\documentclass[reqno]{amsart} \usepackage{graphicx} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 139, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/139\hfil Stabilization and exact controllability] {Uniform stabilization and exact controllability for hyperbolic systems with discontinuous coefficients} \author[F. P. Q. G\'omez, B. V. Kapitonov \hfil EJDE-2007/139\hfilneg] {F\'elix P. Quispe G\'omez, Boris V. Kapitonov} % in alphabetical order \address{F\'elix P. Quispe G\'omez\newline Department of Mathematics, Federal University of Santa Catarina\\ Rua Defino Conti, s/n, Trindade, 88040-900, Santa Catarina, Brazil} \email{quispe@mtm.ufsc.br} \address{Boris V. Kapitonov \newline Sobolev Institute of Mathematics\\ Russian Academy of Sciences, Russia} \curraddr{National Laboratory for Scientific Computation - LNCC/MCT\\ Rua Getulio Vargas, 333, 25651-70, Rio de Janeiro, Brazil} \email{boris@lncc.br} \thanks{Submitted December 21, 2006. Published October 19, 2007.} \subjclass[2000]{05C38, 15A15, 05A15, 15A18} \keywords{Uniform stabilization; exact control; hyperbolic systems} \begin{abstract} This paper considers a hyperbolic system with discontinuous coefficients in a bounded, open, connected set with smooth boundary and controlled through the Robin boundary condition. Uniform stabilization of the solutions are established. Exact boundary controllability is obtained through the Russell's ``Controllability via Stabilizability'' principle. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{sec:pre} Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with a smooth boundary $S$ which consists of the disjoint closed surfaces $S_0$ and $S_1$ (the case $S_1=\emptyset$ is not excluded). In the cylinder $\Omega\times ]0,T[$ we consider the mixed problem \begin{gather} \partial^2_t\mathbf{u}(\mathbf{x},t)- \sum_{i=1}^{n}\partial_{x_{i}}\left[P(\mathbf{x})\partial_{x_{i}} \mathbf{u}(\mathbf{x},t)\right]=0 \quad (\mathbf{x},t)\in \Omega\times ]0,T[\label{elenise}\\ \mathbf{u}(\mathbf{x},0)=f_1(\mathbf{x}),\quad \partial_t \mathbf{u}(\mathbf{x},0)=f_2(\mathbf{x})\quad \mathbf{x}\in \Omega\label{elen-1} \\ P\partial_{\mathbf{\nu}} \mathbf{u}(\mathbf{x},t)+a \mathbf{u}(\mathbf{x},t) +b\partial_t\mathbf{u}(\mathbf{x},t)=0 \quad (\mathbf{x},t)\in \Sigma_0=S_0\times ]0,T[,\label{elen-2}\\ \mathbf{u}(\mathbf{x},t)=0 \quad (\mathbf{x},t) \in \Sigma_1 =S_1\times ]0,T[\label{elen-3} \end{gather} Here $\mathbf{u}=(u^{1}(\mathbf{x},t),\dots,u^{m}(\mathbf{x},t))$, $\mathbf{x}=(x_1,\dots,x_n)$, $P(\mathbf{x})=P^\ast(\mathbf{x})$ are square matrices of order $m$, $\mathbb{\nu} = (\nu_1,\dots,\nu_n)$ is the unit outward normal to the boundary $S$, and $a, b$ are positive constants. Assume that $$ P(\mathbf{x})\mathbb{\xi}\cdot\mathbb{\xi} \geq c_{_{0}}|\mathbf{\xi}|^2,\quad c_{_{0}}>0 $$ where $\mathbb{\xi}=(\xi^1,\dots,\xi^m)$ is an arbitrary vector. Assume that $\Omega_0\subset\Omega$ is a bounded domain with sufficiently smooth boundary $\Gamma$. We set $\Omega_1=\Omega\setminus\overline{\Omega}_0$ and assume that the entries $a_{pq}(\mathbf{x})$ of the matrix $P(\mathbf{x})$ lose continuity on the surface $\Gamma$. We shall use the notation \begin{alignat*}{1} P(\mathbf{x})= \begin{cases} A(\mathbf{x})& \text{if } \mathbf{x}\in \Omega_0,\\ B(\mathbf{x})& \text{if } \mathbf{x}\in \Omega_1. \end{cases} &\quad \mathbf{u}(\mathbf{x},t)= \begin{cases} w(\mathbf{x},t)& \text{if } \mathbf{x}\in \Omega_0,\\ v(\mathbf{x},t)& \text{if } \mathbf{x}\in \Omega_1. \end{cases} \end{alignat*} For simplicity we assume that $A$ and $B$ are constants matrices. We add to \eqref{elenise} the following interface conditions on $\Gamma$: \begin{equation} \label{bibiana} w\big\vert_{\Sigma}=v\big\vert_{\Sigma},\quad A \partial_{\nu} w \big\vert_{\Sigma}=B\partial_{\nu}v\big\vert_{\Sigma}\quad \text{in } \Sigma=\Gamma\times ]0,T[ \end{equation} where $\mathbf{\nu}$ is the unit outward (with respect to $\Omega_0$) normal to the surface $\Gamma$. In one space dimension it is well known that stabilization holds for wave operators with piecewise smooth but possibly discontinuous coefficients (BV is the right class) regardless of the sign of the jump. Thus, one dimension is much better than several dimensions. The proof of this is based on simple sidewise energy estimates. See \cite{coxzua} and \cite{zua1} and