\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 26, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/26\hfil Sturmian comparison results] {Sturmian comparison results for \\ quasilinear elliptic equations in $\mathbb{R}^n$} \author[Tadie\hfil EJDE-2007/26\hfilneg] {Tadie} \address{Tadie \newline Mathematics Institut \\ Universitetsparken 5 \\ 2100 Copenhagen, Denmark.\newline Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda} \email{tad@math.ku.dk} \thanks{Submitted October 19, 2006. Published February 12, 2007.} \subjclass[2000]{35B05, 35B50, 35J70} \keywords{$p$-Laplacian; Picone's identity; comparison methods; \hfill\break\indent maximum principle} \begin{abstract} We obtain Sturmian comparison results for the nonnegative solutions to Dirichlet problems associated with $p$-Laplacian operators. From Picone-type identities \cite{k2,t2}, we obtain results comparing solutions of two types of equations. We also present results related to those operators using Picone-type identities. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In this work $\Omega$ denotes an open and bounded subset of $\mathbb{R}^n$, $n\geq 2 $ with $\partial \Omega \in C^\ell$, $\ell\geq 1$. Also $a \in C^1(\overline{\Omega}; 0,\infty ))$, $c \in C( \overline{\Omega};\mathbb{R})$ and functions $f,g \in C^1(\overline{\Omega}; \mathbb{R}) $. Define in $\Omega $ the operators \begin{equation} \begin{gathered} pu:= \nabla.\{ a(x) \Phi(\nabla u) \} \\ Pu := \nabla.\{ a(x) \Phi(\nabla u) \} + c(x) \phi(u). \end{gathered} \label{e0.1} \end{equation} Associated with the functions $f$ and $g$ define \begin{equation} Fu := Pu + f(x, u ), Gu:= Pu + g(x, u) \label{e0.2} \end{equation} where for $(\zeta, t) \in \mathbb{R}^n \times \mathbb{R}$, $ \Phi(\zeta)= |\zeta|^{\alpha -1}\zeta ,\phi(t)=|t|^{\alpha -1} t $ and $\alpha > 0 $. Solutions of \eqref{e0.1} or \eqref{e0.2} with regular boundary data \newline (e.g. $u|_{\partial \Omega} = g \in C(\overline{\partial \Omega} ) $) will be supposed to belong to the space \begin{equation} D_p(\Omega) := \{ w \in C^1( \overline{\Omega} ; \mathbb{R} ) : a(x) \Phi(\nabla w) \in C^1( \Omega; \mathbb{R} ) \cap C( \overline{\Omega} ; \mathbb{R} ) \}\,. \label{e0.3} \end{equation} For any other similar domain $E$, $D_P(E) $ is defined similarly. \subsection{Picone-type formulae} Similar to \cite[Theorem 1.1]{k1}, let $E$ be a bounded domain in $\mathbb{R}^n$ ($n\geq 2$) with a regular boundary (e.g. $\partial E \in C^\ell$, $\ell\geq 1$), and define for $\alpha>0 $ and $f, g \in C(\overline{E}\times \mathbb{R}; \mathbb{R}) $ the operators \begin{equation} \begin{gathered} Fu:= \nabla.\{ a\Phi(\nabla u)\} + c \phi(u)+ f(x,u)\\ Gv:= \nabla.