satisfying $0 \leq \xi_1 < \xi_2 \leq 1$, $b - a \xi_1 \geq 0$ and $\delta = ad + bc + ac(\xi_2 - \xi_1) \not= 0$, \item[(H2)] $f(t, u, v) = p(t) g(u) + q(t) h(v)$, where $g, h : \mathbb{R} \to \mathbb{R}$ are continuous with $$ \lim _{u \to \infty} \frac{g(u)}{u} = \lambda, \quad \lim _{v \to \infty} \frac{h(v)}{v} = \mu, $$ where $p, q \in C[0, 1]$. Moreover, there exists some $t_0 \in [0, 1]$ such that $p(t_0) g(0) + q(t_0) h(0) \not= 0$, and there exists a continuous nonnegative function $w : [0, 1] \to \mathbb{R}^+$ such that $|p(s)| + |q(s)| \leq w(s)$ for each $s \in [0, 1]$. \end{itemize} \begin{theorem} \label{thm2.6} Assume {\rm (H1)--(H2)}. If $ \max \{|\lambda|, |\mu|\} < \min\big\{\frac{1}{L_1}, \frac{1}{L_2}\big\}$, where \begin{align*} L_1 & = \frac{1}{12} \Big[\int_0^{\xi_1} \tau^3 (2-\tau) w(\tau) d\tau + \int_{\xi_1}^1 (1-\tau)^3(1+\tau) w(\tau) d\tau \\ & \quad + \frac{2(b-a \xi_1) + a}{\delta} \int_{\xi_1}^{\xi_2} (c(\xi_2 - \tau) + d) w(\tau)d\tau \Big], \end{align*} and $$ L_2 = \int_{\xi_1}^1 (1-\tau) w(\tau) d\tau + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (b + a(1-\xi_1))(c(\xi_2 - \tau) + d) w(\tau)d\tau, $$ then BVP \eqref{e1.1} and \eqref{e1.2} has at least one nontrivial solution $u \in C^2[0, 1]$. \end{theorem} \begin{proof} Define an operator $F : C^2[0, 1] \to C^2[0, 1]$ by \begin{equation} \begin{aligned} F u(t) & := \int_0^1 G_1(t, s) \int_{\xi_1}^s (\tau - s) [p(\tau) g(u(\tau)) + q(\tau) h(u''(\tau)] d \tau ds \\ & \quad + \frac{1}{\delta} \int_0^1 G_1(t, s) \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) \\ &\quad \times \big[p(\tau) g(u(\tau)) + q(\tau) h(u''(\tau)\big] d \tau ds, \end{aligned} \label{e2.9} \end{equation} where $G_1(t, s)$ is as in \eqref{e2.7}. Then by Lemma \ref{lem2.1} and Remark \ref{rmk2.4}, we easily know that the fixed points of $F$ are the solutions to the boundary-value problem \eqref{e1.1} and \eqref{e1.2}. It is well known that the operator $F$ is a completely continuous operator. Now, we consider the following boundary-value problem \begin{equation} \begin{gathered} u^{(4)}(t) = \lambda p(t)u(t) + \mu q(t)u''(t), \quad 0 < t < 1\\ u(0) = u(1) = 0, \\ a u''(\xi_1) - b u'''(\xi_1) = 0, \quad c u''(\xi_2) + d u'''(\xi_2) = 0. \end{gathered} \label{e2.10} \end{equation} Define \begin{equation} \begin{aligned} A u(t) &:= \int_0^1 G_1(t, s) \int_{\xi_1}^s (\tau - s) [\lambda p(\tau) u(\tau) + \mu q(\tau) u''(\tau) d \eta ds \\ &\quad + \frac{1}{\delta} \int_0^1 G_1(t, s) \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) \\ &\quad [\lambda p(\tau) u(\tau) + \mu q(\tau) u''(\tau)] d \eta ds. \end{aligned} \label{e2.11} \end{equation} Obviously, $A$ is a bounded linear operator. Furthermore, the fixed point of $A$ is a solution of the BVP \eqref{e2.10} and conversely. We now assert that 1 is not an eigenvalue of $A$. In fact, if $\lambda = 0$ and $\mu = 0$, then the BVP \eqref{e2.10} has no nontrivial solution. If $\lambda \not= 0$ or $\mu \not= 0$, suppose the BVP \eqref{e2.10} has a nontrivial solution $u$ and $\|u\|_0 > 0$, then \begin{align*} |A u(t)| & \leq \int_0^1 G_1(t, s) \int_{\xi_1}^s |(\tau - s) [\lambda p(\tau) u(\tau) + \mu q(\tau) u''(\tau)]| d \tau ds \\ & \quad + \frac{1}{\delta} \int_0^1 G_1(t, s) \int_{\xi_1}^{\xi_2} \big|(b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) \\ &\quad\times [\lambda p(\tau) u(\tau) + \mu q(\tau) u''(\tau)] \big| d \tau ds\\ & \leq \int_0^1 s(1-s) \int_{\xi_1}^s (s - \tau) [|\lambda| |p(\tau)| |u(\tau)| + |\mu| |q(\tau)| |u''(\tau)|] d \tau ds \\ & \quad + \frac{1}{\delta} \int_0^1 s(1-s) \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) \\ &\quad\times [|\lambda| |p(\tau)||u(\tau)| + |\mu||q(\tau)||u''(\tau)|] d \tau ds \\ & \leq \Big[\int_0^1 s(1-s) \int_{\xi_1}^s (s - \tau) [|\lambda||p(\tau)| + |\mu||q(\tau)|] d \tau ds + \frac{1}{\delta} \int_0^1 s(1-s) \\ &\quad\times \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) [|\lambda||p(\tau)| + |\mu||q(\tau)|] d \tau ds\Big]\|u\|_0 \\ & = \frac{1}{12} \Big[\int_0^{\xi_1} \tau^3 (2-\tau) (|\lambda||p(\tau)| + |\mu||q(\tau)|) d\tau \\ &\quad + \int_{\xi_1}^1 (1-\tau)^3(1+\tau)(|\lambda||p(\tau)| + |\mu||q(\tau)|) d\tau \\ & \quad + \frac{2(b-a \xi_1) + a}{\delta} \int_{\xi_1}^{\xi_2} (c(\xi_2 - \tau) + d) (|\lambda||p(\tau)| +|\mu||q(\tau)|) d\tau \Big]\|u\|_0 \\ & \leq \max \{|\lambda|, |\mu|\} \frac{1}{12} \Big[\int_0^{\xi_1} \tau^3 (2-\tau) w(\tau) d\tau + \int_{\xi_1}^1 (1-\tau)^3(1+\tau) w(\tau) d\tau \\ & \quad + \frac{2(b-a \xi_1) + a}{\delta} \int_{\xi_1}^{\xi_2} (c(\xi_2 - \tau) + d) w(\tau) d\tau \Big]\|u\|_0, \quad t \in [0, 1], \end{align*} which implies that $$ |A u(t)| \leq \max \{|\lambda|, |\mu|\} L_1 \|u\|_0 < \frac{1}{L_1} L_1 \|u\|_0 = \|u\|_0. $$ On the other hand, we have \begin{align*} |(Au)''(t)| & = \big|\int_{\xi_1}^t (s-t) [\lambda p(s) u(s) + \mu q(s) u''(s)] ds \\ & \quad + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - t))(c(\xi_2 - s) + d) [\lambda p(s) u(s) + \mu q(s) u''(s)] ds\big| \\ & \leq \Big[\int_{\xi_1}^1 (1-s) (|\lambda||p(s)| + |\mu||q(s)|) ds \\ & \quad + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (b + a(1-\xi_1))(c(\xi_2 - s) + d) (|\lambda||p(s)| + |\mu||q(s)|) ds\Big]\|u\|_0 \\ & \leq \max \{|\lambda|, |\mu|\} L_2 \|u\|_0 < \frac{1}{L_2} L_2 \|u\|_0 = \|u\|_0, \quad t \in [0, 1]. \end{align*} Then $\|Au\|_0 < \|u\|_0$. This contradiction means that BVP \eqref{e2.10} has no nontrivial solution. Hence, 1 is not an eigenvalue of $A$. Finally, we prove that $$ \lim _{\|u\|_0 \to \infty} \frac{\|Fu - Au\|_0}{\|u\|_0} = 0. $$ According to $\lim _{u \to \infty} \frac{g(u)}{u} = \lambda$ and $\lim _{v \to \infty} \frac{h(v)}{v} = \mu$, for any $\varepsilon > 0$, there must be $R > 0$ such that $$ |g(u) - \lambda u| < \varepsilon |u|, \quad |h(v) - \mu v| < \varepsilon |v|, \quad |u|, |v| > R. $$ Set $R^* = \max \{\max_{|u| \leq R} |g(u)|, \max_{|v| \leq R} |h(v)|\}$ and select $M > 0$ such that $R^* + \max \{|\lambda|, |\mu|\} < \varepsilon M$. Denote \begin{gather*} E_1 = \{t \in [0, 1] : |u(t)| \leq R, \ |v(t)| > R\}, \\ E_2 = \{t \in [0, 1] : |u(t)| > R, \ |v(t)| \leq R\}, \\ E_3 = \{t \in [0, 1] : \max \{|u(t)|, |v(t)|\} \leq R\}, \\ E_4 = \{t \in [0, 1] : \min \{|u(t)|, |v(t)|\} > R\}. \end{gather*} Thus for any $u \in C^2[0, 1]$ with $\|u\|_0 > M$, when $t \in E_1$, we have $$ |g(u(t)) - \lambda u(t)| \leq |g((u(t))| + |\lambda| |u(t)| \leq R^* + |\lambda| R < \varepsilon M < \varepsilon \|u\|_0, $$ and $$ |h(v(t)) - \mu v(t)| < \varepsilon |v(t)| \leq \varepsilon \|v\|_0. $$ Similarly, we conclude that for any $u \in C^2[0, 1]$ with $\|u\|_0 > M$, when $t \in E_i$ ($i = 2, 3, 4$), we also have that $$ |g(u(t)) - \lambda u(t)| < \varepsilon \|u\|_0, \quad |h(v(t)) - \mu v(t)| < \varepsilon \|v\|_0. $$ Hence, we get \begin{equation} \begin{aligned} & |Fu(t) - Au(t)| \\ & = \big| \int_0^1 G_1(t, s) \int_{\xi_1}^s (\tau - s) ( p(\tau)[g(u(\tau)) - \lambda u(\tau)] + q(\tau) [h(u''(\tau)) - \mu u''(\tau)]) d \tau ds \\ & \quad + \frac{1}{\delta} \int_0^1 G_1(t, s) \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) \\ & \quad \times (p(\tau)[g(u(\tau)) - \lambda u(\tau)] + q(\tau)[h(u''(\tau)) - \mu u''(\tau)]) d \tau ds\big| \\ & \leq \Big[\int_0^1 G_1(s, s) \int_{\xi_1}^s (s - \tau) (|p(\tau)| + |q(\tau)|)d \tau ds \\ & \quad + \frac{1}{\delta} \int_0^1 G_1(s, s) \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - s))(c(\xi_2 - \tau) + d) (|p(\tau)| + |q(\tau)|) d \tau ds \Big] \varepsilon \|u\|_0 \\ & \leq \frac{1}{12} \Big[\int_0^{\xi_1} \tau^3 (2-\tau) w(\tau) d\tau + \int_{\xi_1}^1 (1-\tau)^3(1+\tau) w(\tau) d\tau \\ & \quad + \frac{2(b-a \xi_1) + a}{\delta} \int_{\xi_1}^{\xi_2} (c(\xi_2 - \tau) + d) w(\tau) d\tau \Big]\varepsilon \|u\|_0. \\ & = \varepsilon L_1 \|u\|_0. \end{aligned} \label{e2.12} \end{equation} On the other hand, we have \begin{align*} & |(Fu - Au)''(t)| \\ & = \big|\int_{\xi_1}^t (s - t) (p(s)[g(u(s)) - \lambda u(s)] + q(s)[h(u''(s)) - \mu u''(s)]) ds \\ & \quad + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (b - a(\xi_1 - t))(c(\xi_2 - s) + d) \\ & \quad \times (p(s)[g(u(s)) - \lambda u(s)] + q(s)[h(u''(s)) - \mu u''(s)]) ds \big| \\ & \leq \Big[\int_{\xi_1}^1 (1-s) w(s) ds + \frac{1}{\delta} \int_{\xi_1}^{\xi_2} (b + a(1-\xi_1))(c(\xi_2 - s) + d) w(s) ds\Big] \varepsilon \|u\|_0 \\ & = \varepsilon L_2 \|u\|_0. \end{align*} Combining the above inequality with \eqref{e2.12}, we have $$ \lim _{\|u\|_0 \to \infty} \frac{\|Fu - Au\|_0}{\|u\|_0} = 0. $$ Lemma \ref{lem2.5} now guarantees that BVP \eqref{e1.1} and \eqref{e1.2} has a solution $u^* \in C^2[0, 1]$. Obviously, $u^* \not= 0$ when $p(t_0)g(0) + q(t_0)h(0) \not= 0$ for some $t_0 \in [0, 1]$. In fact, if $u^* = 0$, then $(0)^{(4)} = p(t_0)g(0) + q(t_0)h(0) \not= 0$ will lead to a contradiction. This completes the proof. \end{proof} \begin{example} \label{ex2.7} \rm Consider the fourth-order four-point boundary-value problem \begin{equation} \begin{gathered} u^{(4)}(t) = \frac{t \sin 2\pi t}{t^2 + 1}u(t) - \frac{1}{2}t e^{\cos t} \cos u''(t), \quad 0 < t < 1,\\ u(0) = u(1) = 0, \\ u''(1/3) - u'''(1/3) = 0, \quad u''(2/3) + u'''(2/3) = 