the references therein. Our purpose is to prove the uniform stabilization of solutions to the problem \eqref{elenise}-\eqref{elen-3} and \eqref{bibiana}. Using this result we obtain exact boundary controllability for the corresponding evolution system. Several approaches are known to solve the problem of exact boundary controllability. A systematic method (named HUM) was proposed by Lions \cite{leo} and \cite{leon1}. In \cite{quiz1} we obtained exact controllability for the system \eqref{elenise}-\eqref{elen-3} using HUM. The exact controllability for a system in elasticity theory is established by Lagnese, with method HUM in \cite{lag3}. We obtain the same result for the class of systems $\partial^2_t u -\partial_{ x_{i}}\left(A_{ij}\partial_{x_{i}} u \right)=0$ which includes the system in elasticy theory. Here we use another approach which is based on D.~Russell's ``controllability via stabilizability'' principle \cite{ruse}, which is different from of Lagnese's in \cite{lag3}. Both techniques are well known. There is an extensive number of publications on these topics. Exact controllability and uniform energy decay (boundary damping) are obtained for various equations and systems: the wave equation, the Schr\"odinger equation, Euler-Bernoulli beam equation, the system of elasticity, Maxwell's equation and others \cite{che}, \cite{kapi}-\cite{ruse1}, \cite{zua}. Although for equations with discontinuous coefficients very few results are known: Maxwell's equations in multilayered media \cite{kapi1}, Euler-Bernoulli beam equation in the one-dimensional case \cite{che1}. \section{Well-Posedness} \label{sec:well-pos} Denote by $\mathcal{H}$ the Hilbert space of pairs $\{\mathbf{u},\mathbf{u}_1\}$ of $m$-component vector-functions such that $$ \mathbf{u}\in H^1(\Omega_k),\quad \mathbf{u}_1\in L^2(\Omega_k),\quad k=0,1,\quad \mathbf{u}\Big\vert_{S_1}=0.$$ The scalar product in $\mathcal{H}$ is defined by the formula $$ \langle \{\mathbf{u},\mathbf{u}_1\}, \{f,f_1\}\rangle =\int_{S_0}a\,\mathbf{u}\cdot f\,dS+\int_{\Omega}\Big(P\, \partial_{x_i}\mathbf{u}\cdot\partial_{x_{i}}f+\mathbf{u}_1\cdot f_1\Big)dx. $$ Define an unbounded operator $\mathcal{A}$ in $\mathcal{H}$ whose domain $D(\mathcal{A})$ consists of the elements $\{ \mathbf{u},\mathbf{u}_1\} \in ~\mathcal{H}$ such that $\mathbf{u}\in H^2(\Omega_k)$, $\mathbf{u}_1\in H^1(\Omega_k)$, $ k=0,1$, \begin{gather} P\partial_{\mathbf{\nu}} \mathbf{u}(\mathbf{x},t)+ a\mathbf{u}+b\mathbf{u}_1\Big\vert_{S_0}=0,\quad \mathbf{u}_1\Big\vert_{S_1}=0,\quad \mathbf{u}\Big\vert_{S_1}=0\label{interf-1}\\ \mathbf{u}^0\Big\vert_{\Gamma}=\mathbf{u}^1\Big\vert_{\Gamma},\quad \mathbf{u}_1^0\Big\vert_{\Gamma}=\mathbf{u}_1^1\Big\vert_{\Gamma},\quad A\partial_{\mathbf{\nu}} \mathbf{u}^0\Big\vert_{\Gamma}= B\partial_{\nu} \mathbf{u}^1\Big\vert_{\Gamma},\label{interf-2} \end{gather} where $\mathbf{u}^k,\;\mathbf{u}^k_1$ are the restrictions of the functions $\mathbf{u}, \;\mathbf{u}_1$ on $\Omega_k$. For $\{\mathbf{u},\mathbf{u}_1\}\in D(\mathcal{A})$ we set $$ \mathcal{A}\{\mathbf{u},\mathbf{u}_1\} =\{\mathbf{u}_1,\;\partial_{x_i}(P \partial_{x_i}\mathbf{u})\}. $$ In a standard way we construct the adjoint operator $\mathcal{A}^{\ast}$. The domain of the operator $\mathcal{A}^{\ast}$ consists of elements $\{ \mathbf{v},\mathbf{v}_1\} \in \mathcal{H}$ such that $\mathbf{v}\in H^2(\Omega_k)$, $\mathbf{v}_1\in H^1(\Omega_k)$, $k=0,1$, \begin{gather*} P\partial_{\nu} \mathbf{v}(\mathbf{x},t)+a\mathbf{v} -b\mathbf{v}_1\Big\vert_{S_0}=0,\quad \mathbf{v}_1\Big\vert_{S_1}=0,\quad \mathbf{v}\Big\vert_{S_1}=0 \\ \mathbf{v}^0\Big\vert_{\Gamma}=\mathbf{v}^1\Big\vert_{\Gamma},\quad \mathbf{v}_1^0\Big\vert_{\Gamma}=\mathbf{v}_1^1\Big\vert_{\Gamma}, \quad A\, \partial_{\nu}\mathbf{v}^0\Big\vert_{\Gamma}= B\, \partial_{\nu}\mathbf{v}^1\Big\vert_{\Gamma}, \end{gather*} where $\mathbf{v}^k,\;\mathbf{v}^k_1$ are the restrictions of the functions $\mathbf{v}, \;\mathbf{v}_1$ on $\Omega_k$. For $\{\mathbf{v},\mathbf{v}_1\}\in D(\mathcal{A}^{\ast})$ we set $$ \mathcal{A}^{\ast}\{\mathbf{v},\mathbf{v}_1\}= -\left\{\mathbf{v}_1,\;\partial_{x_i}\left(P\partial_{x_i} \mathbf{v} \right)\right\}. $$ It can be shown that $\mathcal{A}$ and $\mathcal{A}^{\ast}$ are dissipative operators in $\mathcal{H}$; i.e., \begin{gather*} \langle \mathcal{A}\{\mathbf{u}, \mathbf{u}_1\},\{\mathbf{u}, \mathbf{u}_1\} \rangle \leq 0 \quad \{\mathbf{u}, \mathbf{u}_1\} \in D(\mathcal{A}) \\ \langle \mathcal{A}^{\ast}\{\mathbf{v}, \mathbf{v}_1\},\{\mathbf{v}, \mathbf{v}_1\} \rangle \leq 0 \quad \{\mathbf{v}, \mathbf{v}_1\} \in D(\mathcal{A}^{\ast}). \end{gather*} Assume that $\{\mathbf{u},\mathbf{u}_1\}\in D(\mathcal{A})$. Then $$ \frac{d}{dt}\langle \mathcal{A}\{\mathbf{u},\mathbf{u}_1\}, \{\mathbf{u},\mathbf{u}_1\}\rangle =-\int_{S_0}b|\mathbf{u}_1|^2d\,S\leq 0. $$ Similarly, $$ \frac{d}{dt}\langle \mathcal{A}^{\ast}\{\mathbf{v},\mathbf{v}_1\}, \{\mathbf{v},\mathbf{v}_1\}\rangle =-\int_{S_0}b|\mathbf{v}_1|^2d\,S\leq 0,\quad \{\mathbf{v}, \mathbf{v}_1\}\in D(\mathcal{A}^{\ast}). $$ Indeed, if $\{\mathbf{u},\mathbf{u}_1\}\in D(\mathcal{A})$, then \begin{align*} &\langle \mathcal{A}\{\mathbf{u}, \mathbf{u}_1\},\{\mathbf{u}, \mathbf{u}_1\} \rangle\\ & = \int_{S_{0}}a\mathbf{u}_1\cdot\mathbf{u}\;dS+\int_{\Omega_{0}} \left(A\frac{\partial \mathbf{u}_1^0}{\partial x_i}\cdot \frac{\partial \mathbf{u}^0}{\partial x_i} + \frac{\partial }{\partial x_i} \Big( A \frac{\partial \mathbf{u}^0}{\partial x_i} \Big)\cdot \mathbf{u}_1^0 \right)dx \\ &\quad +\int_{\Omega_{1}}\left(B\frac{\partial \mathbf{u}_1^1}{\partial x_i} \cdot\frac{\partial \mathbf{u}^1}{\partial x_i} + \frac{\partial }{\partial x_i}\Big( B \frac{\partial \mathbf{u}^1}{\partial x_i} \Big)\cdot \mathbf{u}_1^1 \right)dx \\ &= \int_{S_{0}}a\mathbf{u}_1\cdot\mathbf{u}\;dS+\int_{\Omega_{0}} \left(A\frac{\partial \mathbf{u}_1^0}{\partial x_i}\cdot \frac{\partial \mathbf{u}^0}{\partial x_i} -\frac{\partial \mathbf{u}^0}{\partial x_i}A \frac{\partial \mathbf{u}^0_1}{\partial x_i} \right)dx +\int_{\Gamma}A\frac{\partial \mathbf{u}^0}{\partial \nu}\mathbf{u}^0_1 dS \\ &\quad +\int_{\Omega_{1}}\left(B\frac{\partial \mathbf{u}_1^1}{\partial x_i} \cdot\frac{\partial \mathbf{u}^1}{\partial x_i} - \frac{\partial \mathbf{u}^1}{\partial x_i}B \frac{\partial \mathbf{u}^1_1}{\partial x_i} \right)dx -\int_{\Gamma}B\frac{\partial \mathbf{u}^1}{\partial \nu}\mathbf{u}^1_1 dS + \int_{S}B\frac{\partial \mathbf{u}^1}{\partial \nu}\mathbf{u}^1_1 dS \\ &=\int_{\Gamma}\left(A\frac{\partial \mathbf{u}^0}{\partial \nu} \mathbf{u}^0_1-B\frac{\partial \mathbf{u}^1}{\partial \nu}\mathbf{u}^1_1\right) dS + \int_{S_{0}}a\mathbf{u}_1\cdot\mathbf{u}\,dS +\int_{S_{0}}B\frac{\partial \mathbf{u}^1}{\partial \nu}\mathbf{u}^1_1 dS \\ &=\int_{S_{0}}a\mathbf{u}_1\cdot\mathbf{u}\;dS+\int_{S_{0}}P \frac{\partial \mathbf{u}}{\partial \nu}\cdot\mathbf{u}_1\;dS\\ & =\int_{S_{0}}[a\mathbf{u}_1\cdot\mathbf{u}+(-a\mathbf{u} -b\mathbf{u}_1)\mathbf{u}_1]\;dS=\int_{S_{0}}b|\mathbf{u}_1|^2\;dS\leq 0. \end{align*} It can be shown in a similar way that $\mathcal{A}^{\ast}$ is dissipative. Thus, $\mathcal{A}$ generates a $C_0$-semigroup of contractions $U(t)\colon \mathcal{H} \to \mathcal{H},\;t>0$ where \begin{equation*} U(t)\{f_1,f_2\}\in C([0,\infty);D(\mathcal{A}))\cup~C^1([0,\infty);\mathcal{H}) \end{equation*} when $\{f_1,f_2\}\in D(\mathcal{A})$ and $U(t)\{f_1,f_2\}$ is strongly differentiable with respect to $t$ for $\{f_1,f_2\}\in D(\mathcal{A})$. Moreover, $$ \frac{d}{dt}U(t)\{f_1,f_2\}=\mathcal{A} U(t)\{f_1,f_2\} $$ and $U(t)$ carries $D(\mathcal{A})$ onto $D(\mathcal{A})$ and commutes with $\mathcal{A}$. Let $\{f_1, f_2\} \in D(\mathcal{A})$ and $\{\mathbf{u},\mathbf{u}_1\}=U(t)\{f_1,f_2\}$. Then $\mathbf{u}=\mathbf{u}_1$ and $\mathbf{u}_{1t}=\sum\partial_{x_i}(P\partial_{x_{i}}\mathbf{u})$; i.e, the first component of $U(t)\{f_1,f_2\}$ is a solution to the problem \eqref{elenise}, \eqref{bibiana}. Observe that, for $F=\{f_1,f_2\}\in \mathcal{H},\; U(t)F$ is a weak solution in $\mathcal{H}$ to the abstract Cauchy problem $$ \frac{d}{dt}\{\mathbf{u},\mathbf{u}_1\}=\left\{\mathbf{u}_1,\; \partial_{x_i}\left(P\partial_{x_i} \mathbf{u}\right)\right\}= \left\{\mathbf{u}_1, \mathcal{P}\mathbf{u} \right\} $$ in the following sense $$ \int_0^T\Big(\langle U(t)F, \frac{d \phi}{dt} \rangle +\langle U(t)F,\mathcal{A}^{\ast}\phi\rangle \Big)dt =-\langle F,\phi(0)\rangle $$ for every $\phi\in L^2(0,T;D(\mathcal{A}^{\ast}))$, $\phi_{{}_t} \in L^2(0,T;\mathcal{H})$, $\phi(T)=0$. \section{Stabilization} \label{sec:stab} We start from geometrical conditions on $\Omega$. We consider the problem: \begin{equation} \label{andes} \Delta \Psi=\frac{a_{_{0}}}{c_{_{0}}},\quad