\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 131, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/131\hfil A nonlinear transmission problem] {A nonlinear transmission problem with time dependent coefficients} \author[E. Cabanillas L., J. E. Mu\~noz R.\hfil EJDE-2007/131\hfilneg] {Eugenio Cabanillas Lapa, Jaime E. Mu\~noz Rivera} \address{Eugenio Cabanillas Lapa \newline Instituto de Investigaci\'on de Matem\'atica, Facultad de Ciencias Matem\'aticas, Universidad Nacional Mayor de San Marcos, Lima, Per\'u} \email{cleugenio@yahoo.com} \address{Jaime E. Mu\~noz Rivera \newline Laboratorio Nacional de Computa\c{c}ao Cientifica, Av. Get\'{u}lio Vargas, 333, 25651-070-Petropolis, Brazil} \email{rivera@lncc.br} \thanks{Submitted May 2, 2007. Published October 9, 2007.} \subjclass[2000]{35B40, 35L70, 45K05} \keywords{Transmission problem; time dependent coefficients; stability} \begin{abstract} In this article, we consider a nonlinear transmission problem for the wave equation with time dependent coefficients and linear internal damping. We prove the existence of a global solution and its exponential decay. The result is achieved by using the multiplier technique and suitable unique continuation theorem for the wave equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In this work, we consider the transmission problem \begin{gather} \rho _{1}u_{tt}-bu_{xx}+f_{1}(u)=0\quad\text{in } ]0,L_{0}[\times \mathbb{R}^{+}, \label{e1.1} \\ \rho _{2}v_{tt}-(a(x,t)v_{x})_{x}+\alpha v_{t}+f_{2}(v)=0\quad\text{in } ]L_{0},L[\times \mathbb{R}^{+}, \label{e1.2} \\ u(0,t)=v(L,t), \quad t>0 , \label{e1.3} \\ u(L_{0},t)=v(L_{0},t),\quad bu_{x}(L_{0},t)=a(L_{0},t)v_{x}(L_{0},t),\quad t>0, \label{e1.4} \\ u(x,0)=u^{0}(x),\quad u_{t}(x,0)=u^{1}(x),\quad x\in ]0,L_{0}[, \label{e1.5} \\ v(x,0)=v^{0}(x),\quad v_{t}(x,0)=v^{1}(x),\quad x\in ]L_{0},L[, \label{e1.6} \end{gather} where $\rho _{1}, \rho _{2}$ are constants; $\alpha ,b$ are positive constants, $f, g$ are nonlinear functions and $a(x,t)$ is a positive function. Controllability and Stability for transmission problem has been studied by many authors (see for example Lions \cite{l5}, Lagnese \cite{l3}, Liu and Williams \cite{l6}, Mu\~{n}oz Rivera and Portillo Oquendo \cite{m1}, Andrade, Fatori and Mu\~{n}oz Rivera \cite{a1}). The goal of this work is to study the existence and uniqueness of global solutions of \eqref{e1.1}-\eqref{e1.6} and the asymptotic behavior of the energy. All the authors mentioned above established their results with constant coefficients. To the best of our knowledge this is a first publication on transmission problem with time dependent coefficients and the nonlinear terms. In general,the dependence on spatial and time variables causes difficulties,semigroups arguments are not suitable for finding solutions to \eqref{e1.1}-\eqref{e1.6}; therefore,we make use of a Galerkin's process. Note that the time-dependent coefficient also appear in the second boundary condition, thus there are some technical difficulties that we need to overcome. To prove the exponential decay, the main difficulty is that the dissipation only works in $[L_{0},L]$ and we need estimates over the whole domain $[0,L]$; we overcome this problem introducing