\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 134, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/134\hfil Sectorial oscillation theory] {Sectorial oscillation of linear differential equations and iterated order} \author[Z.-J. Wu, D.-C. Sun \hfil EJDE-2007/134 \hfilneg] {Zhao-Jun Wu, Dao-chun Sun} \address{Zhao-Jun Wu \newline Department of Mathematics, Xianning University, Hubei Xianning, 437100, China} \curraddr{School of Mathematics, South China Normal University, Guangzhou, 510631, China} \email{wuzj52@hotmail.com} \address{Dao-chun Sun \newline School of Mathematics, South China Normal University, Guangzhou, 510631, China} \email{sundch@scnu.edu.cn} \thanks{Submitted June 26 2007. Published October 12, 2007.} \thanks{Supported by grants 10471048 from the NNSF of China, and KT0623,KZ0629 from the NSF \hfill\break\indent of Xianning University} \subjclass[2000]{34M10, 30D35} \keywords{Iterated order; iterated convergence exponent} \begin{abstract} In the present paper, we investigate higher order linear differential equations with entire coefficients of iterated order. Using value distribution theory of transcendental meromorphic functions and covering surface theory, we extend a result on the order of growth of solutions published by Bank and Langley \cite{bank2}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction and main results} In 1982, Bank and Laine \cite{bank1} investigated the exponent of convergence of zeros of the solutions for the differential equation \begin{equation} f''+A(z)f=0,\label{e1.1} \end{equation} where $A(z)$ is a transcendental entire function and $E$ is the product of normalized linearly independent solutions $f_{1},f_{2}$ for \eqref{e1.1}. They proved that $$ \sigma(E)=\max\{\sigma(A), \lambda(E)\}. $$ A considerable number of research results concerning \eqref{e1.1} have been proved. We refer the reader to the book by Laine \cite{laine} for a summary of those results. We assume that the reader is familiar with the basic results and notation of the Nevanlinna's value distribution theory of meromorphic functions (see \cite{yang},\cite{hayman}), such as $\sigma(f), \lambda(f)$ to denote, respectively the order and exponent of convergence of meromorphic function $f$. For $k\geq 2$, we consider a linear differential equation \begin{equation} f^{(k)}+A_{k-2}f^{(k-2)}+\dots+A_{0}f=0, \label{e1.2} \end{equation} where $A_{0},\dots,A_{k-2}$ are entire functions with $A_{0}\not\equiv 0$. It is well known that all solutions of \eqref{e1.2} are entire functions, and if some of the coefficients of \eqref{e1.2} are transcendental, then \eqref{e1.2} has at least one solution with order $\sigma(f)=\infty$. Now there exists a question: How to describe precisely the properties of growth of solutions of infinite order of \eqref{e1.2}? It is to make use of iterated order of entire functions, see Laine \cite{laine}. Let us define inductively (see e.g. \cite{bernal}), for $r\in [0,+\infty), \exp^{[1]}r=e^{r}$ and $\exp^{[n+1]}r=\exp(\exp^{[n]}r), n\in \mathbb{N}$. For all $r$ sufficiently large, we define $\log^{[1]}r=\log r$ and $\log^{[n+1]}r=$ $\log(\log^{[n]}r), n\in \mathbb{N}$. We also denote $\exp^{[0]}r$$=r=$$\log^{[0]}r$, $\log^{[-1]}r=\exp^{[1]}r$ and $\exp^{[-1]}r$$=\log^{[1]}r$. We recall the following definitions and remarks (see \cite{kinnunen,sato,cao}). \begin{definition} \label{def1} \rm The iterated $p$-order $\sigma _{p}(f)$ of a meromorphic function $f(z)$ is defined by $$ \sigma_{p}(f)=\limsup_{r\to \infty} \frac{\log^{[p]}T(r,f)}{\log r } \quad(p\in \mathbb{N}). $$ \end{definition} \begin{remark} \label{rmk1} \rm (1) If $p=1$, then we denote $\sigma _{1}(f)=\sigma(f)$. (2) If $p=2$, then we denote by $\sigma_{2}(f)$ the so-called hyper order (see \cite{yi-yang}). (3) If $f(z)$ is an entire function, then $$ \sigma _{p}(f)=\limsup_{r\to\infty} \frac{\log^{[p+1]}M(r,f)}{\log r}. $$ \end{remark} \begin{definition} \label{def2} \rm The growth index of the iterated order of a meromorphic function $f(z)$ is defined by $$ i(f)=\begin{cases} 0 & \text{if $f$ is rational}, \\ \min\{n\in \mathbb{N}:\sigma _{n}(f)<\infty\} & \text{if $f$ is transcendental and}\\ & \text{$\sigma_{n}(f)<\infty $ for some $n\in \mathbb{N}$}, \\ \infty & \text{if $\sigma _{n}(f)=\infty $ for all $n\in \mathbb{N}$.} \end{cases} $$ \end{definition} \begin{definition} \label{def2b} \rm The iterated convergence exponent of the sequence of $a$-points $(a\in \mathbb{C}\cup\{\infty\})$ is defined by $$ \lambda_{n}(f-a)=\lambda_{n}(f,a)=\limsup_{r\to \infty} \frac{\log^{[n]}N(r,\frac{1}{f-a})}{\log r}\quad(n\in \mathbb{N}), $$ and $\overline{\lambda}_{n}(f-a)$, the iterated convergence exponent of the sequence of distinct $a$-points is defined by $$ \overline{\lambda}_{n}(f-a)=\overline{\lambda}_{n}(f,a)= \limsup_{r\to\infty} \frac{\log^{[n]}\overline{N}(r,\frac{1}{f-a})}{\log r}\quad(n\in \mathbb{N}). $$ \end{definition} \begin{remark} \label{rmk2} \rm (1) $\lambda_{1}(f-a)=\lambda(f-a)$. (2) $\overline{\lambda}_{1}(f-a)=\overline{\lambda}(f-a)$. \end{remark} For the sake of convenience, we also make the following definitions and remarks. \begin{definition} \label{def3} \rm The iterated sectorial convergence exponent of the sequence of $a$-points $(a\in \mathbb{C}\cup\{\infty\})$ is defined by $$ \lambda_{n,\alpha,\beta}(f-a)=\lambda_{n,\alpha,\beta}(f,a)=\limsup_{r\to \infty} \frac{\log^{[n]}n(r,X(\alpha,\beta),\frac{1}{f-a})}{\log r}\quad(n\in \mathbb{N}), $$ and $\overline{\lambda}_{n}(f-a)$, the iterated sectorial convergence exponent of the sequence of distinct $a$-points is defined by $$ \overline{\lambda}_{n}(f-a)=\overline{\lambda}_{n}(f,a)= \limsup_{r\to\infty} \frac{\log^{[n]}\overline{n}(r,X(\alpha,\beta),\frac{1}{f-a})}{\log r}\quad(n\in \mathbb{N}). $$ where $X(\alpha,\beta)=\{z| \alpha< \arg z<\beta\}, 0<\beta-\alpha\leq \pi$ and $n(r,X(\alpha,\beta),f=a)$ is the roots of $f(z)-a=0$ in $\Omega(\alpha,\beta)\cap\{|z|1$, we define $$ D_{\alpha, \beta}(r,f)=A_{\alpha, \beta}(r,f)+B_{\alpha, \beta}(r,f),\quad S_{\alpha, \beta}(r,f)=C_{\alpha, \beta}(r,f)+D_{\alpha, \beta}(r,f). $$ For the sake of simplicity, we omit the subscript of all the notation and use the notation $A(r,f)$, $ B(r,f)$, $ C(r,f)$, $ D(r,f)$ and $S(r,f)$ instead of $A_{\alpha, \beta}(r,f)$, $ B_{\alpha, \beta}(r,f)$, $C_{\alpha, \beta}(r,f)$, $D_{\alpha, \beta}(r,f)$ and $S_{\alpha, \beta}(r,f)$. \begin{lemma}[\cite{wusj}] \label{lem1} Suppose that $f(z)$ is a meromorphic function and $\Omega (\alpha,\beta)$ be an angular domain, where $0<\beta-\alpha\leq 2\pi$. Then, \begin{itemize} \item[(i)] for any value $a\in \mathbb{C}$, we have $$ S(r,\frac{1}{f-a})=S(r,f)+O(1), $$ holds for any $r>1$. \item[(ii)] for any $r0$ is sufficiently small, we deduce from Lemma \ref{lem1} (ii) in which $R=2r $ that \begin{equation} A_{\theta-\varepsilon,\theta+\varepsilon}(r,\frac{f'_{i}}{f_{i}}) =\begin{cases} O(1) & \text{if }p=1, \\ O(\int_{1}^{2r}\frac{\log^{+}T(t,f_{i})}{t^{1+\frac{\pi}{2\varepsilon}}}dt)\\ =O(\int_{1}^{2r}\frac {e^{[p-1]}t^{\sigma + 1}}{t^{1+\frac{\pi}{2\varepsilon}}}dt) =O(e^{[p-1]}r^{\sigma + 1}). & \text{if }p\geq2. \end{cases}\label{e3.1} \end{equation} Since $$ m(r,\frac{f'_{i}}{f_{i}})=O(\log rT(r,f_{i}))=O(e^{[p-1]}r^{\sigma+1}), \quad r\not\in F, $$ where $F$ is a set of finite linear measure, we can deduce from lemma \ref{lem1} (ii) that \begin{equation} B_{\theta-\varepsilon,\theta+\varepsilon}(r,\frac{f'_{i}}{f_{i}}) =\begin{cases} O(1) & \text{if } p=1, \\ O(e^{[p-1]}r^{\sigma+1}). & \text{if } p\geq2. \end{cases}\label{e3.2} \end{equation} holds for any $r\not\in F$. Since $$ D_{\theta-\varepsilon,\theta+\varepsilon}(r,\frac{f_{i}^{(h)}}{f_{i}}) \leq \sum_{i=1}^{h} D_{\theta-\varepsilon,\theta+\varepsilon} (r,\frac{f_{i}^{(l)}}{f_{i}^{(l-1)}})+O(1), $$ where $i=1,2,\dots,n$, $h=2,3,\dots,n-1$. Therefore we have \begin{equation*} D_{\theta-\varepsilon,\theta+\varepsilon}(r,\frac{f'_{i}}{f_{i}}) =\begin{cases} O(1) & \text{if } p=1, \\ O(e^{[p-1]}r^{\sigma+1}). & \text{if } p\geq2. \end{cases} \end{equation*} By the definition and Lemma \ref{lem1} (i), we can deduce that for any $\theta\in\mathbb{R}$ and any sufficiently small $\varepsilon>0$, \begin{equation} S(r,E)\leq C(r,\frac{1}{E})+O(e^{[p-1]}r^{\sigma+1}), \quad r\not\in F\label{e3.3} \end{equation} holds in the angular domain $\{z|\theta-\varepsilon<\arg z<\theta+\varepsilon\}$. In the following, we shall prove that there exists a ray $L: \arg z=\theta$ such that for any $0<\varepsilon<\frac{\pi}{2}$, we have \begin{equation} \limsup_{r\to \infty} \frac{\log^{[p]} S(r,E)}{\log r}=\infty\label{e3.4} \end{equation} holds in the angular domain $\{z|\theta-\varepsilon<\arg z<\theta+\varepsilon\}$. Otherwise, for any $\theta\in[0,2\pi)$, we have a $\varepsilon_{\theta}\in(0,\frac{\pi}{2})$, such that \begin{equation} \limsup_{r\to \infty} \frac{\log^{[p]} S(r,E)}{\log r}<\infty.\label{e3.5} \end{equation} holds in the angular domain $\{z|\theta-\varepsilon_{\theta}<\arg z<\theta+\varepsilon_{\theta}\}$. We deduce from Lemma \ref{lem1} (i) that for any finite value $a$, we have $S(r,\frac{1}{E-a})=S(r,E)+O(1)$. Since $C(r,a)\leq S(r,\frac{1}{E-a})$, then \begin{equation} C(r,\frac{1}{E-a})\leq S(r,\frac{1}{E-a})=S(r,E)+O(1).\label{e3.6} \end{equation} On the other hand, it follows from $\theta-\frac{\varepsilon_{\theta}}{2}<\beta_{v} <\theta+\frac{\varepsilon_{\theta}}{2}$ that $\sin k(\beta_{v}-\theta+\frac{\varepsilon_{\theta}}{2})\geq \sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}$, where $k=\frac{\pi}{2\varepsilon_{\theta}}$. Hence \begin{align*} C(2r,\frac{1}{E-a}) &\geq C_{\theta-\frac{\varepsilon_{\theta}}{2},\theta +\frac{\varepsilon_{\theta}}{2}}(2r,\frac{1}{E-a})\\ &\geq 2\sum_{1<|b_{v}|