\{ A\Phi(\nabla v)\} + C \phi(v)+ g(x,v) \end{gathered} \label{e0.4} \end{equation} where $ a,A \in C^1(\overline{E}; \mathbb{R}_+)$, $c, C \in C(\overline{E};\mathbb{R})$. \begin{lemma} \label{lem0.1} If $u , v \in D_P(E)$ with $v\neq 0$ in $E$, then from \[ \nabla .\big\{ \frac u{\phi(v)} [\phi(v) a \Phi(\nabla u)] \big\} = a|\nabla u|^{\alpha +1} + uFu -c|u|^{\alpha+1} - uf(x,u), \] and \begin{align*} \nabla . \big\{u\phi(u) \frac{A\Phi(\nabla v)}{\phi(v)}\big \} &= (\alpha +1) A \phi(u/v) \nabla u .\Phi(\nabla v) - \alpha A |\frac uv \nabla v|^{\alpha+1}\\ &\quad + \frac u{\phi(v)} \phi(u) Gv - C|u|^{\alpha+1} - \frac u{\phi(v)} \phi(u) g(x,v), \end{align*} we obtain \begin{equation} \label{e0.5} \begin{aligned} &\nabla .\big\{ \frac u{\phi(v)}[ \phi(v) a \Phi(\nabla u) - \phi(u)A \Phi(\nabla v)] \big\}\\ &=(a-A)|\nabla u|^{\alpha+1} + (C-c)|u|^{\alpha+1}\\ &\quad +A \big\{ |\nabla u|^{\alpha+1} - (\alpha+1)|\frac uv \nabla v|^{\alpha-1} \nabla u. (\frac uv \nabla v) + \alpha |\frac uv \nabla v|^{\alpha+1} \big\} \\ &\quad + \frac u{\phi(v)}\big\{ [\phi(v)Fu - \phi(u)Gv] + [\phi(u)g(x,v) - \phi(v) f(x,u)] \big\} . \end{aligned} \end{equation} \end{lemma} The following important inequality is also from \cite[Lemma 2.1]{k1}: For all $\alpha>0$ and all $\xi, \eta \in \mathbb{R}^n $, \begin{equation} \label{e0.6} Y(\xi, \eta) := |\xi|^{\alpha+1} + \alpha |\eta|^{\alpha+1} - (\alpha+1)|\eta|^{\alpha-1} \xi.\eta \geq 0\,. \end{equation} The equality holds if and only if $\xi = \eta$. For $u, v\in C^1 $ define \[ Z(u,v) := Y( \nabla u , \nabla v) . \] \subsection*{Some identities} If $a=A$, $c=C$, $Fu=Gv=0$ in $E$ then \eqref{e0.5} becomes \begin{equation} \label{e0.7} \begin{aligned} &\nabla .\big\{ \frac u{\phi(v)} a[ \phi(v) \Phi(\nabla u) - \phi(u) \Phi(\nabla v)] \big\} \\ &= a \{ |\nabla u|^{\alpha+1} - (\alpha+1)|\frac uv \nabla v|^{\alpha-1} \nabla u. (\frac uv \nabla v) + \alpha |\frac uv \nabla v|^{\alpha+1} \} \\\ &\quad + u \phi(u) \Big[\frac{g(x,v)}{\phi(v)} - \frac{f(x,u)}{\phi(u)}\Big]\\ &:= aZ(u,v)+ u \phi(u) \Big[\frac{g(x,v)}{\phi(v)} - \frac{f(x,u)}{\phi(u)}\Big]. \end{aligned} \end{equation} Define \[ \chi(x,t):= \frac{f(x,t)}{\phi(t)} . \] For the functions $u$ and $v$ above, if $ \Omega \subset E $ is open , non empty and $f(x,t)\equiv g(x,t) $, then after integrating \eqref{e0.6} over $\Omega$ we get for positive $u$ and $v$ \begin{equation} \label{e0.8a} \begin{aligned} &\int_{\partial \Omega} au \big\{ |\nabla u|^{\alpha-1}\frac{\partial u}{\partial \nu_\Omega} - \phi( \frac vu) |\nabla v|^{\alpha-1} \frac{\partial v}{\partial \nu_\Omega} \big\} ds \\ &=\int_\Omega \left[ aZ(u,v) + |u|^{\alpha+1} \{ \chi(x,v) - \chi(x,u)\}\right] dx\,. \end{aligned} \end{equation} After interchanging $u$ and $v$, \begin{equation} \label{e0.8b} \begin{aligned} &\int_{\partial \Omega} av \big\{ |\nabla v|^{\alpha-1} \frac{\partial v}{\partial \nu_\Omega}- \phi(\frac uv) |\nabla