\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 23, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/23\hfil Multiple positive solutions] {Multiple positive solutions for fourth-order three-point $p$-Laplacian boundary-value problems} \author[H. Feng, M. Feng, M. Jiang, W. Ge\hfil EJDE-2007/23\hfilneg] {Hanying Feng, Meiqiang Feng, Ming Jiang, Weigao Ge} % in alphabetical order \address{Hanying Feng \newline Department of Mathematics, Beijing Institute of Technology \\ Beijing 100081, China.\newline Department of Mathematics, Shijiazhuang, Mechanical Engineering College, Shijiazhuang 050003, China} \email{fhanying@yahoo.com.cn} \address{Meiqiang Feng \newline Department of Mathematics\\ Beijing Institute of Technology\\ Beijing 100081, China\newline Department of Fundamental Sciences, Beijing Information Technology Institute, Beijing, 100101, China} \email{meiqiangfeng@sina.com} \address{Ming Jiang \newline Department of Mathematics, Shijiazhuang Mechanical Engineering College\\ Shijiazhuang 050003, China} \email{jiangming27@163.com} \address{Weigao Ge \newline Department of Mathematics\\ Beijing Institute of Technology\\ Beijing 100081, China} \email{gew@bit.edu.cn} \thanks{Submitted November 30, 2006. Published February 4, 2007.} \thanks{Supported by grants 10671012 from NNSF, and 20050007011 from SRFDP of China} \subjclass[2000]{34B10, 34B15, 34B18} \keywords{Fourth-order boundary-value problem; one-dimensional $p$-Laplacian; \hfill\break\indent five functional fixed point theorem; positive solution} \begin{abstract} In this paper, we study the three-point boundary-value problem for a fourth-order one-dimensional $p$-Laplacian differential equation $$ \big(\phi_p(u''(t))\big)''+ a(t)f\big(u(t)\big)=0, \quad t\in (0,1), $$ subject to the nonlinear boundary conditions: \begin{gather*} u(0)=\xi u(1),\quad u'(1)=\eta u'(0),\\ (\phi _{p}(u''(0))' =\alpha _{1}(\phi _{p}(u''(\delta))', \quad u''(1)=\sqrt[p-1]{\beta _{1}}u''(\delta), \end{gather*} where $\phi_{p}(s)=|s|^{p-2}s$, $p>1$. Using the five functional fixed point theorem due to Avery, we obtain sufficient conditions for the existence of at least three positive solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}{Definition}[section] \section{Introduction} This paper concerns the existence of three positive solutions for the fourth-order three-point boundary-value problem (BVP for short) consisting of the $p$-Laplacian differential equation \begin{equation}\label{e1.1} \big(\phi_p(u''(t))\big)''+a(t)f(u(t))=0,\quad t\in (0,1), \end{equation} with the nonlinear boundary conditions \begin{equation}\label{e1.2} \begin{gathered} u(0)=\xi u(1),\quad u'(1)=\eta u'(0),\\ (\phi _{p}(u''(0))' =\alpha_{1}(\phi _{p}(u''(\delta))',\quad u''(1)=\sqrt[p-1]{\beta_{1}}u''(\delta), \end{gathered} \end{equation} where $f:R\to[0,+\infty)$ and $a:(0,1)\to[0,+\infty)$ are continuous functions, $\phi_{p}(s)=|s|^{p-2}s$, $p>1$, $\alpha_{1}$, $\beta_{1}\geq0$, $\xi\neq1$, $\eta\neq1$ and $0<\delta<1$. Two-point boundary-problems for differential equation are used to describe a number of