\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 58, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/58\hfil Interval oscillation] {Interval oscillation of second-order Emden-Fowler neutral delay differential equations} \author[M. Chen, Z. Xu\hfil EJDE-2007/58\hfilneg] {Mu Chen, Zhiting Xu} % in alphabetical order \address{Mu Chen \newline School of Mathematical Sciences, South China Normal University \\ Guangzhou, 510631, China. \newline Department of Mathematics, Zhanjiang Education College \\ Zhanjiang, Guangdong 524037, China} \email{zjchenmu03@163.com} \address{Zhiting Xu \newline School of Mathematical Sciences, South China Normal University \\ Guangzhou, 510631, China} \email{xztxhyyj@pub.guangzhou.gd.cn} \thanks{Submitted January 5, 2007. Published April 22, 2007.} \subjclass[2000]{34K40, 34K11, 34C10} \keywords{Interval oscillation; neutral delay differential equation; \hfill\break\indent Emden-Fowler; Riccati technique; integral averaging method} \begin{abstract} Employing Riccati techniques and the integral averaging method, we establish interval oscillation criteria for the second-order Emden-Fowler neutral delay differential equation \[ [|x'(t)|^{\gamma-1}x'(t)]'+q_1(t)|y(t-\sigma)|^{\alpha-1}y(t-\sigma) +q_2(t)|y(t-\sigma)|^{\beta-1} y(t-\sigma)=0, \] where $t\geq t_0$ and $x(t)=y(t)+p(t)y(t-\tau)$. The criteria obtained here are different from most known criteria in the sense that they are based on information only on a sequence of subintervals of $[t_0,\infty)$, rather than on the whole half-line. In particular, two interesting examples that illustrate the importance of our results are included. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \section{Introduction} Consider the second-order Emden-Fowler neutral delay differential equation \begin{equation} \label{e1.1} [|x'(t)|^{\gamma-1}x'(t)]'+q_1(t)|y(t-\sigma)|^{\alpha-1}y(t-\sigma) +q_2(t)|y(t-\sigma)|^{\beta-1} y(t-\sigma)=0, \end{equation} where $t\geq t_0$ and $x(t)=y(t)+p(t)y(t-\tau)$. In what follows we assume that \begin{itemize} \item[(A1)] $\tau$ and $\sigma$ are nonnegative constants, $\alpha$, $\beta$ and $\gamma$ are positive constants with $0<\alpha<\gamma<\beta$; \item[(A2)] $q_1,\, q_2\in \mathbf{C}([t_0,\infty), \mathbb{R}^+)$, $\mathbb{R}^+=(0,\infty)$; \item[(A3)] $p\in \mathbf{C}([t_0,\infty), \mathbb{R})$, and $-10$ for any $T\geq t_y$, and satisfy \eqref{e1.1}. As usual, a nontrivial solution of \eqref{e1.1} is called oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscillatory. Finally, \eqref{e1.1} is called oscillatory if all its solutions are oscillatory. We say that \eqref{e1.1} satisfies the superlinear condition if $q_1(t)\equiv 0$ and it satisfies the sublinear condition if $q_2(t)\equiv 0$. We note that second order neutral delay differential equation are used in many fields such as vibrating masses attached to an elastic bar and some variational problems, etc., see Hale \cite{h1}. In the last decades, there has been an increasing interest in obtaining sufficient conditions for the oscillation and/or