u|^{\alpha-1} \frac{\partial u}{\partial \nu_\Omega} \big\} ds \\ &=\int_\Omega [a Z(v,u) + |v|^{\alpha+1} \{ \chi(x,u) - \chi(x,v)\}] dx \end{aligned} \end{equation} where $\nu_\Omega$ denotes the outward normal unit vector to $\partial \Omega$. For the operators $F$ and $G$ in \eqref{e0.1}-\eqref{e0.2}, if $u$ and $v$ satisfy respectively $ Fu=Gv=0$ in $\Omega $, Equation \eqref{e0.6} leads to \begin{equation} \label{e0.9} \begin{aligned} &\nabla .\{ \frac u{\phi(v)} a[ \phi(v) \Phi(\nabla u) - \phi(u) \Phi(\nabla v)] \} \\ &:= aZ(u,v)+ u \phi(u) \chi(x,v) \quad \text{if } v>0 \text{ in } \Omega, \\ % \intertext{and} & \nabla .\{ \frac v{\phi(u)} a[ \phi(u) \Phi(\nabla v) - \phi(v) \Phi(\nabla u)] \} \\ &:= aZ(v,u)- v \phi(v) \chi(x,v) \quad \text{if } u>0 \text{ in } \Omega . \end{aligned} \end{equation} \begin{remark} \label{rmk1} \rm It is a classical result that if $u $ and $v $ are continuous and piecewise-$C^1$ in $\overline{\Omega} $ and for $pw:= \nabla . \{a(x)\Phi(\nabla w) \} $ satisfies weakly \begin{gather*} G_1u:=pu + g(x,u) \geq 0 \geq pv + g(x,v) \quad \text{in } \Omega ; \\ u \leq v \quad \text{in } \overline{\Omega}\, , \end{gather*} then if $g \in C(\Omega \times \mathbb{R}) $ is non decreasing in its second argument , the existence of such $u$ and $v$ leads to the existence of a solution $w\in D_P(\Omega) $ of $ pw + g(x,w) =0$ in $\Omega ; w|_{\partial \Omega } = w_0 $ for any continuous $w_0 $ satisfying $u\leq w_0 \leq v $ on $\partial \Omega$. \end{remark} \begin{remark}\label{rmk2} \rm Let $\Omega $ be bounded, $\Omega' $ be an open subset of $\Omega , c \in C(\overline{\Omega}) $ and $h \in C( \overline{\Omega} \times \mathbb{R} ) $. It is known (e.g. \cite{d1,s1}) that if $u, v \in D_p(\Omega) $ satisfy (weakly) for $H(w) := \nabla . \{a(x)\Phi(\nabla w) \} + c(x) \phi(w) + h(x,w)$, \begin{equation} Hu \geq Hv \quad \text{in } \Omega ; \quad (u-v)|_{\partial \Omega'}\leq 0 \label{e0.10} \end{equation} then $(u-v)\leq 0 $ in $\Omega' $ provided that $\forall x\in \Omega $, $ c(x) \phi(w) + h(x,w) $ is non increasing in $w $ for $ |w| \leq \max\{ |u|_{L^\infty(\Omega)} , |v|_{L^\infty(\Omega)} \} $. \end{remark} \section{Main Results} Let $a, c , \dots $ be as defined in the Introduction. Define in $\Omega $ the equations: \begin{gather} Pu:=\nabla.\{ a(x) \Phi(\nabla u) \} + c(x) \phi(u)=0 , \label{eP} \\ Fv:=\nabla.\{ a(x) \Phi(\nabla v) \} + c(x) \phi(v) + f(x, v )=0, \label{eF} \\ G_1w := \nabla.