\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 178, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/178\hfil Integro-differential inclusions] {Existence of solutions for some Hammerstein type integro-differential inclusions} \author[N. T. Hoai, N. V. Loi \hfil EJDE-2007/178\hfilneg] {Nguyen Thi Hoai, Nguyen Van Loi} % in alphabetical order \address{Nguyen Thi Hoai \newline Faculty of mathematics, Voronezh State Pedagogical University, Russia} \email{nthoai0682@yahoo.com} \address{Nguyen Van Loi \newline Faculty of mathematics, Voronezh State Pedagogical University, Russia} \email{loitroc@yahoo.com} \thanks{Submitted December 27, 2006. Published December 17, 2007.} \subjclass[2000]{47H04, 34A60, 47H10} \keywords{Multivalued map; differential inclusion; fixed point} \begin{abstract} In the present work we obtain existence results for Hammerstein type integro-differential inclusions in a finite dimensional space for the cases when the integral multifunction satisfies upper Caratheodory conditions and when it is almost lower semicontinuous. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Integral inclusions of the Hammerstein type have been studied in the articles \cite{ApZa1,ApZa2,BuLya,CaPa,Coff,GlaSpe,HuPa2,Loi,LoOb,Lyap,Oreg,Papa} and others. In a finite-dimentional space the inclusion was been studied in \cite{ApZa1,BuLya,GlaSpe,Loi,Lyap,Oreg}. O'Regan \cite{Oreg} investigated solvability of the inclusions in $\mathbb{R}$; Glashoff and Sprekels \cite{GlaSpe} considered the integral inclusions, arising in the theory of thermostats; Bulgakov and Lyapin \cite{BuLya} studied the properties of the set of solutions of the inclusions of Vollterra-Hammerstein type. The existence of solutions of the Hammerstein's integral inclusions in $\mathbb{R}^n$ was established in \cite{ApZa1,Loi}. For the inclusions in Banach space the problem of existence of solutions was considered in \cite{CaPa,HuPa2,LoOb}. In the present work, applying the fixed point principle of Bohnenblust - Karlin we give existence results for the Hammerstein type integro-differential inclusion \begin{equation}\label{eq1} u(t)\in\int_{a}^{b}K(t,s)F(s,u(s),u'(s))ds. \end{equation} in $\mathbb{R}^n$. Let $X,Y$ be normed spaces; $P(Y)\ [C(Y), K(Y), Cv(Y), Kv(Y)]$ denote the collections of all nonempty [respectively, nonempty: closed, compact, closed convex and compact convex] subsets of $Y$. Recall (see, e.g. \cite{BGMO,HuPa1,KOZ}) that, a multimap $F:\ X\to{P(Y)}$ is said to be upper semicontinuous (u.s.c.) [lower semicontinuous (l.s.c.)] if the set $F_{+}^{-1}(V)=\{x\in{X}\mid{F(x)\subset{V}}\}$ is open [closed] for every open [respectively, closed] subset $V\subset{Y}$. A multimap $F$ is said to be compact if the set $F(X)$ is relatively compact in $Y$. Let $C([a,b],\mathbb{R}^n)\ [C^{1}([a,b],\mathbb{R}^n), L^1([a,b],\mathbb{R}^n)]$ denote the collections of all continuous [respectively, continuously differentiable, integrable] functions on $[a,b]$ with values in $\mathbb{R}^n$. Let $F: [a,b]\times\mathbb{R}^n\times\mathbb{R}^n\to{Kv{(\mathbb{R}^n)}}$ be a multimap, satisfying the following assumptions: \begin{itemize} \item[(F1)] For every $x\in\mathbb{R}^n\times\mathbb{R}^n$ the multifunction $F(\cdot,x): [a,b]\to{Kv({\mathbb{R}^n})}$ has a measurable selection; i.e., there exists a measurable function $f(\cdot)\in L^{1}([a,b],\mathbb{R}^{n})$ such that $f(t)\in{F(t,x)}$ for a.e. $t\in{[a,b]}$; \item[(F2)] For a.e. $t\in{[a,b]}$ the multimap $F(t,\cdot):\mathbb{R}^n\times\mathbb{R}^n\to{Kv(\mathbb{R}^n)}$ is u.s.c.; \item [(F3)] For every bounded subset $\Omega\subset\mathbb{R}^n\times\mathbb{R}^n$ there exists a positive function $\vartheta_{\Omega}(\cdot)\in{L^1([a,b],\mathbb{R})}$ such that $$ \|F(t,x)\|_{\mathbb{R}^n}\leq\vartheta_{\Omega}(t), $$ for all $x\in\Omega$ and a.e. $t\in{[a,b]}$, where $\|F(t,x)\|_{\mathbb{R}^n}= \max\{\|y\|_{\mathbb{R}^n}:y\in{F(t,x)}\}$. \end{itemize} It is known (see, e.g. \cite{BGMO}) that under these conditions the superposition multioperator \begin{gather*} \wp_{F}: C([a,b],\mathbb{R}^n\times\mathbb{R}^n)\to{Cv(L^{1}([a,b], \mathbb{R}^n))},\\ \wp_{F}(u)=\{f\in{L^{1}([a,b],\mathbb{R}^n): f(s)\in{F(s,u(s))}, \text{ for a.e. }s\in{[a,b]}}\}, \end{gather*} is well defined and closed; i.e., it has a closed graph. For every function $u\in{C^{1}([a,b],\mathbb{R}^n)}$ the function \begin{gather*} v: [a,b]\to{\mathbb{R}^n\times\mathbb{R}^n},\\ v(s)=(u(s),u'(s)), \end{gather*} is continuous. And hence the multioperator \begin{gather*} \wp_{F}^{1}: C^{1}([a,b],\mathbb{R}^n)\to{Cv(L^{1}([a,b],\mathbb{R}^n))},\\ \wp_{F}^{1}(u)=\wp_{F}(v), \end{gather*} is defined and closed. Consider the linear operator \begin{gather*} A:L^{1}([a,b],\mathbb{R}^n)\to{C^{1}([a,b],\mathbb{R}^n)},\\ A(f)(t)=\int_{a}^{b}K(t,s)f(s)ds, \end{gather*} where $K:\ [a,b]\times{[a,b]}\to{L(\mathbb{R}^n)}$ and $L(\mathbb{R}^n)$ denotes the collection of all linear operators in $\mathbb{R}^n$. The following statement can be easily verified. \begin{theorem}\label{th1} Let the kernel $K: [a,b]\times{[a,b]}\to{L(\mathbb{R}^n)}$ satisfy the following assumptions: \begin{itemize} \item[(K1)] the function $K(\cdot,s)x:\ [a,b]\to\mathbb{R}^n$ is differentiable on $[a,b]$ for all $x\in\mathbb{R}^n$ and a.e. $s\in{[a,b]}$; i.e., there exists $K_{t}'(t,s)\in{L(\mathbb{R}^n)}$ such that: $$ \lim_{\Delta{t}\to{0}}\frac{K(t+\Delta{t},s)x- K(t,s)x}{\Delta{t}}=K_{t}'(t,s)x, $$ for all $t\in{[a,b]}, x\in\mathbb{R}^n$ and a.e. $s\in{[a,b]}$; \item[(K2)] there exists $K>0$ such that $$ \|K(t,s)\|_{L}\leq{K},\quad \|K_{t}'(t,s)\|_{L}\leq{K},\quad \big\|\frac{K(t+\Delta t,s)-K(t,s)}{\Delta t}\big\|\leq K, $$ for all $t,t+\Delta t \in{[a,b]}$ and a.e. $s\in{[a,b]}$; \item[(K3)] for every $t\in{[a,b]}$ the functions $s\mapsto{K(t,s)x}$ and $s\mapsto{K_{t}'(t,s)x}$ are integrable for all $x\in\mathbb{R}^n$; \item[(K4)] there exist a positive function $\omega(\cdot)\in{L^{1}([a,b],\mathbb{R})}$ and a function $\eta(\cdot)\in C([a,b],\mathbb{R})$ such that $$ \|K_{t}'(t_2,s)-K_{t}'(t_1,s)\|_{L}\leq\omega(s)|\eta(t_2) - \eta(t_1)|, $$ for all $t_{1},t_{2}\in{[a,b]}$ and a.e. $s\in{[a,b]}$. \end{itemize} Then the operator $A$ is completely continuous. \end{theorem} Following \cite[Theorem 1.5.30]{BGMO} we obtain the following result. \begin{theorem}\label{th2} Let multimap $F: [a,b]\times\mathbb{R}^n\times\mathbb{R}^n \to{Kv{(\mathbb{R}^n)}}$ satisfy the assumptions {\rm (F1)--(F3)} and the operator $A$ satisfy conditions {\rm (K1)--(K4)}. Then the multioperator $A\circ\wp_{F}^{1}$ is closed. \end{theorem} Consider the integral multioperator \begin{gather*} \Gamma=A\circ\wp_{F}^{1}:\ C^{1}([a,b],\mathbb{R}^n) \to{Kv(C^{1}([a,b],\mathbb{R}^n))},\\ \Gamma(u)(t)=\int_{a}^{b}K(t,s)F(s,u(s),u'(s))ds. \end{gather*} Applying \cite[Theorem 1.2.48]{BGMO}, Theorem \ref{th1} and Theorem \ref{th2} we obtain the following theorem. \begin{theorem}\label{th3} Let the conditions {\rm (K1)--(K4)} and {\rm (F1)--(F3)} hold. Then multioperator $\Gamma$ is u.s.c. and the restriction of $\Gamma$ to any bounded subset $\Omega\subset{C^{1}([a,b],\mathbb{R}^n)}$ is compact; i.e., the set $\Gamma(\Omega)$ is relatively compact. \end{theorem} Consider now the multioperator $\Gamma$ when the multimap $F:{[a,b]}\times\mathbb{R}^n\times\mathbb{R}^n\to{K(\mathbb{R}^n)}$ is almost lower semicontinuous (a.l.s.c.). Recall (see, e.g. \cite{BGMO,KOZ}) that $F$ is said to be an a.l.s.c. multimap if there exists a sequence of disjoint compact sets $\{I_m\}, {I_m}\subset{{[a,b]}}$ such that: \begin{itemize} \item[(i)] meas$([a,b]\setminus\bigcup_{m}I_{m})=0$; \item[(ii)] the restriction of $F$ on each set ${J_m}={I_m}\times{\mathbb{R}^n\times\mathbb{R}^n}$ is l.s.c. \end{itemize} We also assume that $F$ satisfies the condition of boundedness (F3). Then the superposition multioperator $$ \wp_{F}^{1}: C^{1}([a,b];\mathbb{R}^n)\to{C(L^{1}([a,b];\mathbb{R}^n))} $$ is l.s.c. (see \cite{BGMO,Deim,KOZ}). Consider again the multioperator $$ A\circ\wp_{F}^{1}: C^{1}([a,b];\mathbb{R}^n)\to{P(C^{1}([a,b];\mathbb{R}^n))}, $$ where the operator $A$ is given by the above conditions {\rm (K1)--(K4)}. From \cite[Theorem 1.3.11]{BGMO} it follows easily that the multioperator $\Gamma=A\circ\wp_{F}^{1}$ is l.s.c. The following statement can be easily verified. \begin{theorem}\label{th4} Let {\rm (F1), (F3)} and {\rm (K1)--(K4)} hold. Then for any bounded subset $\Omega\subset{C^{1}([a,b];\mathbb{R}^n)}$ the set $\Gamma(\Omega)$ is relatively compact. \end{theorem} Let $E$ be a Banach space. A nonempty subset $M\subset{L^{1}([a,b];E)}$ is said to be decomposable provided for every $f,g\in{M}$ and each Lebesgue measurable subset $m\subset{[a,b]}$, $$ {f\cdot{k_m}+h\cdot{k_{([a,b]\setminus{m})}}}\in{M}, $$ where $k_{m}$ is the characteristic function of the set $m$ (see, e.g. \cite{BGMO,Frys,KOZ} for further details). \begin{theorem}[\cite{Frys}] \label{th5} Let $X$ be a separable metric space and $E$ a Banach space. Then every l.s.c. multimap $G: X\to{P(L^{1}([a,b];E))}$ with closed decomposable values has a continuous selection; i.e., there exists a continuous map $g: X\to{L^{1}([a,b];E)}$ such that $g(x)\in{G(x)}$ for all $x\in{X}$. \end{theorem} It is clear that for every $u\in{C^{1}([a,b];\mathbb{R}^n)}$, the set $\wp_{F}^{1}(u)$ is closed and decomposable. Then the multioperator $\wp_{F}^{1}$ has a continuous selection $$ \ell: C^{1}([a,b];\mathbb{R}^n)\to{L^{1}([a,b];\mathbb{R}^n)},\quad \ell(u)\in{\wp_{F}^{1}(u)}. $$ Therefore, the continuous operator $\gamma:C^{1}([a,b];\mathbb{R}^n)\to{C^{1}([a,b];\mathbb{R}^n)}$, $$ \gamma(u)(t)=\int_{a}^{b}K(t,s)\ell(u)(s)ds $$ is a continuous selection for the multioperator $\Gamma$. By virtue of Theorem \ref{th4}, the operator $\gamma$ is completely continuous and its fixed points are also fixed points of the multioperator $\Gamma$. \section{Main results} In this section, we give some existence results of solutions of the inclusion \eqref{eq1}. \begin{theorem} \label{th6} Let the conditions {\rm (K1)--(K4)} and {\rm (F1)--(F2)} hold. Assume that: \begin{itemize} \item[(F3')] there exists a positive function $\omega\in{L^{1}([a,b],\mathbb{R})}$ such that $$ \|F(t,x,y)\|_{\mathbb{R}^n}\leq\omega(t)(1+\|x\|_{\mathbb{R}^n} +\|y\|_{\mathbb{R}^n}), $$ for all $x,y\in\mathbb{R}^n$ and a.e. $t\in{[a,b]}$; \item[(F4)] $2K\int_{a}^{b}\omega(t)dt<1$, where $K$ is the constant from the condition {\rm (K2)}. \end{itemize} Then the inclusion \eqref{eq1} has at least one solution. \end{theorem} \begin{proof} It is easy to see that from (F3') we obtain (F3). Consider the multioperator $\Gamma$ on the ball $T=T({\|u\|}_{C^{1}}\leq{\rho})$. We have $$ \|\Gamma(u)\|_{C^{1}}=\max\big\{\big\|\int_{a}^{b}K(t,s)f(s)ds \big\|_{C^{1}}: f\in\wp_{F}^{1}(u)\big\}, $$ where \begin{align*} \big\|\int_{a}^{b}K(t,s)f(s)ds\big\|_{C^{1}} &=\max\big\{\big\|\int_{a}^{b}K(t,s)f(s)ds\big\|_{\mathbb{R}^n}: t\in{[a,b]}\big\}\\ &\quad +\max\big\{\big\|\int_{a}^{b}K_{t}'(t,s)f(s)ds\big\|_{\mathbb{R}^n}: t\in{[a,b]}\big\}. \end{align*} It is clear that \[ \big\|\int_{a}^{b}K(t,s)f(s)ds\big\|_{\mathbb{R}^n}\leq \int_{a}^{b}\|K(t,s)\|_{L}\|f(s)\|_{\mathbb{R}^n}ds \leq K\int_{a}^{b}\|f(s)\|_{\mathbb{R}^n}ds, \] and \[ \big\|\int_{a}^{b}K_{t}'(t,s)f(s)ds\big\|_{\mathbb{R}^n}\leq \int_{a}^{b}\|K_{t}'(t,s)\|_{L}\|f(s)\|_{\mathbb{R}^n}ds \leq K\int_{a}^{b}\|f(s)\|_{\mathbb{R}^n}ds. \] Since $f(s)\in{F(s,u(s),u'(s))}$ for a.e. $s\in{[a,b]}$ we have \begin{align*} \|f(s)\|_{\mathbb{R}^n}&\leq\|F(s,u(s),u'(s))\|_{\mathbb{R}^n}\\ & \leq\omega(s)(1+\|u(s)\|_{\mathbb{R}^n}+\|u'(s)\|_{\mathbb{R}^n})\\ & \leq\omega(s)(1+\|u\|_{C^{1}})\\ & \leq\omega(s)(1+\rho), \end{align*} for a.e. $s\in{[a,b]}$. Consequently, $$ K\int_{a}^{b}\|f(s)\|_{\mathbb{R}^n}\:ds\leq{K(1+\rho) \int_{a}^{b}\omega(s)ds}. $$ And hence $$ \big\|\int_{a}^{b}K(t,s)f(s)ds\big\|_{C^{1}}\leq 2K(1+\rho)\int_{a}^{b}\omega(s)ds. $$ The last inequality is true for all $f\in\wp_{F}^{1}(u)$, and so we obtain $$ \|\Gamma(u)\|_{C^{1}}\leq{2K(1+\rho)\int_{a}^{b}\omega(s)ds}. $$ Choose $\rho$ so that \[ \rho\geq\frac{2K{\int_{a}^{b}\omega(s)ds}}{1-2K\int_{a}^{b}\omega(s)ds}. \] Then $\|\Gamma(u)\|_{C^{1}}\leq{\rho}$. Consider the upper semicontinuous multioperator $\Gamma: T\to{Kv(T)}$. By Theorem \ref{th3}, the multioperator $\Gamma$ is compact. From the Bohnenblust-Karlin Theorem (see, e.g. \cite{BGMO}) it follows that the multioperator $\Gamma$ has at least one fixed point $u^{*}\in{T}$: $u^{*}\in\Gamma(u^{*})$. The function $u^{*}$ is a solution of the inclusion \eqref{eq1}. \end{proof} \begin{theorem}\label{th7} Let the conditions {\rm (K1)--(K4)} and $(F_L)$ hold. Assume that there exist two numbers $\lambda,\beta\in\mathbb{R};\beta>0$ and a positive function $\omega\in{L^{1}([a,b],\mathbb{R})}$ such that: \begin{itemize} \item[(F3'')] $\|F(t,x,y)-\lambda{(x+y)}\|_{\mathbb{R}^n}\leq \beta(\|x\|_{\mathbb{R}^n}+\|y\|_{\mathbb{R}^n})+\omega(t)$, for all $x,y\in\mathbb{R}^n$ and a.e. $t\in{[a,b]}$; \item[(F5)] $2K(b-a)(\beta+|\lambda|)<1$, where $K$ is the constant from (K2). \end{itemize} Then