x\in \Omega, \quad \partial_{\nu} \Psi\big\vert_{S_0}=\frac{a_{_{0}}\mathop{\rm meas} (\Omega)}{c_{_{0}} \mathop{\rm meas}(S_0)}, \quad \partial_ {\nu}\Psi\big\vert_{S_1}=0, \end{equation} where $\Psi(x)\in C^2(\Omega)\cup C^1(\overline{\Omega})$ be a solution to the problem, $a_{_{0}}=\max |a_{pq}|$, $a_{pq}$ are the entries of the matrix $P$, and $c_{_{0}}$ is a constant defined as above (observe that for the wave operator $P=I$ and $c_{_{0}}=a_{_{0}}=1$). For an arbitrary bounded domain $\Omega$ with smooth boundary $S$ we define the quantity $$ \kappa=\max_{i,j}\sup_{x\in \overline{\Omega}}|\partial_{x_{i}x_{j}}^2\Psi(x)|. $$ Suppose that $\Omega$ satisfies the conditions: There is a point $x^{0}\in \mathbb{R}^n$ such that \begin{itemize} \item[(a)] $S_1$ is star-like with respect to $x^{0}$: $(x-x^{0},\nu)\leq 0$ for $x\in S_1$; \item[(b)] for some $0<\epsilon\leq 1$ $$ (x-x^{0},\nu)>-\frac{1}{\epsilon+n{\kappa}} \frac{\mathop{\rm meas}(\Omega)}{\mathop{\rm meas}(S)},\quad x\in S_0. $$ \end{itemize} Clearly, (b) holds if $S_0$ is star-like with respect to the point $x^0$ when it be taken sufficiently close to the domain, see Figure \ref{unis}. \begin{figure}[htb] \begin{center} \includegraphics[width=0.7\textwidth]{fig1} \end{center} \caption{Surface $\mathbf{S}_0$ is starlike with respect to the point $\mathbf{x}^o$}\label{unis} \end{figure} \begin{theorem}\label{vic} Let a domain $\Omega$ and surface $\Gamma$ satisfy the above-listed conditions with a parameter $0<\epsilon\leq 1$ and let the coefficient $a$ in the boundary conditions satisfy $00$ and $C^{\ast}>0$ such that for $t>T^{\ast}$ $$ \| U(t)\{f_1,f_2\}\|^2\leq C^{\ast}(T^{\ast})^{\epsilon-1} \frac{1}{t^{\epsilon}}\|\{f_1,f_2\}\|^2 $$ for every $\{f_1,f_2\}\in \mathcal{H}$. \end{theorem} \begin{proof} The following identity is proved in the Appendix: \begin{equation} \label{genal} \begin{aligned} &2\Big[t\partial_tu+(\nabla\varphi, \nabla)u+\frac{n-1}{2}u\Big]\cdot \Bigl[\partial^2_{t}u-\partial_{x_i}\left(P\partial_{x_i} u \right)\Bigr]\\ &=\partial_ t\Big[t\Big(|\partial_tu|^2 +\sum_{i=1}^{n}P\partial_{x_i} u\cdot\partial_{x_i} u \Big) +2(\nabla\varphi, \nabla)u\cdot \partial_t u+(n-1)u\cdot \partial_t u\Big]\\ &\quad -\partial_{x_i}\Big[P\partial_{x_i} u\cdot\Bigl(2t \partial_tu+2(\nabla\varphi, \nabla)u+(n-1)u\Bigr)\\ &\quad + \partial_{x_i} \varphi\Big(|\partial_tu|^2 -\sum_{i=1}^{n}P\partial_{x_i} u\cdot\partial_{x_i} u\Big)\Big]\\ &\quad - \left[(\Delta \varphi-n+2)P\partial_{x_i}u\cdot\partial_{x_i} u -(\Delta\varphi-n)|\partial_tu|^2 -2\partial_{x_px_i}^2\varphi\, \partial_{x_p} u\cdot P\partial_{x_{i}} u\right]. \end{aligned} \end{equation} For $\varphi=2^{-1}|x-x^{o}|$, it represents a conservation law, a consequence of invariance of the system relative to the one-parameter group of dilations in all variables with the infinitesimal operator $$ t\partial_{t}+(x_i-x^o_i)\partial_{x_i}-\frac{n-1}{2}u^j\partial_{ u^j}. $$ Let $\{f_1,f_2\}\in D(\mathcal{A})$ and $\mathbf{u}(\mathbf{x},t)$ be a solution of \eqref{elenise}, \eqref{bibiana}. After integration by parts over $\Omega_0\times ]0,T[$ and $\Omega_1\times ]0,T[$ using \eqref{bibiana}, we obtain the formula \begin{equation}\label{lucimar} \begin{aligned} &-\int_{\Omega}u\partial_t u\,dx\Big\vert_{t=T_{0}}^{t=T} -\int_{S_{0}}\frac{1}{2}b|u|^2\,dS\Big\vert_{t=T_{0}}^{t=T}\\ &=\int_{T_{0}}^{T}\int_{\Omega}\Big(\sum_{i=1}^{n}P\partial_{x_i}u\cdot \partial_{ x_i}u-|\partial_tu|^2\Big)dx\,dt +\int_{T_{0}}^{T}\int_{S_0}a|u|^2\,dS dt. \end{aligned} \end{equation} An application of \eqref{genal}, together with \eqref{lucimar} multiplied by the constant $\gamma$, leads to the formula \begin{equation}\label{cordi} \begin{aligned} &\Big\{\int_{\Omega}\left[ t\mathcal{I}(u)+2(\nabla\varphi, \nabla)u\cdot \partial_tu+(n-1-\gamma)u\cdot \partial_tu\right]dx\\ &+ \int_{S_0}\Big[ta|u|^2+\frac{n-1-\gamma}{2}b|u|^2\Big]dS\Big\} \Big\vert_{t=T_{0}}^{t=T}\\ &=\int_{T_{0}}^{T}\int_{\Omega}\Big[(\Delta\varphi-n+2+\gamma)\Phi(u) -(\Delta\varphi-n+\gamma)|\partial_tu|^2\\ &\quad -2\partial^2_{x_px_i}\varphi P \partial_{x_i}u \partial_{x_p} u\Big]dxdt + \int_{T_{0}}^{T}\int_{S_1}\partial_{\nu}\varphi\;\Phi(u)\,dS\,dt \\ &\quad +\int_{T_{0}}^{T}\int_{S_0}\Big\{\partial_{\nu}\varphi \left(|\partial_tu|^2-\Phi(u)\right) -2t b|\partial_tu|^2-(n-2-\gamma)a|u|^2\\ &\quad -2b(\nabla\varphi, \nabla)u\cdot \partial_tu-2a(\nabla\varphi, \nabla)u\cdot u\Big\}dS\, dt\\ &\quad +\int_{T_{0}}^{T}\int_{\Gamma}\Big\{-\partial_{\nu}\varphi \left(A-B\right)\partial_{x_i} w\cdot\partial_{x_i}w -\partial_{\nu} \varphi(AB^{-1}A\\ &\quad +B-2A)\partial_{\nu} w\cdot \partial_{\nu} w \Big\}d\Gamma\,dt, \end{aligned} \end{equation} here we use the notation: $$ \Phi(u)=\sum_{i=1}^{n}P\partial_{x_i}u \cdot\partial_{x_i}u,\quad \mathcal{I}(u)=|\partial_t u|^2+\Phi(u). $$ Choose the function $\varphi(x)$ in \eqref{cordi} as follows $$ \varphi(x)=\frac{c_0}{a_0}\Psi(x)+\frac{1}{2\theta}|x-x^0|^2,\quad \theta>0, \quad x^{0} \in \mathbb{R}^n $$ We obtain \begin{align*} \mathcal{K}&\equiv (\Delta\varphi-n+2+\gamma)\Phi(u) -(\Delta\varphi-n+\gamma)|\partial_t u|^2-2\partial^2_{x_{p}x_{i}}\varphi P\partial_{x_{i}} u\cdot \partial_{x_{p}} u\\ &\leq \left(n-1-\frac{n}{\theta}-\gamma\right)|\partial_tu|^2 +\Big(3+\frac{n-2}{\theta}+2\kappa n+\gamma-n\Big)\Phi(u). \end{align*} Set $\theta=(\epsilon+n\kappa)^{-1}$ and $\gamma=n-2+\epsilon-n(\epsilon+\kappa n)$. Then $\mathcal{K}\leq (1-\epsilon)\mathcal{I}(u)$, and for $x\in S_{0}$ we have $$ \partial_{\nu}\,\varphi=(\epsilon+n\kappa)\left[(x-x^0,\nu)+ \frac{1}{(\epsilon+n\kappa)}\,\frac{\mathop{\rm meas}(\Omega)} {\mathop{\rm meas}(S_0)}\right]>0, $$ which by compactness of $S_0$ leads to the inequality $$ \partial_{\nu}\,\varphi\geq |\nabla \varphi|\delta,\quad \delta>0. $$ We now assume that the surface $\Gamma$ satisfies the condition $$ \partial_{\nu}\;\varphi\big\vert_{\Gamma}\geq 0. $$ Note that if $S_0$ is strictly star-shaped with respect to $x^0\in \mathbb{R}^n$; i.e, $$ (x-x^0,\, \nu)>0 $$ we can choose ${\varphi(\mathbf{x})=\frac{1}{2}|\mathbf{x}-\mathbf{x}^0|^2}$. In this case, $\Gamma$ is an arbitrary star-shaped surface with respect to $\mathbf{x}^0$. Moreover, we assume that matrices $A$ and $B$ are constant and \[ AB=BA,\quad (A-B)\mathbb{\xi}\cdot\mathbb{\xi}\geq 0, \quad \forall \mathbb{\xi} \in \mathbb{R}^m, \] for examples on the last condition, see \cite{lag3} and \cite{leon1}. For examples where monotonicity fails, so that the uniform decay does not hold, see \cite{tay1}. Then we obtain that integral over $\Gamma\times ]T_0,T[$ in \eqref{cordi} is non positive. Denote by $\mathcal{G}$ the integrand of the integral over $S_0\times ]T_0,T[$ on the right side of the formula \eqref{cordi}. We have the following estimate for $\mathcal{G}$: \begin{equation} \label{vera} \mathcal{G} \leq |u|^2\left[n^2\kappa a-|\nabla \varphi|\frac{3a^2}{\delta c_0}\right]-|u_t|^2\left[2tb-|\nabla \varphi| -|\nabla \varphi|\frac{3b^2}{\delta c_0}\right]. \end{equation} By hypotheses we have \begin{equation} \label{marilda} 0T_2$. Given an arbitrary element $\{f_1,f_2\}\in \mathcal{H}$, approximate it by smooth data for which the inequality of the theorem was established above. Taking the limit finishes the proof. \end{proof} \begin{corollary} The operator $U(t)$ takes $\mathcal{H}$ into itself and $$ \| U(t)\| <1 \quad \text{for } t>t^{\ast} =(C^{\ast}(T^{\ast})^{\epsilon-1})^{1/\epsilon}. $$ \end{corollary} By applying semigroup properties, we obtain the following result. \begin{corollary} \label{coro3.3} Assume $\{f_1,f_2\}\in \mathcal{H}$. There are $C,\;\beta >0$ such that $$\| U(t)\{f_1,f_2\}\|^2 \leq C\exp(-\beta t)\| \{f_1,f_2\}\|^2.$$ \end{corollary} \section{Exact Controllability} In this section, we shall use the estimate of the Theorem \ref{vic} to prove exact controllability of the evolution system studied in the previous sections. In $\Omega\times ]0,T[$ we consider the problem \begin{gather}\label{sandra} \partial^2_{t} \mathbf{u}(\mathbf{x},t)-\sum_{i=1}^{n}\partial_{ x_{i}}\left[P(\mathbf{x})\partial_{x_{i}} \mathbf{u}(\mathbf{x},t)\right]=0 \quad (\mathbf{x},t) \in \Omega\times ]0,T[ \\ \mathbf{u}(\mathbf{x},0)=f_1(\mathbf{x}),\quad \partial_{t} \mathbf{u}(\mathbf{x},0)=f_2(\mathbf{x})\quad \mathbf{x} \in \Omega \\ P\partial_{\mathbf{\nu}} \mathbf{u}(\mathbf{x},t) +a\mathbf{u}(\mathbf{x},t)=\mathbb{q}(\mathbf{x},t) \quad (\mathbf{x},t)\in \Sigma_0=S_0\times ]0,T[,\\ \mathbf{u}(\mathbf{x},t)=0 \quad (\mathbf{x},t)\in \Sigma_1=S_1\times ]0,T[\\ \mathbf{w}=\mathbf{v},\quad A\partial_{\mathbf{\nu}} \mathbf{w} =B\partial_{\mathbf{\nu}}\mathbf{v},\quad (\mathbf{x},t)\in \Sigma=\Gamma\times ]0,T[ \end{gather} where $A (B)$ and $\mathbf{w} (\mathbf{v})$ are the restrictions of matrix $P$ and vector-function $\mathbf{u}$ on $\Omega_0\; (\Omega_1), \mathbf{f}=\{f_1,f_2\}$ is an arbitrary element of the space $\mathcal{H}$. For every $\mathbf{g}=\{g_1,g_2\}\in \mathcal{H}$, we have to find a vector-function $\mathbf{q}(x,t)$ such that the solution of \eqref{sandra} satisfies the conditions $$ \mathbf{u}\Big\vert_{t=T}=g_1(x),\quad \partial_t \mathbf{u} \Big\vert_{t=T}=g_2(x), \quad\text{for }T>t^{\ast}. $$ \begin{theorem} \label{thm4.1} Let the coefficient $a$ in the boundary conditions of problem \eqref{sandra} satisfies \eqref{marilda}. There is a $t^{\ast}>0$ such that, for $T>t^{\ast}$, arbitrary initial data $\mathbf{f}=\{f_1,f_2\}\in \mathcal{H}$, and any element $\mathbf{g}=\{g_1,g_2\}\in \mathcal{H}$, there exists a boundary control $\mathbf{q}(x,t)\in L^2(S_0\times]0,T[)$ transferring a solution of \eqref{sandra} to the state $ \mathbf{g}=\{g_1,g_2\}$ at time $T$. Moreover, $$ \| \mathbb{q} \|^2_{L^2(\Gamma_0\times]0,T[)}\leq C(\| \mathbb{f}\|^2 +\| \mathbb{g}\|^2). $$ \end{theorem} \begin{proof} Let $U(t)$ be the semigroup defined above and let $U^{\ast}(t)$ be semigroup constructed from the operator $\mathcal{A}^{\ast}$. Consider the following equation in $\mathcal{H}$: $$ \{h,h_1\}-U^{\ast}(T)U(T)\{h,h_1\}=f-U^{\ast}(T)g. $$ The operator $G(T)=U^{\ast}(T)U(T)$ takes $\mathcal{H}$ into itself and $\| G(T)\| <1$ for $T>t^{\ast}$. Thus we can solve this equation for any $\mathbf{f},\ \mathbf{g}\in \mathcal{H}$ and $$ \| \mathbf{h}\| = \| \{h,h_1\}\| \leq C(\| \mathbf{f}\| +\| \mathbf{g}\|). $$ Consequently, if we choose $\mathbf{h}=(I-G(T))^{-1}(\mathbf{f}-U^{\ast}(T)\mathbf{g})$, then \begin{equation*} \{\alpha,\alpha_1\}=U(t)\mathbf{h}\quad{and}\quad \{\beta,\beta_1\}=U^{\ast}(T-t)(U(T)\mathbf{h}-\mathbf{g}) \end{equation*} are weak solutions to the problems \begin{gather*} {\frac{d}{dt}}\{\alpha, \alpha_1\}=\{\alpha_1, \mathcal{P} \alpha\}\\ P\partial_{\nu}\alpha+a \alpha +b \alpha_1\Big\vert_{S_0}=0, \quad \alpha\Big\vert_{S_1}=0, \end{gather*} and \begin{gather*} {\frac{d}{dt}}\{\beta, \beta_1\}=\{\beta_1, \mathcal{ P}\beta\} \\ P\partial_{\nu} \beta+a\;\beta -b\;\beta_1\Big\vert_{S_0}=0, \quad \beta\Big\vert_{S_1}=0\,. \end{gather*} By the energy identity, the following estimates hold \[ \int_{0}^{T}\int_{S_0}b|\alpha_1|^2\,dS\, dt\leq C\| \mathbf{h}\|^2, \quad \int_{0}^{T}\int_{S_0}b|\beta_1|^2dS\, dt\leq C(\| \mathbf{ h}\|^2+\| \mathbf{g}\|^2). \] Clearly, $\{u,u_1\}=\{\alpha,\alpha_1\}-\{\beta,\beta_1\}$ is a solution to problem \eqref{sandra} with boundary data on $S_0$: $$ \mathbf{q}(x,t)=-b(\alpha_1+\beta_1), $$ which belongs to $L^2(S_0\times]0,T[)$ and $$ \| \mathbf{q} \|^2_{L^2(S_0\times(0,T))} \leq C(\| \mathbf{f}\|^2+\| \mathbf{g}\|^2). $$ \end{proof} \begin{remark} \label{rmk4.1} We can study in the same way the more general case. Assume that $B_k\subset \Omega$ is a bounded domain with boundary $\Gamma_k, \overline{B}_k\subset B_{k+1}$ for $k=1,\dots,n$. Assume that $\Gamma_1,\dots,\Gamma_n$ and $ S_0, S_1$ are star-shaped with respect to the point $x^{0}\in \mathbb{R}^n$. Suppose that matrix $P(x)$ lose the continuity on $\Gamma_1,\dots,\Gamma_n$. We set $$ \Omega_0=B_1,\quad \Omega_k=B_{k+1}\setminus \overline{B}_k,\quad k=1,\dots,n-1,\quad \Omega_n=\Omega\setminus\overline{B}_n $$ The interface conditions are \begin{gather*} \mathbf{u}^{k-1}\Big\vert_{\Gamma_k \times]0,T[} =\mathbf{u}^{k}\Big\vert_{\Gamma_k\times]0,T[}\\ P^{k-1}\partial_{\nu}\mathbf{u}^{k-1}\Big\vert_{\Gamma_k \times]0,T[}=P^k\partial_{\nu}\mathbf{u}^{k}\Big\vert_{\Gamma_k \times]0,T[},\quad k=1,\dots,n \end{gather*} where $\mathbb{\nu}=\mathbb{\nu}(\mathbf{x})$ (for $x\in \Gamma_k$) is the unit normal vector pointing into the exterior of $B_k$; $P^k,\;\mathbf{u}^k$ are the restrictions of $P$ and $\mathbf{u}$ on $\Omega_k$. \end{remark} \section{Appendix} We shall show here the details in the proof of the identity used in Theorem \ref{vic}. We use the following notation \begin{gather*} \mathbf{u} =\left( \mathbf{u}^1,\dots,\mathbf{u}^m\right),\quad \partial_t\mathbf{u}=\left(\partial_t \mathbf{u}^1,\dots, \partial_t\mathbf{u}^m\right),\quad \mathbf{\nabla}=\left(\partial_{x_i},\dots,\partial_{x_i}\right),\\ \partial^2_t\mathbf{u}=\left(\partial^2_t\mathbf{u}^1,\dots, \partial^2_t\mathbf{u}^m\right),\quad \partial_{x_{i}}\mathbf{u} =\left(\partial_{x_i}\mathbf{u}^1,\dots, \partial_{x_i}\mathbf{u}^m\right), \end{gather*} the matrix $P(\mathbf{x})=\big(a_{_{pq}}(\mathbf{x})\big)_{_{m \times m}}$ and $$ \left(\nabla \varphi,\nabla\right)\mathbf{u} =\Big(\sum^n_{i=1}\partial_{x_i} \varphi\, \partial_{x_i} \mathbf{u}^q\Big)_{1\leq q\leq m} $$ The identity \eqref{genal} can be verified by direct computations as follows \begin{align*} &2\left(tu^q_t+\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q}{\partial x_i}+\frac{n-1}{2}u^q\right)\left(u^q_{tt}-\frac{\partial}{\partial x_i}\Big(a_{pq}\frac{\partial u^q}{\partial x_i}\Big)\right) \\ &=2tu^q_{tt}u^q_t-2tu^p_t\frac{\partial}{\partial x_i}\Big(a_{pq}\frac{\partial u^q}{\partial x_i}\Big)+ 2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q}{\partial x_i}u^q_{tt}-2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^p}{\partial x_i}\frac{\partial}{\partial x_i}\Big(a_{pq}\frac{\partial u^q}{\partial x_i}\Big) \\ &\quad +(n-1) u^qu^q_{tt}-(n-1)u^p\frac{\partial}{\partial x_i} \Big(a_{pq}\frac{\partial u^q} {\partial x_i}\Big) \\ &=t\frac{\partial |u^q_t|^2}{\partial t}-2t\frac{\partial}{\partial x_i} \left(a_{pq}u^p_t \frac{\partial u^q}{\partial x_i}\right) +2ta_{pq}\frac{\partial u^p_t}{\partial x_i} \frac{\partial u^q}{\partial x_i} +2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q} {\partial x_i}u^q_{tt}\\ &\quad -\frac{\partial}{\partial x_i}\left(2\frac{\partial \varphi}{\partial x_i}a_{pq} \frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}\right) +\frac{\partial}{\partial x_i}\left(2 \frac{\partial \varphi} {\partial x_i}\frac{\partial u^p}{\partial x_i}\right)a_{pq} \frac{\partial u^q}{\partial x_i}\\ &\quad +(n-1)\frac{\partial }{\partial t}\left(u^qu^q_t \right) -(n-1)|u^q_t|^2 -(n-1)\frac{\partial}{\partial x_i} \left(a_{pq}u^p\frac{\partial u^q}{\partial x_i}\right) \\ &\quad +(n-1)a_{pq}\frac{\partial u^p}{\partial x_i} \frac{\partial u^q}{\partial x_i} \\ &=t\frac{\partial |u^q_t|^2}{\partial t}-2t\frac{\partial}{\partial x_i} \left(a_{pq}u^p_t \frac{\partial u^q}{\partial x_i}\right) + 2ta_{pq}\frac{\partial u^p_t}{\partial x_i}\frac{\partial u^q}{\partial x_i} +\frac{\partial}{\partial t} \left(2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q}{\partial x_i}u^q_{t}\right)\\ &\quad -\frac{\partial}{\partial t}\left(2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q}{\partial x_i}\right) u^q_{t} -\frac{\partial}{\partial x_i}\left( 2a_{pq}\frac{\partial\varphi}{\partial x_i} \frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}\right)+\frac{\partial}{\partial x_i}\left(2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^p}{\partial x_i}\right)a_{pq}\frac{\partial u^q}{\partial x_i} \\ &\quad +(n-1)\frac{\partial }{\partial t}\Big(u^qu^q_t\Big) -(n-1)|u^q_t|^2-(n-1)\frac{\partial }{\partial x_i}\left(a_{pq}u^p\frac{\partial u^q}{\partial x_i}\right)\\ &\quad +(n-1)a_{pq}\frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i} \\ &=t\frac{\partial |u^q_t|^2}{\partial t}+t\frac{\partial}{\partial t} \left(a_{pq}\frac{\partial u^p}{\partial x_i} \frac{\partial u^q}{\partial x_i}\right)+|u_t^q|^2+ a_{pq}\frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}+\frac{\partial}{\partial t}\left(2\frac{\partial \varphi}{\partial x_i} \frac{\partial u^q}{\partial x_i}u_t^q \right)\\ &\quad +\frac{\partial}{\partial t} \Big((n-1)u^qu^q_t \Big) -2t\frac{\partial}{\partial x_i}\left(a_{pq}\frac{\partial u^q}{\partial x_i} u^p_t \right) -\frac{\partial}{\partial x_i}\left(2a_{pq}\frac{\partial \varphi}{\partial x_i} \frac{\partial u^p}{\partial x_i} \frac{\partial u^q}{\partial x_i} \right) \\ &\quad +\frac{\partial}{\partial x_i}\left(2 \frac{\partial \varphi}{\partial x_i}\frac{\partial u^p}{\partial x_i}\right) a_{pq} \frac{\partial u^q}{\partial x_i} -2\frac{\partial}{\partial t}\left( \frac{\partial \varphi}{\partial x_i} \frac{\partial u^q}{\partial x_i} \right)u_t^q -(n-1)\frac{\partial} {\partial x_i}\left(a_{pq}u^p\frac{\partial u^q}{\partial x_i}\right) \\ &\quad +(n-2)a_{pq}\frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}-n|u^q_t|^2 \\ &=\frac{\partial}{\partial t}\left[t\Big(|u^q_t|^2+a_{pq} \frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}\Big)+ 2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q}{\partial