nonoscillation of second order linear and nonlinear neutral delay differential equations (see, for example, the monographs \cite{a1,b1,e1} and the references therein). Recently, the results of Atkinson \cite{a2} and Belohorec \cite{b2} for the Emden-Fowler equation \begin{equation} \label{e1.2} y''(t)+q(t)|y(t)|^{\gamma-1}y(t)=0, \quad q\in \mathbf{C}([t_0, \infty), \mathbb{R}) \,\,\,\mbox{and}\,\,\, \gamma>0 \end{equation} have been extended to the second order neutral delay differential equation \begin{equation} \label{e1.3} [y(t)+p(t)y(t-\tau)]''+q(t)f((y-\sigma))=0 \end{equation} by Wong \cite{w1} under the assumption that the nonlinear function $f$ satisfies the sublinear condition \begin{equation*} 0<\int_{0^+}^{\varepsilon}\frac{du}{f(u)},\quad \int_{0^-}^{-\varepsilon}\frac{du}{f(u)} <\infty \quad \mbox{for all}\,\,\varepsilon>0, \end{equation*} as well as the superlinear condition \begin{equation*} 0<\int_\varepsilon^\infty\frac{du}{f(u)},\quad \int_{-\varepsilon}^{-\infty} \frac{du}{f(u)}<\infty \quad \mbox{for all}\,\,\varepsilon>0. \end{equation*} Also it will be of great interest to find some oscillation criteria for special case for \eqref{e1.3}, even for the Emden-Fowler neutral delay differential equation \begin{equation} \label{e1.4} [y(t)+p(t)y(t-\tau)]''+q(t)|y(t-\sigma)|^{\gamma-1}y(t-\sigma)=0, \quad \gamma>0. \end{equation} This problem was posed by [13, Remark d]. As an positive answer to it, Saker \cite{s1}, Saker and Manojlovi\`{c} \cite{s2}, and Xu and Liu \cite{x1} have given some oscillation criteria for \eqref{e1.1}, \eqref{e1.3} and \eqref{e1.4}. As we know, the results obtained in \cite{s1,s2,w1,x1} involve the integral of the functions $q,\, q_1,\, q_2$ and hence require the information of those functions on the the entire half-linear $[t_0, \infty)$. As pointed out in Kong \cite{k1}, oscillation is an interval property, that is, it is more reasonable to investigate solutions on an infinite set of bounded intervals. Therefore, the problem is to find oscillation criteria which use only the information about the involved functions on these intervals; outside of these intervals the behavior of the functions is irrelevant. Such type of criteria are referred to as interval oscillation criteria. The first beautiful interval criteria in this direction was due to Kong \cite{k1}, who gave some interval criteria for the oscillation of the second order linear ordinary differentia equation \begin{equation} \label{e1.5} (r(t)y'(t))'(t)+q(t)y(t)=0. \end{equation} Recently, Yang et al \cite{y1} extended Kong-type interval criteria to certain neutral differential equations. Motivated by the ideas of Kong \cite{k1} and Philos \cite{p1}, in this paper, by using Riccati technique and the integral averaging method, we will establish some interval oscillation criteria for \eqref{e1.1}, that is, criteria given by the behavior of \eqref{e1.1} only on a sequence of subintervals of $[t_0, \infty)$ (see Theorems \ref{thm2.1}--\ref{thm2.5} for details) rather than the whole half-line. Our theorems essentially improve