physical, biological and chemical phenomena. For additional background and results, we refer the reader to the monograph by Agawarl, O'Regan and Wong \cite{ag} as well as to the recent contributions by \cite{av1,el,gr,gr1,mr}. Boundary-value problems for $n$-th order differential equation \cite{he,lb,pa} and even-order can arise, especially for fourth-order equations, in applications, see \cite{bo,bo1,bo2,bo4,ch} and references therein. Recently, three-point boundary-value problems of the differential equations were presented and studied by many authors, see \cite{ fw1,gu,gu1,mr1} and the references cite there. However, three-point BVP \eqref{e1.1}, \eqref{e1.2} have not received as much attention in the literature as Lidstone condition BVP \begin{equation}\label{e1.3} \begin{gathered} u''''(t)=a(t)f(u(t)),\quad t\in (0,1),\\ u(0)=u(1)=u''(0)=u''(1)=0, \end{gathered} \end{equation} and the three-point BVP for the second-order differential equation \begin{equation}\label{e1.4} \begin{gathered} u''(t)+a(t)f(u(t))=0,\quad t\in (0,1),\\ u(0)=0,\quad u(1)=\alpha u(\eta ), \end{gathered} \end{equation} that were extensively considered, in \cite{gr,gr1,mr} and \cite{mr1}, respectively. The results of existence of positive solutions of BVP \eqref{e1.1}, \eqref{e1.2} are relatively scarce. Most recently, Liu and Ge studied two class of four-order four-point BVPs successively in \cite{ly, ly1}. They proved that existence of at least two or three positive solutions. To the best of our knowledge, existence results of multiple positive solutions for fourth-order three-point BVP \eqref{e1.1}, \eqref{e1.2} have not been found in literature. Motivated by the works in \cite{ly, ly1}, the purpose of this paper is to establish the existence of at least three positive solutions of \eqref{e1.1}, \eqref{e1.2}. For the remainder of the paper, we assume that: \begin{itemize} \item[(i)] $0 < \int_{0}^{1}a(s)ds < \infty$; \item[(ii)] $q$ satisfies $\frac{1 }{p} + \frac{1}{q}=1$ and $\phi_q(z) = |z|^{q-2}z$. \end{itemize} \section{Background and definitions} For the convenience of the reader, we provide some background material from the theory of cones in Banach spaces. We also state in this section a fixed point theorem by Avery. \begin{definition} \label{de2.1} \rm Let $X$ be a real Banach space. A nonempty closed set $P \subset X$ is said to be a cone provided that \begin{itemize} \item[(i)] $x\in P$ and $\lambda\geq0$ implies $\lambda x\in X$, and \item[(ii)] $x\in P$ and $-x \in P$ implies $x=0$. \end{itemize} \end{definition} Every cone $P\subset X$ induces an ordering in $X$ given by $x\leq y$ if and only if $y-x\in P$. \begin{definition} \label{2.2} \rm The map $\psi$ is said to be a nonnegative continuous concave functional on a cone $P$ of a real Banach space $E$ provided that $\psi: P\to [0, \infty)$ is continuous and $$ \psi(tx+(1-t)y)\geq t\psi(x)+(1-t)\psi(y) $$ for all $x, y\in P$ and $0 \leq t \leq 1$. Similarly, we say the map $\beta$ is a nonnegative continuous convex functional on a cone $P$ of a real Banach space $E$ provided that $\beta: P\to [0, \infty)$ is continuous and $$ \beta(tx+(1-t)y)\leq t\beta(x)+(1-t)\beta(y) $$ for all $x, y\in P$ and $0 \leq t\leq1$. \end{definition} Let $\gamma, \beta, \theta$ be nonnegative, continuous, convex functionals on $P$ and $\alpha, \psi$ be nonnegative, continuous, concave functionals on $P$. Then for nonnegative numbers $h, a, b, d$ and $c$ we define the following sets: \begin{gather*} P(\gamma,c)=\{x\in P:\gamma(x)a\}\neq \emptyset$ and $x\in P(\gamma,\theta ,\alpha,a,b,c)$ implies $\alpha (Tx)>a$. \item[(ii)] $\{x\in Q(\gamma,\beta,\psi ,h,d,c): \beta (x)b$ implies $\alpha (Tx)>a$. \item[(iv)] $x\in Q(\gamma,\beta ,d,c)$ with $\psi(Tx)1$, $0 \phi_p(\frac{b}{B}),\quad b\le w\le \frac{t_2}{t_1}b,\\ \label{e4.3} f(w)\leq \phi_p(\frac{c}{A }),\quad 0\le w\le\frac{1}{t_{3}}c , \end{gather} where \begin{gather*} A=\int_0^1h(t_{3},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)d\tau\Big)ds,\\ B=\int_0^1h(t_{1},s) \phi_q\Big(\int_{t_{1}}^{t_{2}}g(s,\tau)a(\tau)d\tau\Big)ds,\\ C=\int_0^1h(1,s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)d\tau\Big)ds. \end{gather*} Then \eqref{e1.1}, \eqref{e1.2} has at least three positive solutions $u_{1}, u_{2}, u_{3}\in\overline{P_{1}(\gamma,c)}$ such that \begin{equation} \label{e4.4} u_{1}(t_{1})>b,\quad u_{2}(1)a$, $u_{i}(\delta)\leq c$ for $i=1,2,3$. \end{theorem} \begin{proof} We begin by defining the completely continuous operator $T: P_{1}\to X $ by \eqref{e3.4} as \begin{equation*}(Tu)(t)=\int_0^1h(t,s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds \end{equation*} for $u\in P_{1}$. It is easy to prove that \eqref{e1.1}, \eqref{e1.2} has a positive solution $u=u(t)$ if and only if the operator $T$ has a fixed point on $P_{1}$. Firstly, we prove $T: \overline{P_{1}(\gamma,c)}\subset \overline{P_{1}(\gamma,c)}$. For $u\in P_{1}$, by Remark 3.1, it is easy to check that $Tu\geq0$. Moreover, \begin{align*} (Tu)'(t)&=(1-\xi)\Big(\eta\int_0^t \phi_q\Big(\int_0^1g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\quad +\int_t^1 \phi_q\Big(\int_0^1g(s,\tau)a(\tau)f(u(\tau))d\tau \Big)ds\Big)\geq 0 \end{align*} and \begin{equation*} (Tu)''(t)=-\phi_q\Big(\int_0^1g(t,s)a(s)f(u(s))ds\Big)\leq0. \end{equation*} So, we have $TP_{1}\subset P_{1}$. For $u\in \overline{P_{1}(\gamma,c)}$, $0\leq u(t)\leq\|u\|\leq \frac{1}{t_3}\gamma (u)\leq\frac{1}{t_3}c$. By \eqref{e4.3}, it follows that \begin{align*} \gamma(Tu)&=\max _{0\leq t\leq t_{3}}(Tu)(t)=(Tu)( t_{3})\\ &=\int_0^1h(t_{3},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\leq \int_0^1h(t_{3},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)d\tau\ \phi_{p}(c/A)\Big)ds\\ &=\frac{c}{A}\int_0^1h(t_{3},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)d\tau\Big)ds\\ &=\frac{c}{A}A=c. \end{align*} Thus, $T: \overline{P_{1}(\gamma,c)}\subset \overline{P_{1}(\gamma,c)}$. Secondly, by taking \begin{gather*} u_{1}(t)=b+\varepsilon_{1}\quad \mbox{for } 0<\varepsilon_{1}< \frac{t_{2}}{t_{1}}b-b,\\ u_{2}(t)=a-\varepsilon_{2}\ \mbox{for}\ 0<\varepsilon_{2}< a-\delta a, \end{gather*} It is immediate that \begin{gather*} u_{1}(t)\in\{ P(\gamma,\theta,\alpha ,b,\frac{t_{2}}{t_{1}}b,c):\ \alpha (u)>b\}\neq \emptyset,\\ u_{2}(t)\in\{Q(\gamma,\beta,\psi ,\delta a,a,c):\ \beta (u)b. \end{equation} In fact, $u(t)\geq u(t_{1})=\alpha(u)\geq b$ for $t_{1}\leq t\leq t_{2}$, and $u(t)\leq u(t_{2})=\theta(u)\leq\frac{t_{2}}{t_{1}}b$ for $t_{1}\leq t\leq t_{2}$. Thus using \eqref{e4.2}, one gets \begin{align*} \alpha(Tu) &=\min _{t_{1}\leq t \leq t_{2}}(Tu)(t)=(Tu)(t_{1})\\ &=\int_0^1h(t_{1},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\geq\int_0^1h(t_{1},s) \phi_q\Big(\int_{t_{1}}^{t_{2}}g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &>\int_0^1h(t_{1},s) \phi_q\Big(\int_{t_{1}}^{t_{2}}g(s,\tau)a(\tau)d\tau\ \phi_{p}(b/B)\Big)ds\\ &=\frac{b}{B}\int_0^1h(t_{1},s) \phi_q\Big(\int_{t_{1}}^{t_{2}}g(s,\tau)a(\tau)d\tau\Big)ds\\ &=\frac{b}{B}B=b. \end{align*} Step 2: We show that \begin{equation}\label{e4.6} u\in Q(\gamma,\beta,\psi ,\delta a,a,c)\quad \mbox{implies}\quad \beta (Tu)\frac{t_{2}}{t_{1}}b\quad \mbox{implies}\quad \alpha(Tu)>b. \end{equation} By Lemma \ref{lm3.3}, \begin{align*} \alpha(Tu) &=\min_{t_{1}\leq t \leq t_{2}}(Tu)(t)=(Tu)(t_{1})\\ &=\int_0^1h(t_{1},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &=\int_0^1\frac{h(t_{1},s)}{h(t_{2},s)}h(t_{2},s) \phi_q\Big(\int_{0}^{1}g(s,\tau)a(\tau)f(u(\tau))d\tau\Big)ds\\ &\geq\frac{t_{1}}{t_{2}}(Tu)(t_{2})=\frac{t_{1}}{t_{2}}\theta(Tu)>b. \end{align*} Therefore, the hypotheses of Theorem \ref{thm2.1} are satisfied and there exist three positive solutions $x_{1}, x_{2}, x_{3}$ for BVP \eqref{e1.1}, \eqref{e1.2} satisfying \eqref{e4.4}. \end{proof} Similarly, choose $t_1 ,t_2,t_3\in (0,1)$ and $t_11$, $\alpha_{1}<1$, $0\leq\beta_{1}<1$ and there exist numbers $0 \phi_p(\frac{b}{B}),\quad b\le w\le \frac{1-t_1}{1-t_2}b,\\ \label{e4.12} f(w)\leq \phi_p(\frac{c}{A }),\quad 0\le w\le\frac{1}{t_{3}}c, \end{gather} where \begin{gather*} A=\int_0^1h(t_{3},s) \phi_q\Big(\int_0^1g(s,\tau)a(\tau)d\tau\Big)ds,\\ B=\int_0^1h(t_{2},s) \phi_q\Big(\int_{t_{1}}^{t_{2}}g(s,\tau)a(\tau)d\tau\Big)ds,\\ C=\int_0^1h(0,s)\phi_q\Big(\int_0^1g(s,\tau)a(\tau)d\tau\Big)ds. \end{gather*} Then \eqref{e1.1}, \eqref{e1.2} has at least three positive solutions $u_{1}, u_{2}, u_{3}\in\overline{P_{1}(\gamma,c)}$ such that \[ % %\label{e4.4} u_{1}(t_{2})>b,\quad u_{2}(0)a$ and $u_{i}(\delta)\leq c$ for $i=1,2,3$. \end{theorem} Since the proof of the above theorem is similar to that of Lemma \ref{lm3.4}, we omit it. \subsection*{Acknowledgments} The authors wish to thank the referee for his (or her) valuable corrections to the original manuscript. \begin{thebibliography}{00} \bibitem {ag} R. P. Agarwal, D. O. Regan, and P. J. Y. Wong, \emph{Positive solutions of Differential, Difference, and Integral Equations}, Kluwer Academic, Dordrecht, 1999. \bibitem {av1} R. I. Avery, J. Henderson, \emph{Three symmetric positive solutions for a second-order boundary-value problem}, Appl. Math. Lett. 13 (2000) 1-7. \bibitem {av} R. I. Avery, \emph{A generalization of the Leggett-Williams fixed-point theorem}, Math. Sci. Res. Hot-line, 2 (1998) 9-14. \bibitem {bo} L. E. Bobisud, D. O'Regan, W. D. Royalty, \emph{Existence and nonexistence for a singular boundary-value problem}, Appl. Anal. 28 (1998), 245-256. \bibitem {bo1} L. E. Bobisud, D. O'Regan, W. D. Royalty, \emph{Solbability of some nonlinear boundary-value problems}, Nonl. Anal. 12 (1998), 855-869. \bibitem {bo2} L. E. Bobisud, \emph{Existence of solutions for a singular boundary-value problem}, Appl. Anal. 35 (1990), 43-57. \bibitem {bo4} L. E. Bobisud, Y. S. Lee, \emph{Existence for a class of nonliear boundary-value problems}, Appl. Anal. 38 (1990), 45-67. \bibitem {ch} C. J. Chyan, J. Henderson, \emph{Positive solutions of $2m-$th boundary-value problems}, Appl. Math. Letters 15 (2002), 767-774. \bibitem {el} P. W. Eloe, J. Henderson, \emph{Positive solutions and nonlinear $(k, n-k)$ conjugate eigenvalue problem}, Diff. Equ. Dynam. Syst. 6 (1998), 309-317. \bibitem {fw1} W. Feng, J. R. L. Webb, \emph{Solvability of a three-point boundary-value problem at resonance}, Nonl. Appl. TMA 30(6) (1997) 3227-3238. \bibitem {gu} C. P. Gupta, \emph{Solvability of a three-point nonlinear boundary-value problem for a second order ordinary differential equation}, J. Math. Anal. Appl. 168 (1992) 540-551. \bibitem {gu1} C. P. Gupta, Trofimchuk, \emph{Existence of a solution to a three-point boundary-value problem and the spectral radius of o related linear operator}, Nonl. Anal. TMA 34 (1998) 498-507. \bibitem {gr} J. R. Graef, B. Yang, \emph{On a nonlinear boundary-value problem for fourth-order equations}, Appl. Anal. 72 (1999), 439-448. \bibitem {gr1} J. R. Graef, B. Yang, \emph{Existence and non-existence of positive solutions of fourth-order nonlinear boundary-value problems}, Appl. Anal. 74(2000), 201-204. \bibitem {he} J. Henderson, H. B. Thompson, \emph{Existence of multiple positive solutions for some nth order boundary-value problems}, Nonlinear Anal., 7 (2000) 55-62. \bibitem {lb} B. Liu, J. Yu, \emph{Solvability of multi-point boundary-value problems at resonance(II)}, Appl. Math. Comput., 136 (2003) 353-377. \bibitem {ly} Y. Liu, W. Ge, \emph{Solbablity a nonlinear four-point boundary problem for a fouth order differential equation}, Taiwanes J. Math. (7) (2003) 591-604. \bibitem {ly1} Y. Liu, W. Ge, \emph{Existence theorems of positive solutions for fourth-order a Solbablity a nonlinear four-point boundary problems}, Anal. Appl. (2) (2004) 71-85. \bibitem {md} D. Ma, \emph{The existence of solution for boundary-value problem with a $p$-Laplacian operator}, Doctoral Thesis, 2006. \bibitem {mr} R. Y. Ma, H. Y. Wang, \emph{On the existence of positive solutions of fourth-order ordinary differential equations}, Appl. Anal. 59 (1995), 225-231. \bibitem {mr1} R. Y. Ma, \emph{Positive solutions of nonlinear three point boundary-value problem}, Electronic J. Diff. Equs. 1998 (1998), No. 34, 1-8. \bibitem {pa} P. K. Palamides, \emph{Multi point boundary-value problems at resonance for n-order differential equations. positive and monotone solutions}, Electron. J. Diff. Eqns., Vol. 2004 (2004), No 25 pp. 1-14. \end{thebibliography} \end{document}