x_i}u^q_t+(n-1)u^qu^q_t \right] \\ &\quad -\frac{\partial}{\partial x_i}\Big[a_{pq}\frac{\partial u^p}{\partial x_i}\left(2tu^q_t+2\frac{\partial \varphi}{\partial x_i}\frac{\partial u^q}{\partial x_i}+(n-1)u^q\right) \\ &\quad +\frac{\partial \varphi}{\partial x_i}\Big(|u^q|^2-a_{pq}\frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}\Big)\Big] +\frac{\partial^2 \varphi}{\partial x_i}a_{pq}\frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i} \\ &\quad +(n-2)a_{pq}\frac{\partial u^p}{\partial x_i}\frac{\partial u^q}{\partial x_i}-n|u^q_t|^2+\frac{\partial^2 \varphi}{\partial x_i^2}+2\frac{\partial \varphi}{\partial x_i}\frac{\partial^2 u^p}{\partial x^2_i}a_{pq}\frac{\partial u^q}{\partial x_i}. \end{align*} The computation is now complete. To obtain \eqref{cordi} it's enough to add to the above identity for equation \eqref{lucimar} after multiplication by a parameter fixed $\gamma$, and finally apply Green's formula and interface conditions \eqref{interf-1} and \eqref{interf-2}. \begin{thebibliography}{00} \bibitem{coxzua} S. Cox \& E. Zuazua, \emph{The rate at which energy decays in the string damped at one end}, Indiana Univ. Math. J., 44, {\bf 2}, (1995), 545-573 \bibitem{che} G. Chen, \emph{Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain}, J. Math. Pures Appl., {\bf 58}, (1979), 249-273 \bibitem{che1} G. Chen, M. C. Delpour, A. M. Krall \& G. Payre, \emph{Modeling, stabilization and control of serially connected beams}, SIAM J. Control Optim., {\bf 25}, (1997), 526-546. \bibitem{kapi} B. V. Kapitonov, \emph{Uniqueness theorems and exact boundary controllability of evolution systems}, Siberian Math.\ Journal, {\bf 34}, (1993), 852-868. \bibitem{kapi2} B. V. Kapitonov, \emph{Uniform stabilization and simultaneous exact boundary controllability for a pair of hiperbolic systems}, Siberian Math.\ Journal, {\bf 35}, (1994), 722-734. \bibitem{kapi1} B. V. Kapitonov, \emph{Stabilization and exact boundary controllability for Maxwell's equations}, SIAM J. Control Optim., {\bf 32}, (1994), 408-421. \bibitem{quiz1} F. P. G\'omez \& B. V. Kapitonov, \emph{Uniqueness Theorem and exact boundary controllability for hyperbolic systems with discontinuous coefficients}, $45^{o}$ SBA., {\bf 1}, (1997), 299-310. \bibitem{lag1} J. E. Lagnese, \emph{Exact boundary controllability of Maxwell's equations in a general region}, SIAM J. Control. Optim., {\bf 27}, (1989), 374-388. \bibitem{lag2} J. E. Lagnese, \emph{Decay of wave equations in a bounded region with boundary dissipation}, J. Differential Equations, {\bf 50}, (1983), 163-182. \bibitem{lag} J. E. Lagnese, \emph{Boundary stabilization of linear elastodynamics system}, SIAM J. Control. Optim., {\bf 21}, (1983), 968-984. \bibitem{lag3} J. E. Lagnese, \emph{Boundary controllability in Problems of Transmission for a Class of Second Order Hyperbolic Systems}, ESAIM: Control, Optimization and Calculus of Variations, {\bf 2}, (1997), 343-357. \bibitem{latri} I. Lasiecka \& R. Triggiani, \emph{Exact Controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case}, SIAM J. Control Optim., {\bf 27}, (1989), 330-373. \bibitem{leo} J. L. Lions, \emph{Contr\^olabilit\'e exact des systems distributes}, C. R. Acad. Sci. Paris, Ser. I Math., {\bf 302}, 471-475. \bibitem{leon1} J. L. Lions, \emph{Contr\^ollabilit\'e Exacte, Perturbations et Stabilisation de Syst\`emes Distribu\'es: Tome 1, Contr\^olabilit\'e Exacte}, Coll. RMA, Vol {\bf 8}, Masson, Paris, (1988). \bibitem{ruse1} D. L. Russell, \emph{The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region}, SIAM J. Control Optim., {\bf 24}, (1986), 199-229. \bibitem{ruse} D. L. Russell, \emph{Controllability and stabilizability theory for partial differential equations}, Recent Progress and Open Questions, SIAM Rew., {\bf 310}, (1990), 801-806. \bibitem{tay1} M. E. Taylor, \emph{Pseudodifferential Operators}, Princeton University Press, Princeton, New Jersey, (1981). \bibitem{zua} E. Zuazua, \emph{Contr\^olabilit\'e exact d'un modele de plaques vibrantes en un temps arbitrairement petit}, C. R. Acad. Sci. Paris, Ser. I Math., {\bf 304}, (1987), 173-176. \bibitem{zua1} E. Zuazua, \emph{Exact Controllability for the Semilinear Wave Equation in one space Dimension}, Ann. IHP. Analyse non lin\'eaire, {\bf 10}, (1993), 109-129. \end{thebibliography} \end{document}