some known results in \cite{s1,x1}. In particular, two interesting examples that illustrate the importance of our results are also included. \section{Main results} In this section, we shall establish Kong-type interval oscillation criteria for \eqref{e1.1} under the cases when $0\leq p(t)\leq 1$ and $-10$ for $t>s$; \item[(H2)] $H$ has partial derivatives $\partial H/\partial t$ and $\partial H/\partial s$ on $D$ such that \begin{equation*} \frac{\partial H}{\partial t}(t,s)=h_1(t,s)\sqrt{H(t,s)} \quad \mbox{and}\quad \frac{\partial H}{\partial s}(t,s)=-h_2(t,s)\sqrt{H(t,s)}, \end{equation*} where $h_1, h_2\in L_{loc}(D, \mathbb{R})$. \end{itemize} The following Lemma will be useful for establishing oscillation criteria for \eqref{e1.1} whose proof can be found in \cite{t1}. \begin{lemma} \label{lem2.1} Let $A_0$, $A_1$, $A_2\in \mathbf{C}([t_0, \infty), \mathbb{R})$ with $A_2>0$, and $w\in \mathbf{C}^1([t_0, \infty), \mathbb{R})$. If there exist interval $(a,b)\subset [t_0, \infty)$ such that \begin{equation} \label{e2.1} w'(s)\leq -A_0(s)+A_1(s)w(s)-A_2(s)|w(s)|^{(\gamma+1)/\gamma}, \quad s\in(a,b), \end{equation} then for any $c\in (a, b)$, \begin{equation} \label{e2.2} \begin{aligned} &\frac{1}{H(c,a)}\int^c_a\Big[H(s,a)A_0(s)-\frac{k\,\gamma^{\gamma}}{(A_2(s))^{\gamma}} |\phi_1(s,a)|^{\gamma+1}\Big]ds\\ &+\frac{1}{H(b,c)}\int^b_c\Big[H(b,s)A_0(s) -\frac{k\,\gamma^{\gamma}}{(A_2(s))^{\gamma}}|\phi_2(b,s)|^{\gamma+1}\Big]ds \leq 0 \end{aligned} \end{equation} for every $H\in\mathcal{H}$, where \begin{gather*} \phi_1(s,a)=\frac{h_1(s,a)\sqrt{H(s,a)}+A_1(s)H(s,a)}{(H(s,a))^{\gamma/(\gamma+1)}},\\ \phi_2(b,s)=\frac{-h_2(b,s)\sqrt{H(b,s)}+A_1(s)H(b,s)}{(H(b,s))^{\gamma/(\gamma+1)}}. \end{gather*} \end{lemma} \begin{theorem} \label{thm2.1} Suppose that there exist interval $(a, b)\subset [t_0, \infty)$, constant $c\in(a,b)$, and functions $H\in \mathcal{H}$, $\rho\in \mathbf{C}^1([t_0,\infty), \mathbb{R}^+)$, such that one of the following two conditions is satisfied: \begin{itemize} \item[(C1)] $0\leq p(t)\leq 1$, and \begin{equation} \label{e2.3} \begin{aligned} &\frac{1}{H(c,a)}\int^c_a\rho(s) \big[H(s,a)Q_1(s)-k|\phi_1(s,a)|^{\gamma+1}\big]ds \\ &+\frac{1}{H(b,c)}\int^b_c\rho(s)\big[H(b,s)Q_1(s) -k|\phi_2(b,s)|^{\gamma+1}\big]ds> 0; \end{aligned} \end{equation} \item[(C2)] $-1 0, \end{aligned} \end{equation} \end{itemize} where \begin{gather*} \phi_1(s,a)=\frac{h_1(s,a)\sqrt{H(s,a)}+(\rho'(s)/\rho(s))H(s,a)} {(H(s,a))^{\gamma/(\gamma+1)}},\\ \phi_2(b,s)=\frac{-h_2(b,s)\sqrt{H(b,s)}+(\rho'(s)/\rho(s))H(b,s)} {(H(b,s))^{\gamma/(\gamma+1)}}. \end{gather*} Then every solution of \eqref{e1.1} has at least one zero in $(a,b)$ . \end{theorem} \begin{proof} {\sl Case (C1)}: Let $y(t)$ be a nonoscillatory solution of \eqref{e1.1}. Without loss of generality we may assume that $y(t)>0$ for $t\geq t_0$. (The case of $y(t)<0$ can be considered similarly). Furthermore, we may suppose that exists a $t_1\geq t_0$ such that \begin{equation} \label{e2.5} y(t)>0,\quad y(t-\tau)>0 , \quad y(t-\sigma)>0 \quad \mbox{for } t\geq t_1. \end{equation} As