\{ a(x) \Phi(\nabla w) \} + g(x,w)=0 . \label{eG} \end{gather} Following the Remarks \ref{rmk1}-\ref{rmk2}, we have the following result for the problem \begin{equation} G_1w := pw + g(x,w) =0 \quad \text{in } \Omega ; \quad w|_{\partial \Omega} =0 \label{eGo} \end{equation} \begin{theorem} \label{thm1.1} (1) Assume that for all $x$ in $\Omega$, $g$ is increasing in the second argument and that $a(x)>0 $ is constant in $\Omega$. Then if there is a strictly positive $v\in D_P(\Omega) $ which satisfies $G_1v \leq 0 $ in $\Omega$ and $v|_{\partial \Omega} \geq 0 $, then \eqref{eGo} has a solution $u\in D_P(\Omega) $ which satisfies $0\leq u \leq v $ in $\Omega$. \\ (2) If for all $x$ in $\Omega$, $g $ is non increasing in the second argument then \eqref{eGo} has at most one solution in $D_P(\Omega) $. \end{theorem} \begin{theorem} \label{thm1.2} Assume that $\Omega $ is bounded and connected and $c \in C(\overline{\Omega}) $ is non positive. \begin{enumerate} \item Let $u\in D_p(\Omega) $ be a solution of \begin{gather*} Pu:=\nabla.\{ a(x) \Phi(\nabla u) \} + c(x) \phi(u)=0 \quad\text{in } \Omega \\ u|_{\partial \Omega} =0 . \end{gather*} Then $u>0$ in $\Omega $ if $\mathop{\rm meas}\{ x\in \Omega : u(x)>0 \} >0 $. \item For the solutions $w\in D_p(\Omega) $ of \begin{gather*} Fu:=\nabla.\{ a(x) \Phi(\nabla w) \} + c(x) \phi(w) + f(x,w)=0 \quad\text{in } \Omega \\ w|_{\partial \Omega} =0 \end{gather*} the same conclusion holds provided that in $\overline{\Omega}$, $f(x, t) \leq 0 $ for $t \geq 0 $. \end{enumerate} \end{theorem} \begin{theorem} \label{thm1.3} \quad \begin{enumerate} \item Assume that for all $x \in \Omega$, $f(x, t) \geq 0$ for $t\geq 0 $ . Then if \eqref{eP} has a strictly positive solution $u$ which satisfies $u|_{\partial \Omega}=0 $ , \eqref{eF} cannot have a solution strictly positive in $\Omega$ . Consequently if \eqref{eP} has a positive solution $u$ with the boundary condition $u|_{\partial \Omega}= 0 $ then any non negative solution $v$ of \eqref{eF} has a zero inside $\Omega$. \item If \eqref{eP} has a solution strictly positive in $\Omega $ then if for all $x \in \Omega $, $f(x, t) \leq 0$ for $t\geq 0 $, \eqref{eF} has no nontrivial and nonnegative solution $v$ satisfying $v|_{\partial \Omega}=0 $. \end{enumerate} \end{theorem} \begin{theorem} \label{thm1.4} Let $f \in C(\overline{\Omega}\times \mathbb{R}; \mathbb{R})$ and let $u, v \in D_p(\Omega) $ be two solutions of $$ Fw:=\nabla.\{ a\Phi(\nabla w) \} + c \phi(w) + f(x,w) =0 ; \quad w>0 \quad \text{in } \Omega; \quad w|_{\partial \Omega}=0 . $$ (1) If for all $x$ in $\Omega$, $t \mapsto \chi(x,t)= f(x,t)/\phi(t) $ is strictly increasing and positive in $t>0 $ then \begin{itemize} \item[(i)] the two solutions intersect in $\Omega $ ; \item[(ii)] if for some open $D\subset \Omega$, $v \geq u$ in $ D $ then \begin{equation} \label{a1} \int_{\partial D} au \big\{ |\nabla u|^{\alpha-1} \frac{\partial u}{\partial \nu_D} - \phi(\frac uv) |\nabla v|^{\alpha-1} \frac{\partial v}{\partial \nu_D} \big\} ds \geq 0 \end{equation} and if in addition $u= v$ on $\partial D$, then \begin{equation} \label{a2} \begin{gathered} \int_D \big\{ a Z(v,u) + |v|^{\alpha+1} X(x, u:v) \big\} dx \leq 0 \quad and \\ \int_D \big\{ a Z(u,v) + |u|^{\alpha+1}X(x, v:u) \big\} dx \geq 0, \end{gathered} \end{equation} %\label{e1.1} where $X(x, w:z):= \chi(x,w) - \chi(x,z)$. \end{itemize} (2) If for all $x$ in $\Omega $ \begin{itemize} \item[(i)] $ t \mapsto \chi(x,t)= f(x,t)/\phi(t) $ is positive and strictly decreasing in $t>0 $ or \item[(ii)] if $f$ is positive and decreasing in $t>0 $ then the two solutions coincide. \end{itemize} (3) For connected $\Omega$, the problem $$ Pw= \nabla.\{ a\Phi(\nabla w)\} + c \phi(w)= 0 \quad\text{in } \Omega ; \quad w|_{\partial \Omega} =0 $$ has at most one non negative solution in $D_P(\Omega) $. \\ This problem has at most one strictly positive solution even if $\Omega$ is not connected. \end{theorem} \section{Proofs of the main results} \begin{proof}[Proof of Theorem \ref{thm1.1}] (1) Taking in account remark \ref{rmk1}, we just need to build a subsolution $w \in D_P(\Omega) $, such that \[ G_1w\geq 0 \geq G_1v \quad\text{and}\quad 0\leq w \leq v \quad\text{in }\Omega. \] Because $v>0 $ in $\Omega $ we consider any nonnegative $U \in C(\overline{\Omega}) $ which is piecewise afine; i.e., there exists $\mathcal{N}:=\{\eta_i ; i=1,2,\dots ,M \}$ and some finite number (pairwise disjoint) of subsets $B_i$, $1\leq i \leq N $ of $\Omega$ such that with $x=(x_1, x_2, \dots ,x_n) \in \Omega$ \begin{itemize} \item[(i)] $ B:= \bigcup_{i=1}^N B_i \subset \Omega $; \item[(ii)] $ \forall i, U(x) = \sum_{i=1}^n \eta_i x_i < v(x)$ for $x\in B_i $; \item[(iii)] $ U|_{\partial B}=0 $ and is extended by $0$ outside $B $ in $\Omega$. \end{itemize} Thus as $a(x) $ is positive and constant in $\Omega $, \[ GU = g(x,U)\geq 0 \geq Gv \quad\text{and}\quad 0\leq U \leq v \quad\text{in }\Omega . \] The solution $u$ of $pu+g(x,U)=0 $ in $\Omega ;u|_{\partial \Omega}=0 $ is in $D_P(\Omega) $ and satisfies $ G_1u = pu + g(x,u)\geq 0 \geq G_1v $ and $ 0\leq u \leq v $ in $\Omega $ . Thus from Remark \ref{rmk1}, this leads to the existence of such a required solution. \noindent (2) Let $g$ be decreasing in the second argument. Suppose that there are two distinct solutions $ u $ and $v \in D_P(\Omega) $ such that for some subset $B$ of $\Omega $ whose measure is strictly positive $ v>u $ in $B $ and $(u-v)|_{\partial B}=0 $. In that case, as $g$ is decreasing, \[ pu - pv = g(x,v) - g(x,u)\leq 0 \quad\text{in } B \quad \text{and}\quad (u-v)|_{\partial B}\geq 0. \] This leads to $u \geq v $ in $B$, conflicting with the assumption. Therefore any such two solutions have to coincide in $\Omega$. \end{proof} The proof of Theorem \ref{thm1.2}, follows from the lemma below. \begin{lemma} \label{lem2.1} (1) Let $u \in D_p(\Omega) $ be a solution of \begin{equation} \label{ePo} \begin{gathered} pu:=\nabla.