\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 43, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/43\hfil Positive solutions] {Positive solutions for a class of singular boundary-value problems} \author[L. Xia, Z. Yao\hfil EJDE-2007/43\hfilneg] {Li Xia, Zhengan Yao} % in alphabetical order \address{Li Xia \newline Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China} \email{xaleysherry@163.com} \address{Zhengan Yao \newline Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China} \email{mcsyao@mail.sysu.edu.cn} \thanks{Submitted September 19, 2006. Published March 15, 2007.} \thanks{Supported by grants NNSFC-10171113 and NNSFC-10471156 from the National Natural \hfill\break\indent Science Foundation of China, and by grant NSFGD-4009793 from the Natural Science \hfill\break\indent Foundation of Guang Dong.} \subjclass[2000]{34B10, 34B16, 34B18} \keywords{Upper and lower solution; existence; singular equation} \begin{abstract} Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} This note concerns the existence of positive solutions to the boundary-value problem (BVP) \begin{gather} y''=-\frac{\beta}{t}y'+\frac{\gamma}{y}|y'|^2-f(t,y), \quad 0 < t < 1, \label{e1}\\ y(0)=y(1)=0, \label{e2}\\ y'(0)=y'(1)=0 \label{e3}, \end{gather} where %$g(t,y,y')=-\frac{\beta}{t}y'+\frac{\gamma}{y}|y'|^2-f(t,y)$, $\beta>0, \gamma>\beta+1$ are constants, and $f$ satisfies \begin{itemize} \item[(H1)] $f(t, y)\in C^1([0,1]\times [0,\infty), [c_0,\infty))$ for sufficiently small $c_0>0$, and $f$ is non-increasing with respect to $y$. \end{itemize} Equation \eqref{e1} with the nonlinear right-hand side independent of $y'$ has been discussed extensively in the literature; see for example \cite{a1,h1} and the references therein. Because of its background in applied mathematics and physics, problem \eqref{e1} with right-hand side depending on $y'$ has attracted the attention of many authors; see for instance \cite{g1,t1} and their references. Guo et al. \cite{g1} studied the existence of positive solutions for the singular boundary-value problem with nonlinear boundary conditions \begin{gather*} y''+q(t)f(t,y,y')=0,\quad 00$, we can choose \begin{equation*} C_1\leq \min\big\{\frac{c_0}{2\max_{[0,1]}[v+\beta |v'|+(2\gamma+1) |v'|^2]}, 1/2\big\}, \end{equation*} hence \begin{equation*} A \underline{y}\leq b_\varepsilon(t, \underline{y}, \underline{y}'),\quad 0 0$, from (H1) and Lemma \ref{lem1} we obtain $$ [(t+\varepsilon)^\beta y_\varepsilon']'\geq -(t+\varepsilon)^\beta f(t, y_\varepsilon) \geq -2^{\beta} \max_{[0,1]} f(t, \underline{y}(t)):=-M. $$ Therefore, \begin{equation*} [(t+\varepsilon)^\beta y_\varepsilon'+Mt]'\geq 0,\quad 0