suitable multiplicadors and a compactness/uniqueness argument. \section{Notation and statement of results} We denote \begin{equation*} (w,z)=\int_{I}w(x)z(x)dx, \quad | z| ^{2}=\int_{I}| z(x)| ^{2}dx \end{equation*} where $I=]0,L_{0}[$ or $]L_{0},L[$ for $u$'s and $v$'s respectively. Now, we state the general hypotheses. \begin{itemize} \item[(A1)] The functions $f_{i}\in C^{1}(\mathbb{R})$, $i=1,2$, satisfy $f_{i}(s)s\geq 0$ for all $s\in \mathbb{R}$ and \[ | f_{i}^{(j)}(s)| \leq c(1+| s| )^{\rho -j},\quad \forall s\in \mathbb{R}, \; j=0,1 \] for some $c>0$ and $\rho \geq 1$. We assume that $f_{1}(s)\geq f_{2}(s)$ and set \[ F_{i}(s)=\int_{0}^{s}f_{i}(\xi )d\xi\,. \] \item[(A2)] We assume that the coefficient $a$ satisfies \begin{gather*} a\in W^{1,\infty }(0,\infty ;C^{1}([L_{0},L] ))\cap W^{2,\infty }(0,\infty ;L^{\infty }(L_{0},L)) \\ a_{t}\in L^{1}(0,\infty ;L^{\infty }(L_{0},L)) \\ a(x,t)\geq a_{0}>0,\quad \forall (x,t)\in ]L_{0},L[\times ]0,\infty [\,. \end{gather*} \end{itemize} We define the Hilbert space \begin{equation*} V=\{ (w,z)\in H^{1}(0,L_{0})\times H^{1}(L_{0},L):w(0)=z(L)=0;\ w( L_{0})=z(L_{0})\}\,. \end{equation*} Also we define the first-order energy functionals associated to each equation, \begin{gather*} E_{1}(t,u)=\frac{1}{2}\Big( \rho _{1}| u_{t}| ^{2}+b| u_{x}| ^{2}+2\int_{0}^{L_{0}}F_{1}(u)dx\Big) \\ E_{2}(t,v)=\frac{1}{2}\Big( \rho _{2}| v_{t}| ^{2}+(a,v_{x}^{2}) +2\int_{L_{0}}^{L}F_{2}(v)dx\Big) \\ E(t)=E_{1}(t,u,v)=E_{1}(t,u)+E_{2}(t,v). \end{gather*} We conclude this section with the following lemma which will play essential role when establishing the asymptotic behavior of solutions. \begin{lemma}[{\cite[Lemma 9.1]{k1}}] \label{lem2.1} Let $E:\mathbb{R}_{0}^{+}\to \mathbb{R}_{0}^{+}$ be a non-increasing function and assume that there exist two constants $p>0$ and $c>0$ such that \begin{equation*} \int_{s}^{+\infty }E^{(p+1)/2}(t)dt\leq cE(s),\quad 0\leq s<+\infty. \end{equation*} Then for all $t\geq 0$, \[ E(t)\leq \begin{cases} cE(0)(1+t)^{-2(p-1)} &\text{if } p>1, \\ cE(0)e^{1-wt} &\text{if } p=1, \end{cases} \] where $c$ and $w$ are positive constants. \end{lemma} \section{Existence and uniqueness of solutions} First, we define weak solutions of problem \eqref{e1.1}-\eqref{e1.6}. \begin{definition} \label{def3.1} \rm We say that the pair $\{u,v\} $ is a weak solution of \eqref{e1.1}-\eqref{e1.6} when \begin{equation*} \{ u,v\} \in L^{\infty }(0,T;V)\cap W^{1,\infty}(0,T;L^{2}(0,L_{0}) \times L^{2}(L_{0},L)) \end{equation*} and satisfies \begin{align*} & -\rho _{1}\int_{0}^{L_{0}}u^{1}(x)\varphi ( x,0)dx+\rho _{1}\int_{0}^{L_{0}}u^{0}(x)\varphi _{t}(x,0)dx-\rho _{2}\int_{L_{0}}^{L}v^{1}(x)\psi (x,0)dx \\ & +\rho _{2}\int_{L_{0}}^{L}v^{0}(x)\psi _{t}( x,0)dx+\rho _{1}\int_{0}^{T}\int_{0}^{L_{0}}(u\varphi _{tt}+bu_{x}\varphi _{x}+f_{1}(u)\varphi )\,dx\,dt \\ & +\rho _{2}\int_{0}^{T}\int_{L_{0}}^{L}(v\psi _{tt}+a( x,t)v_{x}\psi _{x}+\alpha v_{t}\psi +f_{2}(v)\psi)\,dx\,dt=0 \end{align*} for any $\{ \varphi ,\psi \} \in C^{2}(0,T;V)$ such that $\varphi (T)=\varphi _{t}(T)=0=\psi (T)=\psi _{t}(T)$ \end{definition} To show the existence of strong solutions we need a regularity result for the elliptic system associated to the problem \eqref{e1.1}--\eqref{e1.6} whose