\{a(x) \Phi(\nabla u) \} = 0 \quad\text{in } \Omega ; \\ u|_{\partial \Omega} =0 ; \quad \mathop{\rm meas} \{\Omega^+ \} > 0 \end{gathered} \end{equation} where $\Omega^+:=\{ x\in \Omega : u(x)> 0 \} $ and $\Omega^-:=\{ x\in \Omega : u(x)> 0 \}$. Then $u \geq 0 $ a.e. in $\Omega $. Moreover if in addition $\Omega $ is connected then $u>0$ in $\Omega $. \noindent(2) The same conclusions hold for the problems \begin{equation} \label{eP1} \begin{gathered} Pu:=\nabla.\{ a(x) \Phi(\nabla u) \} + c(x) \phi(u) = 0 \quad\text{in } \Omega ; \\ u|_{\partial \Omega} =0 ;\quad \mathop{\rm meas} \{\Omega^+ \} > 0 \end{gathered} \end{equation} where $c \in C( \overline{\Omega};\mathbb{R}) $ remains non positive in $\Omega $. The same conclusion holds for the operator $F$ if in $\overline {\Omega} \times \mathbb{R}_+ $ the function $f$ is non positive. \end{lemma} \begin{proof} (1) Let $k:= \max_{\Omega^-} |u(x)| $ and the function $v(x) := u(x)_+ + k $. As $(\nabla u - \nabla v )|_{\Omega^+}\equiv 0$, $Z(u,v)=0 $ and weakly in $ \Omega^+ $, $$ \nabla .\big\{ \frac u{\phi(v)} a[ \phi(v) \Phi(\nabla u) - \phi(u) \Phi(\nabla v)] \big\}= \frac u{\phi(v)} \{ \phi(v) - \phi(u) \} \nabla [a(x)\Phi(\nabla u) ]= 0 $$ by \eqref{e0.5} and \eqref{ePo}. So, as $v$ is constant in $\Omega^-$, $$ \nabla .\big\{ \frac u{\phi(v)} a[ \phi(v) \Phi(\nabla u) - \phi(u) \Phi(\nabla v)] \big\} = \begin{cases} aZ(u,k) &\text{in } \Omega^- ,\\ 0 &\text{otherwise}. \end{cases} $$ This implies after integration over $\Omega $ that \[ 0 = \int_{\Omega^-} a (x)Z(u,k)dx = \int_{\Omega^-} a(x)|\nabla u|^{\alpha +1} dx > 0 \] which is absurd unless $\mathop{\rm meas}\{ \Omega^- \}=0$. The fact that $a \in C^1(\overline{\Omega}; (0, \infty ))$ makes the operator $p$ here satisfy the conditions required for the case of the following maximum principle. \begin{quote} \cite[Theorem 2.2]{d1} If the bounded domain $\Omega $ is connected , $p\in ( 1 ,\infty) $ and $u \in W_{\rm loc}^{1,p}(\Omega)\bigcap C^0(\Omega) $ satisfies $ - \mathop{\rm div} A(x, Du) + \Lambda |u|^{p-2} u \geq 0$, $u \geq 0$ in $\Omega $ for a constant $\Lambda \in \mathbb{R} $ then either $u \equiv 0 $ or $u>0 $ in $ \Omega$. \end{quote} (2) If $c \leq 0 $ in $\Omega $ and $\mathop{\rm meas}\{\Omega^- \} >0 $ proceeding as above with $v$ defined as before, \begin{equation} \label{eP2} \begin{aligned} &\nabla .\big\{ \frac u{\phi(v)} a[ \phi(v) \Phi(\nabla u) - \phi(u) \Phi(\nabla v)] \big\} \\ &= \begin{cases} u \{ pu +c\phi(u) \} - u \phi(\frac uv)\{ pu + c\phi(v) \} &\text{in } \Omega^+ \\ aZ(u,k) + u \{ pu + c\phi(u) \} - u \phi(\frac uv) c \phi(v) &\text{in } \Omega^- . \end{cases} \\ &= \begin{cases} u pu \{ 1 - \phi(\frac uv)\} & \text{in } \Omega^+ \\ aZ(u,k) + upu & \text{in } \Omega^- . \end{cases} \end{aligned} \end{equation} From \eqref{eP1}, $upu = -c \phi(u) \geq 0 $ in $\Omega $ provided that $c$ is non positive there. For the operator $F$ , \eqref{eP2} reads \begin{equation} \begin{aligned} &\nabla .