0. \end{gathered} \label{e2.13} \end{equation} To show \eqref{e2.13} has at least one nontrivial solution we apply Theorem \ref{thm2.6} with $p(t) = \frac{t \sin 2\pi t}{t^2 + 1}$, $q(t) = \frac{1}{2}t e^{\cos t}$, $g(u) = u$, $h(u) = \cos u$, $a = b = c = d = 1$, $\xi_1 = 1/3$ and $\xi_2 = 2/3$. Clearly (H1) is satisfied. Obviously, $$ p(t_0) g(0) + q(t_0) h(0) = \frac{1}{2} t_0 e^{\cos t_0} \not= 0, \quad t_0 \in (0, 1]. $$ Since $|p(s)| + |q(s)| \leq (\frac{e}{2} + 1) s := w(s)$ for each $s \in [0, 1]$, we have \begin{align*} L_1 & = \frac{\frac{e}{2}+1}{12} \Big[\int_0^{1/3} \tau^4 (2-\tau) d\tau + (e + 1) \int_{1/3}^1 (1-\tau)^3(1+\tau) \tau d\tau \\ & \quad + \int_{1/3}^{2/3} (\frac{5}{3} - \tau) \tau d\tau \Big], \end{align*} $$ L_2 = \big(\frac{e}{2}+1\big)\Big[\int_{1/3}^1 \tau (1-\tau) d\tau + \frac{5}{7} \int_{1/3}^{2/3}\big(\frac{5}{3} - \tau\big) \tau d\tau \Big]. $$ By simple calculation we easily know that $$ L_1 < L_2 < \frac{1}{3}\big(\frac{e}{2}+1\big) < 1. $$ Notice $$ \lambda = \lim _{u \to \infty} \frac{g(u)}{u} = 1, \quad \mu = \lim _{u \to \infty}\frac{h(u)}{u} = 0, $$ we have $$ \max \{\lambda, \mu\} < 1 < \min \{\frac{1}{L_1}, \frac{1}{L_2}\}. $$ So (H2) is satisfied. Thus, Theorem \ref{thm2.6} now guarantees that BVP \eqref{e2.13} has at least one nontrivial solution $u \in C^2[0, 1]$. \end{example} \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal, \emph{Focal Boundary Value Problems for Differential and Difference Equations}, Kluwer Academic, Dordrecht, 1998. \bibitem{a2} R. P. Agarwal, D. O'Regan, P. J.Y . Wong; \emph{Positive Solutions of Differential, Difference, and Integral Equations}, Kluwer Academic, Dordrecht, 1998. \bibitem{a3} D. R. Anderson, J. M. Davis; \emph{Multiple solutions and eigenvalues for third-order right focal boundary-value problem}, J. Math. Anal. Appl. 267 (2002), 135¨C157. \bibitem{b1} Z. Bai, H. Wang; \emph{ On positive solutions of some nonlinear fourth-ordr beam equations}, J. Math. Anal. Appl. 270 (2002) 357-368. \bibitem{g1} J. R. Graef, B. Yang; \emph{On a nonlinear boundary-value problem for fourth order equations}, Appl. Anal. 72 (1999) 439-448. \bibitem{g2} J. R. Graef, B. Yang; \emph{Positive solutions to a multi-point higher order boundary-value problem}, J. Math. Anal. Appl. 316 (2006), 409-421. \bibitem{g3} J. R. Graef, J. Henderson, B. Yang; \emph{Positive solutions of a nonlinear higher order boundary-value problem}, Electron. J. Differential Equations, Vol. 2007(2007), No. 45, pp. 1-10. \bibitem{h1} Z. Hao, L. Liu, L. Debnath; \emph{A necessary and sufficiently condition for the existence of positive solution of fourth-order singular boundary-value problems}, Appl. Math. Lett. 16 (2003) 279-285. \bibitem{k1} M. A. Krasnoselskii, P. P. Zabreiko; \emph{Geometrical Methods of Nonlinear Analysis}, Springer-Verlag, New York, 1984. \bibitem{z1} Q. Zhang, S. Chen, J. L${\rm \ddot{u}}$; \emph{Upper and lower solution method for fourth-order four-point boundary-value problems}, J. Comput. Appl. Math. 196 (2006) 387-393. \end{thebibliography} \end{document}