inclusion \eqref{eq1} has at least one solution. \end{theorem} For the proof we need the following result (see, e.g. \cite{Kras}). \begin{lemma}\label{lm1} Let $A$ be nonlinear and $B$ be linear completely continuous operators in a Banach space $E$. If on the sphere $S=S(\|x\|=\rho)$ the following inequality holds $$ \|Ax-Bx\|<\|x-Bx\|. $$ Then the equation $x=Ax$ in the ball $T(\|x\|\leq{\rho})$ has at least one solution. \end{lemma} \begin{proof}[Proof of Theorem \ref{th7}] It is easy to see that from (F3'') we have $$ \|F(t,x,y)\|_{\mathbb{R}^n}\leq(\beta+|\lambda|)(\|x\|_{\mathbb{R}^n}+ \|y\|_{\mathbb{R}^n})+\omega(t), $$ for all $x,y\in\mathbb{R}^n$ and a.e. $t\in{[a,b]}$. And hence we obtain (F3). Consider a linear operator $B:{C^{1}([a,b];\mathbb{R}^n)}\to{C^{1}([a,b];\mathbb{R}^n)}$, $$ Bu(t)=\lambda\int_{a}^{b}K(t,s)(u(s)+u'(s))ds. $$ It is clear that $B$ is completely continuous. Consider the multioperator $\Gamma$ and the operator $B$ on $S=S({\|u\|}_{C^{1}}=\rho)$. For each function $u\in{S}$ we have $$ \|\Gamma{u}-B{u}\|_{C^{1}}=\sup\big\{\big\|\int_{a}^{b}K(t,s)[f(s)-\lambda (u(s)+u'(s))]ds\big\|_{C^{1}}:f\in\wp_{F}(u)\big\}. $$ On the other hand \begin{align*} &\big\|\int_{a}^{b}K(t,s)[f(s)-\lambda{(u(s)+u'(s)}]ds\big\|_{C^{1}}\\ &=\max_{t\in{[a,b]}}\big\|\int_{a}^{b}K(t,s)[f(s)-\lambda(u(s)+u'(s))]ds \big\|_{\mathbb{R}^n}\\ &\quad +\max_{t\in{[a,b]}}\big\|\int_{a}^{b}K_{t}'(t,s)[f(s) -\lambda{(u(s)+u'(s))}]ds\big\|_{\mathbb{R}^n}\\ &\leq\max_{t\in{[a,b]}}\int_{a}^{b}\|K(t,s)\|_{L} \|f(s)-\lambda(u(s)+u'(s))\|_{\mathbb{R}^n}ds\\ &\quad +\max_{t\in{[a,b]}}\int_{a}^{b}\|K_{t}'(t,s)\|_{L} \|f(s)-\lambda(u(s)+u'(s))\|_{\mathbb{R}^n}ds\\ &\leq {2K\int_{a}^{b}\|f(s)-\lambda(u(s)+u'(s))\|_{\mathbb{R}^n}ds}. \end{align*} Since $f(s)\in{F(s,u(s),u'(s))}$ for a.e. $s\in{[a,b]}$ we have \begin{align*} \|f(s)-\lambda(u(s)+u'(s))\|_{\mathbb{R}^n} &\leq \|F(s,u(s),u'(s))-\lambda(u(s)+u'(s))\|_{\mathbb{R}^n}\\ &\leq\beta(\|u(s)\|_{\mathbb{R}^n}+\|u'(s)\|_{\mathbb{R}^n})+\omega(s)\\ &\leq\beta\|u\|_{C^{1}}+\omega(s)=\beta\rho+\omega(s),\: \end{align*} for a.e. $s\in{[a,b]}$. Therefore, \begin{align*} \big\|\int_{a}^{b}K(t,s)[f(s)-\lambda(u(s)+u'(s))]ds\big\|_{C^{1}} &\leq 2K\int_{a}^{b}(\beta\rho+\omega(s))ds \\ &\leq 2K\beta\rho(b-a)+2K\int_{a}^{b}\omega(s)ds. \end{align*} The above inequality holds for all $f\in\wp_{F}^{1}(u)$, and so we obtain $$ \|\Gamma{u}-Bu\|_{C^{1}}\leq{2K\beta\rho(b-a)+2K\int_{a}^{b}\omega(s)ds}, \quad\forall{u\in{S}}. $$ On the other hand for each $t\in{[a,b]}$ we have \begin{align*} \|u(t)-B(u)(t)\|_{\mathbb{R}^n} &=\big\|u(t)-\lambda\int_{a}^{b}K(t,s)(u(s)+u'(s))ds \big\|_{\mathbb{R}^n}\\ &\geq\|u(t)\|_{\mathbb{R}^n}-\|\lambda\int_{a}^{b} K(t,s)(u(s)+u'(s))ds\|_{\mathbb{R}^n}\\ &\geq\|u(t)\|_{\mathbb{R}^n}-|\lambda|\int_{a}^{b}\|K(t,s)\|_{L} \|u(s)+u'(s)\|_{\mathbb{R}^n}ds\\ &\geq\|u(t)\|_{\mathbb{R}^n}-|\lambda|\int_{a}^{b}K\|u\|_{C^{1}}ds\\ &\geq\|u(t)\|_{\mathbb{R}^n}-K\rho|\lambda|(b-a). \end{align*} Analogously, $$ \|u'(t)-(B(u))'(t)\|_{\mathbb{R}^n}\geq\|u'(t)\|_{\mathbb{R}^n} -K\rho|\lambda|(b-a). $$ And hence we obtain \begin{align*} \|u-Bu\|_{C^{1}} &=\max_{t\in{[a,b]}}\|u(t)-Bu(t)\|_{\mathbb{R}^n}+ \max_{t\in{[a,b]}}\|u'(t)-(Bu)'(t)\|_{\mathbb{R}^n}\\ &\geq\|u\|_{C^{1}}-2K\rho|\lambda|(b-a) \\ &=\rho(1-2K|\lambda|(b-a)). \end{align*} Choose $\rho$ so that $\rho>{\frac{2K{\int_{a}^{b}\omega(s)ds}}{1-2K(b-a)(\beta+|\rho|)}}$. Then $\|\Gamma{u}-Bu\|_{C^{1}}<\|u-Bu\|_{C^{1}}$, for all ${u\in{S}}$. Let $\gamma$ be an arbitrary continuous selection of the multioperator $\Gamma$. Then on the sphere $S$ we have $$ \|\gamma{u}-Bu\|_{C^{1}}\leq\|\Gamma{u}-Bu\|_{C^{1}}<\|u-Bu\|_{C^{1}}\,. $$ By Lemma \ref{lm1}, the operator $\gamma$ has at least one fixed point in the ball $T(\|u\|_{C^{1}}<\rho)$: $u_{*}=\gamma(u_{*})$. The function $u_{*}$ is a solution of the inclusion \eqref{eq1}. \end{proof} \begin{theorem} \label{thm2.4} Let the conditions {\rm (K1)--(K4), (F1), (F3'), (F4)} hold. Then inclusion \eqref{eq1} has at least one solution. \end{theorem} \begin{proof} From the proof of Theorem \ref{th6} it follows that with the conditions (F3') and (F4) we can choose a number $\rho >0$ such that the multioperator $\Gamma$ maps the ball $ T (\|u\|_{C^{1}}\leq\rho)$ into itself. Let $\gamma$ be an arbitrary continuous selection of the multioperator $\Gamma$. Then the operator $\gamma$ maps the ball $ T (\|u\|_{C^{1}}\leq\rho)$ into itself. Consider the completely continuous operator $\gamma:{T}\to{T}$. From the Schauder fixed point theorem, the operator $\gamma$ has at least one fixed point on $T$, i.e. there exists a function $u_{*}\in{T}$ such that: $u_{*}=\gamma(u_{*})$. The function $u_{*}$ is a solution of the inclusion \eqref{eq1}. \end{proof} \begin{thebibliography}{00} \bibitem{ApZa1} J. Appell, E. De Pascale, H.T. Nguyen and P. Zabrejko; \emph{Nonlinear integral inclusions of Hammerstein type}, Topol. Meth. Nonlin. Anal. {\bf 5}(1995), pp. 111-124. \bibitem{ApZa2} J. Appell, E. De Pascale, H. T. Nguyen and P. Zabrejko; \emph{Multivalued superposition.