\big\{ \frac u{\phi(v)} a[ \phi(v) \Phi(\nabla u) - \phi(u) \Phi(\nabla v)] \big\} \\ &= \begin{cases} -c(x) u \phi(\frac uv){\phi(v)}\{\phi(v) - \phi(u)\} - u \phi( \frac uv) \{ f(x,v)-f(x,u) \} \\ + u \phi( \frac uv) f(x,v) -uf(x,u) & \text{in } \Omega^+ \\[4pt] aZ(u,k) + \frac u{\phi(k)} \{ -\phi(u)[ c(x) \phi(k) + f(x,k) ] \\ + \phi(u)f(x,k) - \phi(k) f(x,u) \} &\text{in } \Omega^- \end{cases} \\ &= \begin{cases} -c(x) u\phi(u)\{ 1- \phi(\frac uv)\} + uf(x,u) \{ \phi(\frac uv) -1\} & \text{in } \Omega^+ \\ aZ(u,k) - c (x) u\phi(u) - uf(x,u) & \text{in } \Omega^- . \end{cases} \end{aligned} \label{eP3} \end{equation} Integrating of both sides of \eqref{eP2} and \eqref{eP3} over $\Omega $ provides an absurdity as the left would be zero while the right would be strictly positive, unless $\Omega^- $ has measure zero. This completes the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.3}] (1) If $v $ and $u$ are respectively solutions of \begin{equation} \label{e2.2} \begin{gathered} Fv = 0 ; \quad v>0 \quad \text{in } \Omega \quad \text{and } \\ Pu = 0 ; \quad u\geq 0 \quad \text{in } \Omega; \quad u|_{\partial \Omega} =0 \end{gathered} \end{equation} with $f \in C( \overline{\Omega} \times \mathbb{R} ; [ 0 , \infty))$ . As in \eqref{e0.5} we have $$ \nabla .\big\{ \frac u{\phi(v)}[ \phi(v) a \Phi(\nabla u) - \phi(u)a \Phi(\nabla v)] \big\} = aZ(u,v) + u \phi( \frac uv )f(x,v) > 0\,. $$ Then integrating both sides of the equation leads to a contradiction. \noindent(2) Similarly if in \eqref{e2.2}, $u>0 $ in $\Omega $ and $v|_{\partial \Omega}=0 $ after interchanging $u$ and $v$ in \eqref{e0.5} we get to $$ \nabla .\big\{ \frac v{\phi(u)} a[ \phi(u) \Phi(\nabla v) - \phi(v) \Phi(\nabla u)]\big\} =aZ(v,u) - vf(x,v) > 0. $$ Then we complete as above. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.4}] The statement \eqref{a1} follows from \eqref{e0.8a}. Adding \eqref{e0.8a} and \eqref{e0.8b}, we get \begin{align*} &\int_{\partial D} a(u-v)\{ \Phi(\nabla u) - \Phi(\nabla v) \}. {\nu_D }ds \\ &= \int_D \big\{ a Z(u,v) + a Z(v,u) + [|u|^{\alpha+1} - |v|^{\alpha+1}]( \chi(x,v) - \chi(x,u) ) \big\} dx \end{align*} leading to \eqref{a2}. For the two solutions, \eqref{e0.6} (and interchanging $u$ and $v$) leads (after integration over $\Omega$) to \begin{equation} \begin{aligned} 0 &\leq \int_\Omega a Z(u,v) dx\\ & = - \int_\Omega u\phi(u) \Big\{\frac{f(x,v)}{\phi(v)} - \frac{ f(x,u)}{\phi(u)} \Big\}dx \\ &= - \int_\Omega |u|^{\alpha+1}\{ \chi(x,v) - \chi(x,u) \}dx . \end{aligned} \label{e1.2a} \end{equation} and \begin{equation} \begin{aligned} 0&\leq \int_\Omega a Z(v,u)dx \\ &= - \int_\Omega v\phi(v) \Big\{\frac{f(x,u)}{\phi(u)} - \frac{f(x,v)}{\phi(v)} \Big\}dx \\ &= \int_\Omega|v|^{\alpha+1}\{ \chi(x,v) - \chi(x,u) \}dx . \end{aligned} \label{e1.2b} \end{equation} Assume that $ \chi(x,t) $ is increasing: If we suppose that $v > u$ in $\Omega$ then \eqref{e1.2a} provides a contradiction and if we suppose that $u>v$, \eqref{e1.2b} would lead to a contradiction. Assume that $\chi(x,t)$ is decreasing and define $\Omega_+ :=\{ x\in \Omega : X(x):=\chi(x,v) - \chi(x,u) >0 \}$ and \quad $\Omega_- :=\{ x\in \Omega : X(x):=\chi(x,v) - \chi(x,u) <0 \}$. Then (without loss of generality) $0< v < u $ in $\Omega_+$ and $ v>u>0$ in $\Omega_-$ whence \begin{equation} \begin{gathered} \int_{\Omega_+} |v|^{\alpha+1}X(x) dx \leq \int_{\Omega_+} |u|^{\alpha+1}X(x)dx ,\\ \int_{\Omega_-} |v|^{\alpha+1}X(x) dx \leq \int_{\Omega_-} |u|^{\alpha+1}X(x)dx. \end{gathered} \label{e1.2c} \end{equation} This implies from \eqref{e1.2a} and \eqref{e1.2b} that $$ 0 \leq \int_\Omega |v|^{\alpha+1} X(x)dx \leq \int_\Omega |u|^{\alpha+1} X(x)dx \leq 0 $$ whence $\int_\Omega Z(u,v)dx=0$, leading to $v \equiv u $ in $\Omega$ by \eqref{e0.6}. If $f$ is nonnegative and decreasing in $t$, $\chi $ is decreasing in $t$ and the same conclusion is reached. \noindent(3) The statement follows immediately from \eqref{e0.8a} or \eqref{e0.8b} as we would get for any such two solutions $0 = \int_\Omega a(x) Z(u,v) dx $ the right hand side being strictly positive unless $u \equiv v$ in $\Omega$. \end{proof} \begin{thebibliography}{00} \bibitem{d1} Damascelli, L.; \emph{Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results}, Ann. Inst. Henri Poincar\'e, Vol. 4 (1998), 493-516. \bibitem{i1} T. Idogawa, M. Otani; \emph{The First Eigenvalues of Some Abstract Elliptic Operators}, Funkcial. Ekvacioj, , Vol. 38 (1995), 1-9. \bibitem{k1} K. Kreith; \emph{Piconne's identity and generalizations}, Rend. Mat. , Vol. 8 (1975), 251-261. \bibitem{k2} T. Kusano, J. Jaros, N. Yoshida; \emph{A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order}, Nonlinear Analysis , Vol. 40 (2000), 381-395. \bibitem{o1} M. Otani; \emph{Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations}, J. Functional Anal. , Vol. 76 (1988), 140-159. \bibitem{p1} M. Picone; \emph{Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine}, Ann. Scuola Norm. Pisa, Vol. 11 (1910), 1-141. \bibitem{s1} S. Sakaguchi; \emph{Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems}, Ann. Scuola Norm. Sup. Pisa (1987), 404-421. \bibitem{t1} Tadi\'e; \emph{Uniqueness results for decaying solutions of semilinear $P$-Laplacian }, Int. J. Appl. Math. , Vol. 2 No. 10 (2000), 1143-1152. \bibitem{t2} Tadi\'e; \emph{Comparison results for quasilinear elliptic equations via Picone-type identity}, Dynamical Systems and Applications, Proceedings; pp. 660-670 Antalya 2004 , Turkey. \end{thebibliography} \end{document}