proof can be obtained, with little modifications, in the book by Ladyzhenskaya and Ural'tseva \cite[theorem 16.2]{l1}. \begin{lemma} \label{lem3.2} For any given functions $F\in L^{2}(0,L_{0})$, $G\in L^{2}(L_{0},L)$, there exists only one solution $\{ u,v\} $ to the system \begin{gather*} -bu_{xx} =F \quad \text{in } ]0,L_{0}[,\\ -(a(x,t)v_{x})_{x} =G \quad\text{in }]L_{0},L[,\\ u(0)= v(L)=0, \\ u(L_{0}) = v(L_{0}),\quad bu_{x}(L_{0})=a(L_{0},t)v_{x}(L_{0}), \end{gather*} with $t$ a fixed value in $[0,T]$, with $u$ in $H^{2}(0,L_{0})$ and $v$ in $H^{2}(L_{0},L)$. \end{lemma} The existence result to the system \eqref{e1.1}--\eqref{e1.6} is summarized in the following theorem. \begin{theorem} \label{thm3.3} Suppose that $\{u^{0},v^{0}\} \in V$, $\{ u^{1},v^{1}\} \in L^{2}( 0,L_{0})\times L^{2}(L_{0},L)$ and that assumptions (A1)--(A3) hold. Then there exists a unique weak solution of \eqref{e1.1}--\eqref{e1.6} satisfying \begin{equation*} \{ u,v\} \in C(0,T;V)\cap C^{1}(0,T;L^{2}(0,L_{0})\times L^{2}(L_{0},L)). \end{equation*} In addition, if $\{ u^{0},v^{0}\} \in H^{2}(0,L_{0})\times H^{2}(L_{0},L)$, $\{u^{1},v^{1}\} \in V$, verifying the compatibility condition \begin{equation} bu_{x}^{0}(L_{0})=a(L_{0},0)\ v_{x}^{0}(L_{0})\,. \label{eq3.1} \end{equation} Then \begin{equation*} \{ u,v\} \in \underset{k=0}{\overset{2}{\bigcap }}W^{k,\infty }(0,T;H^{2-k}(0,L_{0})\times H^{2-k}(L_{0},L)) \end{equation*} \end{theorem} \begin{proof} The main idea is to use the Galerkin Method. Let $\{ \varphi ^{i},\psi ^{i}\}$ , $i=1,2,\dots$ be a basis of $V$. Let us consider the Galerkin approximation \begin{equation*} \{ u^{m}(t),v^{m}(t)\} =\sum_{i=1}^m h_{im}(t)\{ \varphi ^{i},\psi ^{i}\} \end{equation*} where $u^{m}$ and $v^{m}$ satisfy \begin{equation} \begin{aligned} &\rho _{1}(u_{tt}^{m},\varphi ^{i})+b(u_{x}^{m},\varphi _{x}^{i})+(f_{1}(u^{m}),\varphi ^{i})+\rho _{2}(v_{tt}^{m},\psi ^{i})\\ &+(a(x,t) v_{x}^{m},\psi _{x}^{i}) +\alpha (v_{t}^{m},\psi ^{i})+(f_{2}(v^{m}),\psi ^{i})=0 \end{aligned} \label{eq3.2} \end{equation} where $i=1,2,\dots$ With initial data \begin{equation} \label{eq3.3} \begin{gathered} \{ u^{m}(0),v^{m}(0)\} \to \{ u^{0},v^{0}\} \quad\text{in }V , \\ \{ u_{t}^{m}(0),v_{t}^{m}(0)\} \to \{ u^{1},v^{1}\} \quad \text{in } L^{2}(0,L)\times L^{2}(L_{0},L). \end{gathered} \end{equation} Standard results about ordinary differential equations guarantee that there exists only one solution of this system on some interval $[0,T_{m}[$. The priori estimate that follow imply that in fact $T_{m}=+\infty$. \end{proof} subsection*{Existence of weak solutions} Multiplying (\ref{eq3.2}) by $h_{im}'(t)$ integrating by parts and summing over $i$, we get \begin{equation} \frac{d}{dt}\ E(t,u^{m},v^{m})+\alpha | v_{t}^{m}| ^{2}\leq \frac{| a_{t}(t) | _{L^{\infty }}}{a_{0}}\ E(t,u^{m},v^{m}). \label{eq3.4} \end{equation} From this inequality, the Gronwall's inequality and taking into account the definition of the initial data of $\{ u^{m},v^{m}\} $ we conclude that \begin{equation} E(t,u^{m},v^{m})\leq C,\quad \forall t\in [0,T], \; \forall m\in \mathbb{N} \label{eq3.5} \end{equation} thus we deduce that \begin{gather*} \{ u^{m},v^{m}\} \text{ is bounded in }L^{\infty }( 0,T;V)\\ \{ u_{t}^{m},v_{t}^{m}\} \text{ is bounded in }L^{\infty }(0,T;L^{2}(0,L_{0})\times L^{2}(L_{0},L)) \end{gather*} which implies that \begin{gather*} \{ u^{m},v^{m}\} \to \{ u,v\} \text{ weak $\ast$ in } L^{\infty }(0,T;V)\\ \{ u_{t}^{m},v_{t}^{m}\} \to \{u_{t},v_{t}\} \text{weak $\ast$ in } L^{\infty }(0,T;L^{2}(0,L_{0})\times L^{2}(L_{0},L)). \end{gather*} In particular, by application of the Lions-Aubin's Lemma \cite[Theorem 5.1]{l4}, we have $\{ u^{m},v^{m}\} \to \{ u,v\} $ strongly in $L^{2}(0,T;L^{2}(0,L_{0})\times L^{2}(L_{0},L))$ and consequently \begin{gather*} u^{m}\to u\text{ a.e in $]0,L_{0}[$ and } f_{1}(u^{m})\to f_{1}(u)\text{ a.e in $]0,L_{0}[$} \\ v^{m}\to v\text{ a.e in $]L_{0},L[$ and } f_{2}(v^{m})\to f_{2}(v)\text{ a.e in $]L_{0},L[$.} \end{gather*} Also, from the growth condition in (A1) we have \begin{gather*} f_{1}(u^{m})\text{ is bounded in }L^{\infty }( 0,T;L^{2}(0,L_{0})) \\ f_{2}(v^{m})\text{ is bounded in }L^{\infty }( 0,T;L^{2}(L_{0},L)); \end{gather*} therefore, \begin{equation*} \{ f_{1}(u^{m}),f_{2}(v^{m})\} \rightharpoonup \{ f_{1}(u),f_{2}(v)\} \quad \text{in }L^{2}(0,T;L^{2}(0,L_{0})\times L^{2}( L_{0},L)). \end{equation*} The rest of the proof of the existence of a weak solution is matter of routine. \subsection*{Regularity of solutions} To get the regularity, we take a basis $B=\{\{ \varphi ^{i},\psi ^{i}\} ,i\in \mathbb{N}\} $ such that \begin{equation*} \{ u^{0},v^{0}\},\;\{ u^{1},v^{1}\} \text{are in the span of } \{ \{ \varphi ^{0},\psi ^{0}\} ,\{ \varphi ^{1},\psi ^{1}\} \} . \end{equation*} Therefore, $\{ u^{m}(0),v^{m}(0)\} =\{ u^{0},v^{0}\} $ and $\{ u_{t}^{m}(0),v_{t}^{m}(0)\} =\{ u^{1},v^{1}\} $. Let us differentiate the approximate equation and multiply by $h_{im}^{\prime \prime }(t)$. Using a similar argument as before we obtain \begin{equation} \begin{aligned} \frac{d}{dt} E_{2}(t,u^{m},v^{m})+\alpha |v_{tt}^{m}| ^{2}& =-(f_{1}'(u^{m})u_{t}^{m},u_{tt}^{m})-(f_{2}'( v^{m})v_{t}^{m},v_{tt}^{m}) \\ &\quad -(a_{t}v_{x}^{m},v_{xtt}^{m})+\frac{1}{2}( a_{t},(v_{xt}^{m})^{2}) \end{aligned} \label{eq3.6} \end{equation} where \begin{equation*} E_{2}(t,u,v)=\frac{\rho _{1}}{2}| u_{tt}| ^{2}+\frac{b}{2}| u_{xt}| ^{2}+\frac{\rho _{2}}{2} | v_{tt}| ^{2}+\frac{1}{2}(a,v_{xt})^{2}. \end{equation*} Note that \begin{equation} -(a_{t}v_{x}^{m},v_{xtt}^{m}) =-(a_{t}v_{x}^{m},v_{xt}^{m})_{t}+( a_{tt}v_{x}^{m},v_{xt}^{m})+\big(a_{t},(v_{xt}^{m})^{2}\big), \label{eq3.7} \end{equation} $E_{2}(0,u^{m},v^{m})$ is bounded, because of our choice of the basis. From the assumption (A1) and from the Sobolev imbedding we have \begin{equation} \int_{0}^{L_{0}}f_{1}'(u^{m})u_{t}^{m}u_{tt}^{m}dx\leq C\Big[\int_{0}^{L_{0}}(1+| u_{x}^{m}| ) ^{2}dx\Big]^{(p-1)/2}| u_{xt}^{m}| | u_{tt}^{m}|, \label{eq3.8} \end{equation} and similarly \begin{equation} \int_{L_{0}}^{L}f_{2}'(v^{m})v_{t}^{m}v_{tt}^{m}dx\leq C\Big[\int_{L_{0}}^{L}(1+| v_{x}^{m}| ) ^{2}dx\Big]^{(p-1)/2}| v_{xt}^{m}| |v_{tt}^{m}| \label{eq3.9} \end{equation} Substituting (\ref{eq3.7}), the inequalities (\ref{eq3.8})--(\ref{eq3.9}), using the estimative (\ref{eq3.5}) in (\ref{eq3.6}) and applying Gronwall's inequality we conclude that \begin{equation} E_{2}(t,u^{m},v^{m})\leq C \label{eq3.10} \end{equation} which imply \begin{gather*} \{ u_{t}^{m},v_{t}^{m}\} \to \{ u_{t},v_{t}\} \quad \text{weak $\ast$ in }L^{\infty }( 0,T;H^{1}(0,L_{0})\times H^{1}(L_{0},L))\\ \{ u_{tt}^{m},v_{tt}^{m}\} \to \{ u_{tt},v_{tt}\} \quad \text{weak $\ast$ in }L^{\infty }( 0,T;L^{2}(0,L_{0})\times L^{2}(L_{0},L)). \end{gather*} Therefore, $\{ u,v\} $ satisfies \eqref{e1.1}--\eqref{e1.4} and we have \begin{gather*} -bu_{xx}=-\rho _{1}u_{tt}-f_{1}(u)\in L^{2}(0,L_{0}), \\ -(a(x,t)v_{x})_{x}=-\rho _{2}v_{tt}-f_{2}( v)-\alpha v_{t}\in L^{2}(L_{0},L), \\ u(L_{0},t)=v(L_{0},t),\quad bu_{x}(L_{0},t)=a(L_{0},t)v_{x}(L_{0},t). \\ u(0,t)=0=v(L,t) \end{gather*} Then using Lemma 3.2 we have the required regularity for $\{ u,v\}$. \section{Exponential Decay} In this section we prove that the solution of the system \eqref{e1.1}--\eqref{e1.6} decay exponentially as time approaches infinity. In the remainder of this paper we denote by $c$ a positive constant which takes different values in different places. We shall suppose that $\rho _{1}\leq \rho _{2}$ and \begin{gather*} a(x,t)\leq b,\quad a_{t}(x,t)\leq 0,\quad \forall (x,t)\in ]L_{0},L[\times ]0,\infty [\\ a_{x}(x,t)\leq 0\,. \end{gather*} \begin{theorem} \label{thm4.1} Take $\{ u^{0},v^{0}\}$ in $V$ and $\{ u^{1},v^{1}\}$ in $L^{2}(0,L_{0})\times L^{2}(L_{0},L)$ with \begin{equation} u_{x}^{0}(L_{0})=0. \label{eq4.1} \end{equation} Then there exists positive constants $\gamma $ and $c$ such that \begin{equation} E(t)\leq cE(0)e^{-\gamma t},\quad \forall t\geq 0. \label{eq4.2} \end{equation} We shall prove this theorem for strong solutions; our conclusion follow by standard density arguments. \end{theorem} The dissipative property of \eqref{e1.1}--\eqref{e1.6} is given by the following lemma. \begin{lemma} \label{lem4.2} The first-order energy satisfies \begin{equation} \frac{d}{dt}\ E_{1}(t,u,v)=-\alpha | v_{t}| ^{2}+(a_{t},v_{x}^{2}). \label{eq4.3} \end{equation} \end{lemma} \begin{proof} Multiplying equation \eqref{e1.1} by $u_{t}$, equation \eqref{e1.2} by $v_{t}$ and performing an integration by parts we get the result. \end{proof} Let $\psi \in C_{0}^{\infty }(0,L)$ be such that $\psi =1$ in $]L_{0}-\delta ,L_{0}+\delta [$ for some $\delta >0$, small constant. Let us introduce the following functional \begin{equation*} I(t)=\int_{0}^{L_{0}}\rho _{1}u_{t}qu_{x}dx+\int_{L_{0}}^{L}\rho _{2}v_{t}\psi qv_{x}dx \end{equation*} where $q(x)=x$. \begin{lemma} \label{lem4.3} There exists $c_{1}>0$ such that for all $\varepsilon >0$, \begin{align*} \frac{d}{dt} I(t) &\leq -\frac{L_{0}}{2}\{ (\rho _{2}-\rho _{1})v_{t}^{2}(L_{0},t)+a(L_{0},t) [1-\frac{a(L_{0},t)}{b}]v_{x}^{2}(L_{0},t)\} \\ &\quad -L_{0}(F_{1}(u(L_{0},t)) -F_{2}(v(L_{0},t)))-\frac{1}{2}\int_{0}^{L_{0}}( \rho _{1}u_{t}+bu_{x}^{2}+2F(u))dx \\ &\quad -\frac{1}{4}\int_{L_{0}}^{L_{0}+\delta }av_{x}^{2}dx +c_{1}\Big(\int_{L_{0}+\delta }^{L_{0}}(v_{t}^{2}+av_{x}^{2})dx +\int_{L_{0}}^{L}v_{t}^{2}dx+\int_{0}^{L_{0}}u^{2}dx \\ &\quad +\int_{L_{0}}^{L}v^{2}dx\Big)+\varepsilon E(t,u,v)\,. \end{align*} \end{lemma} \begin{proof} Multiplying \eqref{e1.1} by $qu_{x}$, equation \eqref{e1.2} by $\psi qv_{x}$, integrating by parts and using the corresponding boundary conditions we obtain \begin{gather} \begin{aligned} \frac{d}{dt}(\rho _{1}u_{t},qu_{x}) & = \frac{L_{0}}{2} [\rho _{1}u_{t}^{2}(L_{0},t)+bu_{x}^{2}( L_{0},t)]-L_{0}F_{1}(u(L_{0},t)) \\ &\quad - \frac{1}{2}\int_{0}^{L_{0}}\rho _{1}u_{t}^{2}+bu_{x}^{2}+2F_{1}(u)dx \end{aligned} \label{eq4.4} \\ \begin{aligned} \frac{d}{dt}(\rho _{2}v_{t},\psi qv_{x}) &\leq -\frac{L_{0}}{2} \big[\rho _{2}v_{t}^{2}(L_{0},t)+a(L_{0},t) v_{x}^{2}(L_{0},t)\big]\\ &\quad +L_{0}F_{2}(v(L_{0},t)) +\frac{1}{2}\int_{L_{0}}^{L_{0}+\delta }xa_{x}\psi v_{x}^{2}dx -\frac{1}{4}\int_{L_{0}}^{L_{0}+\delta }av_{x}^{2}dx \\ &\quad +c_{1}[\int_{L_{0}+\delta }^{L}(v_{t}^{2}+av_{x}^{2})dx +\int_{L_{0}}^{L}(v_{t}^{2}+F_{2}(v))dx] \end{aligned} \label{eq4.5} \end{gather} Summing up (\ref{eq4.4}) and (\ref{eq4.5}), and taking the assumption on $a_{x}$ into account, we get \begin{equation} \begin{aligned} \frac{d}{dt}I(t) &\leq -\frac{L_{0}}{2}[(\rho_{2}-\rho _{1})v_{t}^{2}(L_{0},t)+a(L_{0},t) v_{x}^{2}(L_{0},t)-bu_{x}^{2}(L_{0},t)] \\ &\quad -L_{0}[F_{1}(u(L_{0},t)) -F_{2}(v(L_{0},t))]\\ &\quad -\frac{1}{2}\int_{0}^{L_{0}}(\rho _{1}u_{t}^{2}+bu_{x}^{2}+2F_{1}(u))dx -\frac{1}{4}\int_{L_{0}}^{L_{0}+\delta }av_{x}^{2}dx \\ &\quad +c_{1}\Big(\int_{L_{0}+\delta }^{L}( v_{t}^{2}+av_{x}^{2})dx+\int_{L_{0}}^{L}(v_{t}^{2}+F_{2}(v))dx +\int_{0}^{L_{0}}F(u)dx\Big) \end{aligned} \label{eq4.6} \end{equation} According to (A1), we have $f_{i}(0)=0$ and \begin{equation} | f_{i}(s)| \leq c(|s| +| s| ^{\rho }) \label{eq4.7} \end{equation} this implies \begin{equation} | F_{i}(s)| \leq c(|s| ^{2}+| s| ^{\rho +1}) \leq c(| s| ^{2}+| s| ^{2\rho }). \label{eq4.8} \end{equation} From the interpolation inequality \begin{equation*} | y| _{p}\leq | y| _{2}^{\alpha}| y| _{q}^{1-\alpha },\quad \frac{1}{p}=\frac{\alpha }{2}+\frac{1-\alpha }{q},\quad \alpha \in [0,1] \end{equation*} and the immersion $H^{1}(\Omega )\hookrightarrow L^{2( 2p-1)}(\Omega ),\ \ \Omega =]0,L_{0}[,\ ]L_{0},L[,$ we obtain for all $t\geq 0$ \begin{equation*} | u(t)| _{2\rho }^{2\rho }\leq c_{\varepsilon }[E(0)]^{2(\rho -1) }| u(t)| _{2}^{2}+\frac{\varepsilon }{[ E(0)]^{2(\rho -1)}}| u_{x}( t)| _{2}^{2(2\rho -1)},\text{ for all \ } \varepsilon >0. \end{equation*} Considering that \begin{equation*} | u_{x}(t)| _{2}^{2}\leq cE( 0,u,v)\equiv c_{1}E(0) \end{equation*} it follows that \begin{equation} | u(t)| _{2\rho }^{2\rho }\leq c_{\varepsilon }[E(0)]^{2(\rho -1) }| u(t)| _{2}^{2}+\varepsilon E( t,u,v). \label{eq4.9} \end{equation} Replacing the inequalities (\ref{eq4.7})--(\ref{eq4.9}) in (4.6) our conclusion follows. \end{proof} Let $\varphi \in C^{\infty }(\mathbb{R})$ a nonnegative function such that $\varphi =0$ in $I_{\delta /2}=]L_{0}-\frac{ \delta }{2},\ L_{0}+\frac{\delta }{2}[$ and $\varphi =1$ in $ \mathbb{R}\backslash I_{\delta }$ and consider the functional \begin{equation*} J(t)=\int_{L_{0}}^{L}\rho _{2}v_{t}\varphi v\ dx. \end{equation*} We have the following lemma. \begin{lemma} \label{lem4.4} Given $\varepsilon >0$, there exists a positive constant $c_{\varepsilon }$ such that \begin{equation*} \frac{d}{dt}\ J(t)\leq -\frac{1}{2}\int_{L_{0}+\delta}^{L}av_{x}^{2}\, dx +\varepsilon \int_{L_{0}}^{L_{0}+\delta }av_{x}^{2}\,dx +c_{\varepsilon }\int_{L_{0}}^{L}(v^{2}+v_{t}^{2})dx \end{equation*} \end{lemma} \begin{proof} Multiplying equation \eqref{e1.2} by $\varphi v$ and integrating by parts we get \begin{equation*} \frac{d}{dt} J(t)=-(av_{x},\varphi v_{x})-(av_{x},\varphi _{x}v) -\alpha (v_{t},\varphi v)-(\varphi ,f_{2}(v)v)+(v_{t},\varphi v_{t}). \end{equation*} Applying Young's Inequality and hypothesis (A1) we concludes our assertion. \end{proof} Let us consider the functional \begin{equation*} K(t)=I(t)+(2c_{1}+1)J(t) \end{equation*} and we take $\varepsilon =\varepsilon _{1}$ in lemma 4.4, where $\varepsilon_{1}$ is the solution of the equation \begin{equation*} (2c_{1}+1)\varepsilon _{1}=\frac{1}{8}\,. \end{equation*} Taking in to consideration (A1) in lemma 4.3, we obtain \begin{equation} \begin{aligned} \frac{d}{dt}K(t) & \leq -E_{1}(t,u)- \frac{1}{8}\int_{L_{0}}^{L}(av_{x}^{2}+2F_{2}(v)) dx+\varepsilon E(t,u,v) \\ &\quad +c_{2}(\int_{L_{0}}^{L}(v_{t}^{2}+v^{2}) dx+\int_{0}^{L_{0}}u^{2}dx). \end{aligned} \label{eq4.10} \end{equation} Now in order to estimate the last two terms of (\ref{eq4.10}) we need the following result. \begin{lemma} \label{lem4.5} Let $\{ u,v\} $ be a solution in theorem 3.3. Then there exists $T_{0}>0$ such that if $T\geq T_{0}$ we have \begin{equation} \int_{S}^{T}(| v| ^{2}+|u| ^{2})ds \leq \varepsilon \big[\int_{S}^{T}(b| u_{x}| ^{2}+|u_{t}| ^{2}) ds+\int_{S}^{T}| a^{1/2}v_{x}| ^{2}ds\big] +c_{\varepsilon }\int_{S}^{t}| v_{t}| ^{2}ds \label{eq4.11} \end{equation} for any $\varepsilon >0$ and $c_{\varepsilon }$ is a constant depending on $T$ and $\varepsilon $, by independent of $\{ u,v\} $, for any initial data $\{u^{0},v^{0}\} , \{ u^{1},v^{1}\} $ satisfying $E(0,u,v)\leq R$, where $R>0$ is fixed and $0\epsilon }| f_{1}'(0)w^{\nu }- \frac{1}{\lambda _{\nu }}f_{1}(u^{\nu })| ^{2}\,dx\,dt \\ & \leq \int_{| u^{\nu }| \leq \epsilon}| w^{\nu }| ^{2}| f_{1}'( 0)-\frac{1}{\lambda _{\nu }w^{\nu }}f_{1}(u^{\nu }) | ^{2}\,dx\,dt+2| f_{1}'(0)| ^{2}\int_{| u^{\nu }| >\epsilon }| w^{\nu }| ^{2}\,dx\,dt \\ &\quad +2\int_{| u^{\nu }| >\epsilon }\frac{1}{\lambda _{\nu }^{2}}| f_{1}(u^{\nu })| ^{2}\,dx\,dt \\ &\leq M_{\varepsilon }^{2}| w^{\nu }| _{L^{2}((0,L_{0})x]0,T[)}^{2} +C\int_{| u^{\nu}| >\epsilon }(\frac{1}{\lambda _{\nu }^{2}}| u^{\nu }| ^{2}+\frac{1}{\lambda _{\nu }^{2}}| u^{\nu }| ^{2\rho })\,dx\,dt \\ &\leq M_{\varepsilon }^{2}| w^{\nu }| _{L^{2}( 0,L_{0}x]0,T[)}^{2}+C\int_{| u^{\nu }| >\epsilon }\frac{1}{\lambda _{\nu }^{2}}| u^{\nu }| ^{2\rho }(1+\frac{1}{\varepsilon ^{2\rho -2}})\,dx\,dt \\ &\leq M_{\varepsilon }^{2}| w^{\nu }| _{L^{2}(( 0,L_{0})x]0,T[)}^{2}+C_{\varepsilon }\lambda _{\nu }^{2\rho -2}| w^{\nu }| _{L^{2\rho }(( 0,L_{0})x]0,T[)}^{2\rho } \end{align*} where $M_{\varepsilon }=\sup_{| s| \leq \varepsilon }| f_{1}'(0) -\frac{f_{1}(s)}{s}|$, $M_{\varepsilon }\to 0$ as $\varepsilon \to 0$. From \eqref{eq4.13}, $\{ w^{\nu }\}$ is bounded in $L^{\infty }(0,T;H^{1}(0,L_{0}))\hookrightarrow L^{\infty }(0,T;L^{2\rho }(0,L_{0}))$, and consequently \[ \limsup_{\nu \to \infty }\Delta _{\nu }\leq \sup_{\nu }| w^{\nu }| _{L^{2}((0,L_{0})x]0,T[ )}^{2}.M_{\varepsilon }^{2} \] Thus,taking $\varepsilon \to 0$ we obtain \eqref{eq*}. Applying a similar method as that used for $\{ w^{\nu }\} $ we get \eqref{eq**}. Now, the limit function $\{ w,z\}$ satisfies \begin{gather*} \rho _{1}w_{tt}-bw_{xx}+f_{1}'(0)w=0 \quad\text{in } ]0,L_{0}[\times ]0,T[, \\ (a(x,t)z_{x})_{x}+f_{2}'(0)z=0 \quad\text{in }]L_{0},L[\times ]0,T[, \\ w(0,t)=0=z(L,t), \\ w(L_{0},t)=z(L_{0},t), \\ bw_{x}(L_{0},t)=a(L_{0},t)z_{x}(L_{0},t), \\ z_{t}(x,t)=0 \quad\text{in } ]L_{0},L[\times ]0,T[ \end{gather*} Repeating the above procedure we get $w=0$ and $z=0$ which is a contradiction. The proof of lemma 4.5 is now complete. %\end{proof} \begin{proof}[Proof of theorem 4.1] Let us introduce the functional \begin{equation*} L(t)=N\ E(t)+K(t) \end{equation*} with $N>0$. Using Young's Inequality and taking $N$ large enough we find that \begin{equation} \theta _{0}E(t)\leq L(t)\leq \theta _{1}E(t) \label{eq4.20} \end{equation} for some positive constants $\theta _{0}$ and $\theta _{1}$. Applying the inequalities (\ref{eq4.10}) and (\ref{eq4.20}), along with the ones in Lemma 4.5 and integrating from $S$ to $T$ where $0\leq S\leq T<\infty $ we obtain \begin{equation*} \int_{S}^{T}E(t)dt\leq c\ E(S). \end{equation*} In this situation, lemma 2.1 implies \begin{equation*} E(t)\leq c\ E(0)e^{-rt}\ , \end{equation*} this completes the proof. \end{proof} \noindent\textbf{Remark.} If in Equation \eqref{e1.2} we consider a linear localized dissipation $\alpha =\alpha (x)$ in $C^{2}(]L_{0},L[)$, with $\alpha (x)=1$ in $]L_{0},L_{0}+\delta [$ , $\alpha (x)=0$ in $]L_{0}+2\delta ,L[$, then our situation is very delicate and we need a new unique continuation theorem for the wave equation with variable coefficients. This is a work in preparation by the authors. \begin{thebibliography}{00} \bibitem{a1} D. Andrade, L. H. Fatori, J. E. Mu\~{n}oz Rivera; \emph{Nonlinear transmission Problem with a Dissipative boundary condition of memory type}. Electron. J. Diff. Eq, vol. 2006 (2006), No. 53, 1-16. \bibitem{k1} V. Komornik; \emph{Exact Controllability and Stabilization}; The multiplier method. Masson. Paris, 1994. \bibitem{l1} O. A. Ladyzhenskaya, N. N. Ural'tseva; \emph{Linear and Quasilinear Elliptic Equations}, Academic Press, New York, 1968. \bibitem{l2} I. Lasiecka, D. Tataru; \emph{Uniform boundary Stabilization of Semilinear wave Equations with Nonlinear Boundary Damping}. Differential Integ. Eq. 6(3)(1993) 507-533. \bibitem{l3} J. Lagnese; \emph{Boundary Controllability in Problem of Transmission for a class of second order Hyperbolic Systems}, ESAIM: Control, Optim and Cal. Var. 2(1997), 343-357. \bibitem{l4} J. L. Lions; \emph{Quelques Methodes de R\'{e}solution d\'{e}s R \'{e}solution d\'{e}s probl\'{e}mes aux limites Nonlineaires}, Dunod, Gaulthier - Villars, Paris, 1969. \bibitem{l5} J. L. Lions; \emph{Controlabilit\'{e} Exacte, Perturbations et stabilization de Systems Distribu\'{e}s (tome I)}, collection RMA, Masson, Paris 1988. \bibitem{l6} W. Liu, G. Williams; \emph{The exponential, The exponential stability of the problem of transmission of the wave equation}, Balletin of the Austral. Math. Soc. 57 (1998), 305-327 \bibitem{m1} J. Mu\~{n}oz Rivera and H. Portillo Oquendo; \emph{The transmission problem of Viscoelastic Waves}, Act. Appl. Math. 62 (2000) 1-21. \bibitem{r1} A. Ruiz; \emph{Unique Continuation for weak Solutions of the wave Equation plus a Potential}, J. Math. Pures Appl. 71 (1992), 455-467. \end{thebibliography} \end{document}