\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 15, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/15\hfil Viscosity solutions] {Viscosity solutions to degenerate diffusion problems} \author[Z. Chen, Y. Zhao\hfil EJDE-2007/15\hfilneg] {Zu-Chi Chen, Yan-Yan Zhao} % in alphabetical order \address{Zu-Chi Chen \newline Department of mathematics\\ University of Science and Technology of China\\ Hefei 230026, China} \email{chenzc@ustc.edu.cn} \address{Yan-Yan Zhao \newline Department of mathematics\\ University of Science and Technology of China\\ Hefei 230026, China} \email{yyzhao@mail.ustc.edu.cn} \thanks{Submitted November 4, 2006. Published January 23, 2007.} \thanks{Supported by grant 10371116 from NNSF of China} \subjclass[2000]{35K15, 35K55, 35K65} \keywords{Viscosity solution; degenerate; H\"older regularity} \begin{abstract} This paper concerns the weak solutions to a Cauchy problem in $\mathbb{R}^N$ for a degenerate nonlinear parabolic equation. We obtain the H\"older regularity of the weak solutions to this problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \section{Introduction} We consider the Cauchy problem \begin{equation} \label{e1} \begin{gathered} u_t=\alpha_1u^{\beta_1}\Delta u+\alpha_2u^{\beta_2}w,\quad w=\frac{1}{2}|\nabla u|^2, \quad (x,t)\in \mathbb{R}^N\times \mathbb{R}^+ \\ u(x,0)=u_0(x), \quad x\in \mathbb{R}^N \end{gathered} \end{equation} where $\alpha_1,\alpha_2,\beta_1,\beta_2$ are constants and $u_0$ is a bounded continuous and nonnegative function on $R^N$, denote $\Omega=\mathbb{R}^N\times \mathbb{R}^+$. Problem \eqref{e1} degenerates at the points where $u$ vanishes. Therefore, in general, it has no classical solutions and we have to consider its weak solutions. The weak solution is defined as follows. \begin{definition} \rm A function $u\in L^\infty(\Omega)\cap L^2_{\rm loc}([0,+\infty);H^1_{\rm loc}(\mathbb{R}^N))$ is called a weak solution of \eqref{e1} if $u\geq 0$ a.e. in $\Omega$ and for all $T>0$, $$ \int_{R^N}u_0\psi(0)dx+\int_{\mathbb{R}^N\times(0,T)} u\frac{\partial \psi}{\partial t}-\alpha_1 \nabla u\cdot\nabla(u^{\beta_1} \psi)+\alpha_2 u^{\beta_2}|\nabla u|^2\psi \,dx\,dt=0 $$ for all $\psi\in C^{1,1}(\mathbb{R}^N\times[0,T])$ with the compact support in $\mathbb{R}^N\times[0,T)$. \end{definition} Let $u_\epsilon(x,t)\ge0$ be the classical solution of the problem \begin{equation} \label{e2} \begin{gathered} u_{\epsilon t}=\alpha_1u^{\beta_1}_{\epsilon}\Delta u_\epsilon+\alpha_2u^{\beta_2}_{\epsilon} w_{\epsilon},\quad w_\epsilon=\frac{1}{2}|\nabla u_\epsilon|^2, \quad (x,t)\in \mathbb{R}^N \times \mathbb{R}^+ \\ u_\epsilon (x,0)=u_0(x)+\epsilon, \quad x\in \mathbb{R}^N \end{gathered} \end{equation} By