} Dissertationes Math. (Rozprawy Mat.) {\bf 345} (1995), 1-97. \bibitem{BGMO} Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis and V. V. Obukhovskii; \emph{Introduction to the Theory of Multimap and Differential Inclusions,} -Moscow: KomKnhiga, 2005, 216p. (Russian) \bibitem{BuLya} A. I. Bulgakov and L. N. Lyapin; \emph{Some properties of the set of solutions for the Volterra-Hammerstein integral inclusion,} Differential Equations (Transl.) {\bf 14} (1978), pp. 1043--1048 \bibitem{CaPa} T. Cardinali and N. S. Papageorgiou; \emph{Hammerstein integral inclusions in reflexive Banach space}, Proc AMS {\bf{127}}(1999), pp. 95-103. \bibitem{Coff} C. V. Coffmann, \emph{Variational theory of set-valued Hammerstein operators in Banach spaces. The eigenvalue problem}, Ann. Scuola Norm. Sup. Pisa. {\bf 4}(1978), pp. 633-655. \bibitem{Deim} K. Deimling, \emph{Multivalued differential equations,} Walter de Gruyter, Berlin-New York, 1992. \bibitem{Frys} A. Fryszkowski, \emph{Fixed point theory for decomposable sets.} Kluwer Academic Publishers, Dordrecht, 2004. \bibitem{GlaSpe} K. Glashoff and J. Sprekels; \emph{An application of Glickberg's theorem to set-valued integral equations arising in the theory of thermostats}, SIAM J. Math. Anal. Vol{\bf{13}}, No.{\bf{3}} (1981). \bibitem{HuPa1} S. Hu, N.S. Papageorgiou; \emph{Handbook of multivalued analysis}. Vol. {\bf I}. Theory. Kluwer, Dordrecht, 1997. \bibitem{HuPa2} S. Hu, N. S. Papageorgiou; \emph{Handbook of multivalued analysis}. Vol. {\bf II}. Applications. Kluwer, Dordrecht, 2000. \bibitem{KOZ} M. Kamenskii, V. Obukhovskii, and P. Zecca; \emph{Condensing multivalued maps and semilinear differential inclusions in Banach spaces}, Walter de Gruyter, Berlin-New York, 2001. \bibitem{Kras} M. A. Krasnoselskii, \emph{Topological Methods in Theory of Nonlinear Integral Equations,} Moscow: State Publishing House, 1956 (Russian); English edition: Macmillan, New York, 1964. \bibitem{Loi} N. V. Loi; \emph{On the existence of solutions for some classes of Hammerstein type integral inclusions}, Vesnik VSU {\bf 2}/2006, pp. 169-174. (Russian) \bibitem{LoOb} N. V. Loi, V. V. Obukhovskii, \emph{Integral inclusions of Hammerstein type in Banach space}. Trudy Matematicheskogo Fakulteta. Novaya Seriya {\bf{11}}(2007), pp. 138-149. \bibitem{Lyap} L. Lyapin, \emph{Hammerstein inclusions}, Diff. Equations, {\bf 10} (1976),pp. 638-642. \bibitem{Oreg} D. O'Regan, \emph{Integral inclusions of upper semicontinuous or lower semicontinuous type}, Proc. AMS {\bf{124}}(1996), pp. 2391-2399. \bibitem{Papa} N. S. Papageorgiou, \emph{Convergence theorems for Banach spaces valued integrable multifunctions}, Intern. J. Math. and Math. Sci. {\bf 10}(1987), pp. 433-442. \end{thebibliography} \end{document}