in \cite[Lemma 1 (1)]{y1}, for some $T_0\geq t_1+\tau +\sigma$, we have immediately that \begin{equation} \label{e2.6} x(t)>0, \quad x' (t)>0, \quad x''(t)>0 \quad \mbox{for } t\geq T_0-\tau -\sigma. \end{equation} Using these inequalities and noting that $x(t)\geq y(t)$, we obtain \begin{equation*} y(t)=x(t)-p(t)x(t-\tau)\geq [1-p(t)]x(t). \end{equation*} Thus, for all $t\geq T_0$, \begin{equation*} y(t-\sigma)\geq [1-p(t-\sigma)]x(t-\sigma). \end{equation*} Then \eqref{e1.1} implies that for $t\geq T_0$, \begin{equation} \label{e2.7} [|x'(t)|^{\gamma-1}x'(t)]' +q_1(t)[1-p(t-\sigma)]^\alpha x^\alpha(t-\sigma)+q_2(t)[1-p(t-\sigma)]^\beta x^\beta(t-\sigma)\leq 0. \end{equation} Define \begin{equation} \label{e2.8} w(t)=\rho(t)\frac{(x' (t))^{\gamma}}{x^{\gamma}(t-\sigma)}. \end{equation} Differentiating $w(t)$, and using \eqref{e2.7}, we get \begin{equation} \label{e2.9} \begin{aligned} w'(t)&\leq -\rho(t)\{q_1(t)[1-p(t-\sigma)]^\alpha x^{\alpha-\gamma}(t-\sigma)\\ &\quad +q_2(t)[1-p(t-\sigma)]^\beta x^{\beta-\alpha}(t-\sigma)\} +\frac{\rho'(t)}{\rho(t)}w(t) -\gamma \rho(t)\Big(\frac{x'(t)}{x(t-\sigma)}\Big)^{\gamma+1}, \end{aligned} \end{equation} since $x'(t)0$ for $t\geq t_0$. Furthermore, as in \cite[Lemma 1(2)]{y1}, we suppose that there exists a $t_1>t_0$ such that \eqref{e2.5} holds. Then, for some $T_0\geq t_1+\tau+\sigma$, we still have \eqref{e2.6} holds for $t\geq T_0$. Note that $y(t-\sigma)\geq x(t-\sigma)$ for $t\geq T_0$, \eqref{e1.1} changes into \begin{equation} \label{e2.12} [|x'(t)|^{\gamma-1}x'(t)]' +q_1(t)x^\alpha(t-\sigma) +q_2(t)x^\beta(t-\sigma)\leq 0,\quad t\geq T_0. \end{equation} Consider the function $w(t)$ also defined by \eqref{e2.8}, as in the proof of \eqref{e2.11}, we obtain \begin{equation} \label{e2.13} w'(t)\leq -\rho(t) Q_2(t)+\frac{\rho'(t)}{\rho(t)}w(t) -\frac{\gamma}{\rho^{1/\gamma}(t)}|w(t)|^{(\gamma+1)/\gamma}. \end{equation} The rest of proof is similar to that of case $(C1)$ and hence is omitted. \end{proof} If the conditions of Theorem \ref{thm2.1} hold for a sequence $\{(a_n, b_n)\}$ of intervals such that $\lim_{n\to\infty}a_n=\infty$, then we may conclude that \eqref{e1.1} is oscillatory. That is, the following theorem is established. \begin{theorem} \label{thm2.2} For each $T\geq t_0$, if there exist $H\in \mathcal{H}$, $\rho\in C^1([t_0,\infty),\mathbb{R}^+)$, and constants $a,\,b,\,c\in \mathbb{R}$ with $T\leq a0 ,\\ \label{e2.15} \limsup_{t\to\infty}\int_\tau^t\rho(s)\Big[H(t,s)Q_1(s) -k|\phi_2(t,s)|^{\gamma+1}\Big]ds>0; \end{gather} \item[(C4)] $-10, \\ \label{e2.17} \limsup_{t\to\infty}\int_\tau^t\rho(s)\Big[H(t,s)Q_2(s) -k|\phi_2(t,s)|^{\gamma+1}\Big]ds>0, \end{gather} where $\phi_1$ and $\phi_2$ are defined in Theorem \ref{thm2.1}. \end{itemize} Then \eqref{e1.1} is oscillatory. \end{theorem} \begin{proof} We only prove case (C3). The proof of case (C4) is similar. For any $T\geq t_0$, let $a=T$. In \eqref{e2.14} we choose $\tau=a$, then there exists $c>a$ such that \begin{equation} \label{e2.18} \int_a^c\rho(s)\Big[H(s,a)Q_1(s)-k|\phi_1(s,a)|^{\gamma+1}\Big]ds>0. \end{equation} In \eqref{e2.15} we choose $\tau=c$. Then there exists $b>c$ such that \begin{equation} \label{e2.19} \int_c^b\rho(s)\Big[H(b,s)Q_1(s)-k|\phi_2(b,s)|^{\gamma+1}\Big]ds>0. \end{equation} From this inequality and \eqref{e2.18}, we obtain \eqref{e2.3}. The conclusion thus comes from Theorem \ref{thm2.2} (C1). The proof is complete. \end{proof} With an appropriate choice of functions $H$, one can derive from Theorem \ref{thm2.2} a number of oscillation criteria for \eqref{e1.1}. For the case where $H:=H(t-s)\in \mathcal{H}$, we have that $h_1(t-s)\equiv h_2(t-s)$ and denote them by $h(t-s)$. The subclass of $\mathcal{H}$ containing such $H(t-s)$ is denoted by $\mathcal{H}_0$. Applying Theorem \ref{thm2.2} to $\mathcal{H}_0$, we get the following results. \begin{theorem} \label{thm2.4} For each $T\geq t_0$, if there exist $H\in \mathcal{H}_0$, $\rho\in C^1([t_0,\infty), \mathbb{R}^+)$, and constants $a,\,c\in \mathbb{R}$ with $T\leq ak\,\Theta(a,c); \end{equation} \item[(C6)] $-1k\,\Theta(a,c), \end{equation} where \begin{align*} \Theta(a,c)=&\int_a^c\frac{1}{(H(s-a))^{\gamma}}\Big\{\rho(s)\Big|h(s-a)\sqrt{H(s-a)} +\frac{\rho'(s)}{\rho(s)}H(s-a)\Big|^{\gamma+1}\\ &+\rho(2c-s)\Big|-h(s-a)\sqrt{H(s-a)}+\frac{\rho'(2c-s)}{\rho(2c-s)} H(s-a)\Big|^{\gamma+1}\Big\}ds. \end{align*} \end{itemize} Then \eqref{e1.1} is oscillatory. \end{theorem} Let \begin{equation} \label{e2.22} H(t,s)=(t-s)^\lambda,\quad (t,s)\in D, \end{equation} where $\lambda>\max\{1,\gamma\}$ is a constant. Then $H\in\mathcal{H}_0$ and \begin{equation*} h_1(t-s)=h_2(t-s)=h(t-s)=\lambda(t-s)^{\frac{\lambda-2}{2}}. \end{equation*} By Theorem \ref{thm2.3}, we obtain the following oscillation criteria of Kamenev's type. \begin{theorem} \label{thm2.5} For each $\tau\geq t_0$ and for some $\lambda>\max\{1, \gamma\}$. Then \eqref{e1.1} is oscillatory provided that one of the following conditions is satisfied: \begin{itemize} \item[(C7)] $0\leq p(t)\leq 1$, and \begin{gather} \label{e2.23} \limsup_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t(s-\tau)^\lambda Q_1(s)ds >\frac{k\,\lambda^{\gamma+1}}{\lambda-\gamma}, \\ \label{e2.24} \limsup_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t(t-s)^\lambda Q_1(s)ds >\frac{k\,\lambda^{\gamma+1}}{\lambda-\gamma}; \end{gather} \item[(C8)] $-1\frac{k\,\lambda^{\gamma+1}}{\lambda-\gamma}, \\ \label{e2.26} \limsup_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t(t-s)^\lambda Q_2(s)ds >\frac{k\,\lambda^{\gamma+1}}{\lambda-\gamma}. \end{gather} \end{itemize} \end{theorem} \begin{proof} We only prove Case (C7). The proof of Case (C8) is similar. Taking $H(t,s)$ as in \eqref{e2.22} and $\rho(t)\equiv 1$ for $t\geq t_0$, we get \begin{gather*} \int_\tau^t\rho(s)|\phi_1(s,\tau)|^{\gamma+1}ds =\lambda^{\gamma+1}\int_\tau^t(s-\tau)^{\lambda-(\gamma+1)}ds =\frac{\lambda^{\gamma+1}}{\lambda-\gamma}(t-\tau)^{\lambda-\gamma}, \\ \int_\tau^t\rho(s)|\phi_2(t,s)|^{\gamma+1}ds =\lambda^{\gamma+1}\int_\tau^t(t-s)^{\lambda-(\gamma+1)}ds =\frac{\lambda^{\gamma+1}}{\lambda-\gamma}(t-\tau)^{\lambda-\gamma}. \end{gather*} In