the maximum principle $u_\epsilon(x,t)$ is decreasing with respect to $\epsilon$, thus $$ u(x,t)=\lim_{\epsilon\to 0}u_\epsilon(x,t) $$ is well defined in $\bar\Omega$. The function $u$ is a weak solution of \eqref{e1}. Because $u_0$ is bounded, using the maximum principle in problem \eqref{e2}, $u_\epsilon$ is bounded and $\{u_\epsilon\}_{\epsilon\to 0}$ is uniformly bounded. \begin{definition} \rm The weak solution defined above is called a viscosity solution of \eqref{e1}. \end{definition} As its special cases, Bertsh, Passo, Ughi and Lu had considered the equation $u_t=u\Delta u-\gamma|\nabla u|^2$ in [1-6]. When $\alpha_1=m$, $\beta_1=m-1$, $\alpha_2=2m(m-1)$, $\beta_2=\beta_1-1 $, problem \eqref{e1} is the porous medium equation, the well known case. \section{Main Result} \begin{theorem} If $\alpha_1>0,\beta_2=\beta_1-1$, there exists a constant $s$ such that $$ 2\alpha_2\beta_1-2\alpha_2-s\alpha_2+2s(s+1)\alpha_1+N\alpha_1\beta^2_1\le 0 $$ and $$ |\nabla({u_0^{1+\frac{s}{2}}})|\le M $$ for a nonnegative constant $M$. Then the viscosity solution $u$ of \eqref{e1} satisfies $|\nabla({u^{1+\frac{s}{2}}})|\le M$ in $\bar\Omega$. \label{thm1} \end{theorem} \begin{proof} In the definition of the viscosity solution, we let $u_\epsilon>0$ be the classical solution of \eqref{e2}. Then $$ u(x,t)=\lim_{\epsilon\to 0}u_\epsilon(x,t) $$ is the viscosity solution of \eqref{e1}. In the following we use the notation $u_{\epsilon,.}$ to denote the derivative of function $u_\epsilon $ with respect to its independent variables. At first, we have \begin{align*} w_{\epsilon, t} & =(\frac{1}{2}|\nabla u_\epsilon|^2)_t=\sum_{i=1}^Nu_{\epsilon, x_i}(u_{\epsilon, x_i})_t \\ & =\sum_{i=1}^Nu_{\epsilon, x_i}(\alpha_1u^{\beta_1}_{\epsilon}\Delta u_\epsilon+\alpha_2u^{\beta_2}_{\epsilon}w_{\epsilon, x_i} \\ & =\sum_{i=1}^Nu_{\epsilon, x_i}(\alpha_1\beta_1u_{\epsilon, x_i} u^{\beta_1-1}_{\epsilon}\Delta u_\epsilon+\alpha_1u^{\beta_1}_{\epsilon}\Delta u_{\epsilon, x_i}\\ &\quad +\alpha_2\beta_2u_{\epsilon, x_i}u^{\beta_2-1}_{\epsilon}w_\epsilon +\alpha_2u^{\beta_2}_{\epsilon}w_{\epsilon, x_i})\\ & =2\alpha_1\beta_1u^{\beta_1-1}_{\epsilon}w_\epsilon\Delta u_\epsilon+\alpha_1u^{\beta_1}_{\epsilon}\sum_{i=1}^Nu_{\epsilon, x_i} \Delta u_{\epsilon, x_i}\\ &\quad +2\alpha_2\beta_2u^{\beta_2-1}_{\epsilon}w^2_{\epsilon} +\alpha_2u^{\beta_2}_{\epsilon}\sum_{i=1}^Nu_{\epsilon, x_i}w_{\epsilon, x_i}\\ & =2\alpha_1\beta_1u^{\beta_1-1}_{\epsilon}w_\epsilon\Delta u_\epsilon+\alpha_1u^{\beta_1}_{\epsilon}\Delta w_\epsilon-\alpha_1u^{\beta_1}_{\epsilon}\sum_{i,j=1}^Nu_{\epsilon, x_ix_j}^2 \\ &\quad +2\alpha_2\beta_2u^{\beta_2-1}_{\epsilon}w^2_{\epsilon} +\alpha_2u^{\beta_2}_{\epsilon} \sum_{i=1}^Nu_{\epsilon, x_i}w_{\epsilon, x_i}. \end{align*} Let \begin{equation} \label{e3} z_\epsilon=u^s_\epsilon w_\epsilon, \end{equation} then \begin{equation} \label{e4} \begin{aligned} z_{\epsilon, t} &=u^s_{\epsilon, t}w_\epsilon+u^s_{\epsilon}w_{\epsilon, t} \\ &=s\alpha_1u^{s+\beta_1-1}_\epsilon w_\epsilon\Delta u_\epsilon+s\alpha_2u^{s+\beta_2-1}_\epsilon w^2_\epsilon +2\alpha_1\beta_1u^{s+\beta_1-1}_\epsilon w_\epsilon\Delta u_\epsilon +\alpha_1u^{s+\beta_1}_\epsilon\Delta w_\epsilon \\ & \quad -\alpha_1u^{s+\beta_1}_\epsilon\sum_{i,j=1}^Nu_{\epsilon, x_ix_j}^2 +2\alpha_2\beta_2u^{s+\beta_2-1}_\epsilon w^2_\epsilon+\alpha_2u^{s+\beta_2}_\epsilon\sum_{i=1}^N u_{\epsilon, x_i}w_{\epsilon, x_i}. \end{aligned} \end{equation} From \eqref{e3} and \eqref{e4}, \begin{equation} \label{e5} \begin{aligned} z_{\epsilon, t}&= \alpha_1u^{\beta_1}_\epsilon\Delta z_\epsilon+(\alpha_2u^{\beta_2}_\epsilon-2s\alpha_1u^{\beta_1-1}_\epsilon)\sum_{i=1}^Nu_{\epsilon, x_i}z_{\epsilon, x_i}\\ &\quad +[(2\alpha_2\beta_2-s\alpha_2)u^{\beta_2-s-1}_\epsilon+2s(s+1)\alpha_1u^{\beta_1-s-2}_\epsilon]z^2_\epsilon \\ &\quad +2\alpha_1\beta_1u^{\beta_1-1}_\epsilon z_\epsilon\Delta u_\epsilon-\alpha_1u^{s+\beta_1}_\epsilon\sum_{i,j=1}^Nu_{\epsilon, x_ix_j}^2 . \end{aligned} \end{equation} If $\beta_2=\beta_1-1,\alpha_1>0$, then \begin{align*} z_{\epsilon, t}&= \alpha_1u^{\beta_1}_\epsilon\Delta z_\epsilon+(\alpha_2-2s\alpha_1)u^{\beta_1-1}_\epsilon\sum_{i=1}^Nu_{\epsilon, x_i}z_{\epsilon, x_i}\\ &\quad +[(2\alpha_2\beta_2-s\alpha_2) +2s(s+1)\alpha_1]u^{\beta_1-s-2}_\epsilon z^2_\epsilon\\ &\quad +2\alpha_1\beta_1u^{\beta_1-1}_\epsilon z_\epsilon\Delta u_\epsilon-\alpha_1u^{s+\beta_1}_\epsilon\sum_{i,j=1}^Nu_{\epsilon, x_ix_j}^2. \end{align*} Since $$ \sum_{i,j=1}^Nu_{\epsilon, x_ix_j}^2\ge\frac{1}{N}(\Delta u_\epsilon)^2, $$ it follows that \begin{equation} \label{e6} \begin{aligned} z_{\epsilon, t} \le&\alpha_1u^{\beta_1}_\epsilon\Delta z_\epsilon+(\alpha_2-2s\alpha_1)u^{\beta_1-1}_\epsilon\sum_{i=1}^Nu_{\epsilon, x_i}z_{\epsilon, x_i}\\ &\quad +[(2\alpha_2\beta_1-2\alpha_2-s\alpha_2)+2s(s+1)\alpha_1]u^{\beta_1-s-2}_\epsilon z^2_\epsilon \\ &\quad +2\alpha_1\beta_1u^{\beta_1-1}_\epsilon z_\epsilon\Delta u_\epsilon-\frac{\alpha_1}{N}u^{s+\beta_1}_\epsilon (\Delta u)^2_\epsilon \\ &= \alpha_1u^{\beta_1}_\epsilon\Delta z_\epsilon+(\alpha_2-2s\alpha_1)u^{\beta_1-1}_\epsilon\sum_{i=1}^N u_{\epsilon, x_i}z_{\epsilon, x_i}\\ &\quad -(\sqrt\frac{\alpha_1}{N}u_{\epsilon}^{\frac{s+\beta_1} {2}}\Delta u_\epsilon-\beta_1\sqrt{N\alpha_1}u_{\epsilon}^{\frac{\beta_1-s-2}{2}}z_\epsilon)^2\\ &\quad +[(2\alpha_2\beta_1-2\alpha_2-s\alpha_2)+2s(s+1)\alpha_1+N\alpha_1\beta_1^2]u_{\epsilon}^{\beta_1-s-2}z_{\epsilon}^2 \end{aligned} \end{equation} By the condition $$ 2\alpha_2\beta_1-2\alpha_2-s\alpha_2+2s(s+1)\alpha_1+N\alpha_1\beta^2_1\le0 $$ and \eqref{e6}, we obtain $$ z_{\epsilon, t}\leq \alpha_1 u_{\epsilon}^{\beta_1}\Delta z_\epsilon +(\alpha_2-2s\alpha_1) u_{\epsilon}^{\beta_1-1} \sum_{i=1}^Nu_{\epsilon, x_i}z_{\epsilon,x_i}. $$ Using the maximum principle, we obtain $$ \|z_\epsilon\|_{\infty}\leq \|z_0\|_{\infty}. $$ Because $z_\epsilon=u^s_\epsilon w_\epsilon =\frac{1}{2}u^s_\epsilon |\nabla u_\epsilon |^2$, thus $$ \|u^s_\epsilon|\nabla u_\epsilon|^2\|_{\infty} \leq \|u^s_0|\nabla u_0|^2\|_{\infty}\leq M+\epsilon. $$ Since $\nabla(u_{\epsilon}^{1+\frac{s}{2}})$ is continuous, \begin{equation} |\nabla(u_\epsilon ^{1+\frac{s}{2}})|\leq M+\epsilon. \end{equation} Because $u(x,t)=\lim_{\epsilon\to 0}u_\epsilon(x,t)$, then \begin{equation} |\nabla(u^{1+\frac{s}{2}})|\leq M. \end{equation} \end{proof} \begin{theorem} Suppose $\alpha_1$, $\alpha_2$, $\beta_1$, $\beta_2$,$u_0$ are as in Theorem 2.1, if there exists a nonpositive constant $s\neq-2$ satisfying $$ 2\alpha_2\beta_1-2\alpha_2-s\alpha_2+2s(s+1)\alpha_1+N\alpha_1\beta^2_1\le0 , $$ then the viscosity solution $u(x,t)$ of problem \eqref{e1} is Lipschitz continuous in $x$ and H\"{o}lder continuous in $t$ with exponent $1/2$ in $\overline\Omega$. \label{thm2} \end{theorem} \begin{proof} Because $\{u_\epsilon\}_{\epsilon\to 0}$ is uniformly bounded, $u(x,t)=\lim_{\epsilon\to 0} u_\epsilon$, so there exists a constant $M_1$ such that $|u|\sqrt{N-1}$ the solution is Lipschitz continuous in $x$ and H\"older continuous in $t$ with exponent $1/2$ in $\overline\Omega$. It is a improved result of the one in \cite{zhao-chen}. \end{remark} \begin{remark} \rm Let $\tau=1$ in Example \ref{exa1}, we could get the result as $\gamma\geq\sqrt{2N}-1$. It is the main result in \cite{lu-qian}. \end{remark} \begin{example} \label{exa2} The initial problem for the porous medium equation \begin{equation} \label{e9} \begin{gathered} u_t=\Delta(u^m), \quad (x,t)\in \Omega\\u(x,0)=u_0(x), \quad x\in \mathbb{R}^N \end{gathered} \end{equation} If $m>0$, $\frac{10+2N-\sqrt{16+2N}} {7+2N}\leq m\leq \frac{10+2N+\sqrt{16+2N}} {7+2N}$, and $|\nabla({u_0^{\frac{m+2}{4}}})|\le M $, then the viscosity solution $u(x,t)$ is Lipschitz continuous in $x$ and H\"{o}lder continuous in $t$ with exponent $1/2$ in $\overline\Omega$. \end{example} \begin{proof} In Theorem \ref{thm2}, let $\alpha_1=m$, $\beta_1=m-1$, $\alpha_2=2m(m-1)$, $\beta_2=\beta_1-1$, $s=\frac{m-2}{2}$. Then the result follows. \end{proof} \begin{example} \label{exa3} Consider the initial-value problem for the singular equation \begin{equation} \label{e10} \begin{gathered} u_t=\Delta u+\frac{|\nabla u|^2}{u^m}, \quad (x,t)\in \Omega\\ u(x,0)=u_0(x) \quad x\in \mathbb{R}^N \end{gathered} \end{equation} where $m\ge 0$. If $|\nabla u_0|\leq M$, then $u(x,t)$ is Lipschitz continuous in $x$ and H\"{o}lder continuous in $t$ with exponent $1/2$ in $\overline\Omega$. \end{example} \begin{proof} As the proof in Theorem \ref{thm1}, In problem \eqref{e1}, we take $\alpha_1=1$, $\beta_1=0$, $\alpha_2=2$, $\beta_2=-m$. From \eqref{e5}, $$ z_{\epsilon, t}\leq \Delta z_\epsilon +(2u_{\epsilon}^{-m}-2su_{\epsilon}^{-1}) \sum_{i=1}^Nu_{\epsilon, x_i}z_{\epsilon, x_i}+[(-4m-2s)u_{\epsilon}^{-m+1}+2s(s+1)]z_{\epsilon}^2u_{\epsilon}^{-s-2}. $$ Let $s=0$, then $$ z_{\epsilon, t}\leq \Delta z_\epsilon +2u_{\epsilon}^{-m} \sum_{i=1}^Nu_{\epsilon, x_i}z_{\epsilon, x_i}. $$ Thus $\|z_\epsilon\|_{\infty}\leq \|z_0\|_{\infty}$ and so $ |\nabla u|\leq M$. As in the proof in Theorem \ref{thm2}, $u$ is Lipschitz continuous in $x$ and H\"{o}lder continuous in $t$ with exponent $1/2$ in $\overline\Omega$. \end{proof} \subsection*{Acknowledgements} The authors want to thank the anonymous referee for his/her valuable comments and suggestions. \begin{thebibliography}{00} \bibitem{bertsch-ughi} M. Bertsch and M. Ughi; \emph{Positivity properties of viscosity solutions of a degenerate parabolic equation}, Nonlinear Anul. TMA. 14 (1990), 7, 571-592. \bibitem{bertsch-passo} M. Bertsch, R. D. Passo and M. Ughi; \emph{Discontinuous viscosity Solution of A degenerate parbolic equation}, Trans. AMS 320 (1990), 2, 779-798. \bibitem{lu-qian} Yungguang Lu and Liwen Qian; \emph{Regularity of viscosity solutions of degenerate parabolic equation}, Proc. AMS. vol.130, No.4, 999-1004. \bibitem{ughi} M. Ughi; \emph{A dengenerate parabolic equation modelling the spread of an epidemic}, Ann. Mat. Pura Appl. 143 (1986), 385-400. \bibitem{passo-luckhans-ughi} D. Passo and S. Luckhans; \emph{A degenarate diffusion problem not in divergence form}. J. Diff. Eqns 69, 1-14 (1987). \bibitem{bertsch-passo-ughi} M. Bertsch, D. Passo and M. Ughi; \emph{Nonuniquenss of solutions of a degenarate parabolic equation}, Ann. Mat. Pura Appl. (4) 161 (1992), 57-81. \bibitem{gilding} B. H. Gilding; \emph{H\"{o}lder continuity of solutions of parabolic equations}, J. London Math. Soc. (2), 13 (1976), 103-106. \bibitem{lu-willi} Yunguang Lu and Willi J\"{a}ger; \emph{On solutions to nonliner Reaction-diffusion-convection equations with dengenerate diffusion}, J. Diff. Eqns 170, 1-21 (2001). \bibitem{zhao-chen} Yan-Yan Zhao and Zu-Chi Chen; \emph{Regularity of viscosity solutions to a degenerate nonlinear cauchy problem}, to appear in Nonlinear Analysis TMA. \end{thebibliography} \end{document}