view of the fact $\lambda>\gamma$, it follows that \begin{gather}\label{e2.27} \lim_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t\rho(s) |\phi_1(s,\tau)|^{\gamma+1}ds=\frac{\lambda^{\gamma+1}}{\lambda-\gamma},\\ \label{e2.28} \lim_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t\rho(s) |\phi_2(t,s)|^{\gamma+1}ds=\frac{\lambda^{\gamma+1}}{\lambda-\gamma}, \end{gather} From \eqref{e2.23} and \eqref{e2.27}, we have \begin{align*} &\limsup_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t\rho(s)[H(s,\tau)Q_1(s) -k|\phi_1(s,\tau)|^{\gamma+1}]ds\\ &=\limsup_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int_\tau^t(s-\tau)^\lambda Q_1(s)ds -\frac{k\,\lambda^{\gamma+1}}{\lambda-\gamma}>0. \end{align*} i.e., \eqref{e2.14} holds. Similarly, \eqref{e2.24} and \eqref{e2.28} imply that \eqref{e2.15} holds, By Theorem \ref{thm2.3} (C3), \eqref{e1.1} is oscillatory. The proof is complete. \end{proof} \section{Examples} In final section, we will show the application of our oscillation criteria by two examples. \begin{example} \label{exa3.1} \rm Consider the equation \begin{equation} \label{e3.1} \big[|x'(t)|^{\gamma-1}x'(t)\big]'+q_1(t)|y(t-2)|^{\alpha-1}y(t-2) +q_2(t)|y(t-2)|^{\beta-1} y(t-2)=0, \end{equation} where $t\geq 2$ and $x(t)=y(t)+p_0y(t-1)$, $-1\begin{cases} \dfrac{k(\lambda+2)\lambda^{\gamma+1}}{2(1-p_0)^\gamma(\lambda-\gamma)}, & 0\leq p_0<1,\\[3mm] \dfrac{k(\lambda+2)\lambda^{\gamma+1}}{2(\lambda-\gamma)}, & -1\max{\{1,\gamma\}}$. Now, we consider the following two cases: {\bf Case 1:} $0\leq p_0<1$. Note that $ Q_1(t)=2(1-p_0)^\gamma q_1(t)$. Let $a=3n$, $c=3n+1$, $H(t,s)=(t-s)^\lambda$ and $\rho(t)\equiv 1$. Then \begin{align*} &\int_a^c(s-a)^\lambda[Q_1(s)+Q_1(2c-s)]ds -2k\lambda^{\gamma+1}\int_a^c(s-a)^{\lambda-\gamma-1}ds\\ & \geq 4\eta (1-p_0)^\gamma \int_{3k}^{3k+1}(s-3k)^{\gamma+1}ds -2k\lambda^{\gamma+1}\int_{3k}^{3k+1}(s-3k)^{\lambda-(\gamma+1)}ds\\ & =\frac{4\eta (1-p_0)^\gamma }{\lambda+2}-\frac{2k\lambda^{\gamma+1}} {\lambda-\gamma}>0, \end{align*} i.e., \eqref{e2.20} holds. {\bf Case 2:} $-1\begin{cases} \dfrac{k\gamma_0^{\gamma+1}}{2(1-p_0)^\gamma}, & 0\leq p_0<1,\\[3mm] \dfrac{k\gamma_0^{\gamma+1}}{2}, & -1\gamma_0$. Then \begin{align*} \lim_{t\to\infty}\frac{1}{t^{\lambda-\gamma}}\int^t_{\tau}(s-\tau)^{\lambda} Q_1(s)ds &\geq 2\varepsilon(1-p_0)^{\gamma}\lim_{t\to\infty}\frac{1}{t^{\lambda-\gamma}} \int^t_{\tau}\frac{(s-\tau)^{\lambda}}{s^{\gamma+1}}ds \\ &=\frac{2\varepsilon(1-p_0)^{\gamma}}{\lambda-\gamma}\lim_{t\to\infty} \frac{(t-\tau)^{\lambda}}{t^{\lambda}}\\ &=\frac{2\varepsilon(1-p_0)^{\gamma}}{\lambda-\gamma}. \end{align*} For any $\varepsilon>k$ $\gamma_0^{\gamma+1}/(2(1-p_0)^{\gamma})$, there exists $\lambda>\gamma_0$ such that \begin{equation*} \frac{2\varepsilon(1-p_0)^{\gamma}}{\lambda-\alpha} >\frac{k\,\lambda^{\gamma+1}}{\lambda-\alpha}. \end{equation*} This means that \eqref{e2.23} holds. By \cite[Lemma 3.1]{k1}, \eqref{e2.24} holds for the same $\lambda$. Applying Theorem \ref{thm2.5} (C7), we find that \eqref{e3.2} is oscillatory. {\bf Case 2:} $-1