\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 61, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/61\hfil Blow-up solutions] {Blow-up solutions for $N$ coupled Schr\"{o}dinger equations} \author[J. Chen, B. Guo\hfil EJDE-2007/61\hfilneg] {Jianqing Chen, Boling Guo} % in alphabetical order \address{Jianqing Chen \newline Department of Mathematics, Fujian Normal University\\ Fuzhou 350007, China \newline Institute of Applied Physics and Computational Mathematics \\ PO Box 8009, Beijing 100088, China} \email{jqchen@fjnu.edu.cn} \address{Boling Guo \newline Institute of Applied Physics and Computational Mathematics \\ PO Box 8009, Beijing 100088, China} \email{gbl@mail.iapcm.ac.cn} \thanks{Submitted May 29, 2006. Published April 22, 2007.} \thanks{J. Chen was supported by grant 10501006 from the Youth Foundation of NSFC, \hfill\break\indent by the China Post-Doc Science Foundation, and by the Program NCETFJ} \subjclass[2000]{35Q55, 35B35} \keywords{Blow-up solutions; coupled Schr\"{o}dinger equations} \begin{abstract} It is proved that blow-up solutions to $N$ coupled Schr\"{o}dinger equations $$ i\varphi_{jt} + \varphi_{jxx} + \mu_j|\varphi_j|^{p-2}\varphi_j +\sum_{k\neq j,\;k=1}^N\beta_{kj}|\varphi_k|^{p_k}|\varphi_j|^{p_j-2} \varphi_j=0 $$ exist only under the condition that the initial data have strictly negative energy. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} In this paper, we consider the existence of blow-up solutions of the $N$ coupled Schr\"{o}dinger equations \begin{equation} \label{SE-j} \begin{gathered} i\varphi_{jt} + \varphi_{jxx} + \mu_j|\varphi_j|^{p-2}\varphi_j +\sum_{k\neq j,\; k=1}^N \beta_{kj}|\varphi_k|^{p_k}|\varphi_j|^{p_j-2}\varphi_j=0,\\ \varphi_j(x,t)\big|_{t=0}=\psi_j(x),\quad x\in \mathbb{R}, \end{gathered} \end{equation} where $i=\sqrt{-1}$, $\varphi_j=\varphi_j(x,t):\mathbb{R}\times\mathbb{R}_+\to\mathbb{C}$, $j, k\in\{1, \dots,N\}$ and $\mu_j$, $\beta_{kj}\in \mathbb{R}$. System of this kind appears in several branches of physics, such as in the study of interactions of waves with different polarizations \cite{bz} or in the description of nonlinear modulations of two monochromatic waves \cite{npf}. When $p=4$, $p_j=2$, and $p_k=2$, the solution $\varphi_j$ of \eqref{SE-j} denotes the $j$th component of the beam in Kerr-like photo refractive media \cite{aa}. The constants $\beta_{kj}$ is the interaction between the $k$th and the $j$th component of the beam. As $\beta_{kj}>0$, the interaction is attractive while the interaction is repulsive if $\beta_{kj}<0$. Moreover, the system \eqref{SE-j} is integrable and there are various analytical and numerical results on solitary wave solutions of the general $N$ coupled Schr\"{o}dinger equations \cite{cho, hio}. When $20$ with $\theta_{kj}:={\beta_{kj}\over p_j}={\beta_{jk}\over p_k}:=\theta_{jk}$, $p_k, p_j\geq 2$. If $E(\overrightarrow{\psi})<0$(for the definition of $E$, see Proposition \ref{pr21}), then the solution of \eqref{SE-j} with initial data $\overrightarrow{\psi}$ must blow up in finite time. \end{theorem} We emphasize that when $N=1$, i.e. no coupling terms, the blow up problem has been studied extensively, see e.g. \cite{ot, gla, caz}. But as far as we know, there is no blow-up result to the $N$ coupled Schr\"{o}dinger equations. The main contribution here is to overcome the additional difficulties created by the coupling terms and then prove Theorem \ref{th11}. This paper is organized as follows. In Section 2, we give some preliminaries and derive a variant of virial identity which generalizes some previous works for the single equation. Section 3 is devoted to the proof of Theorem \ref{th11}. \subsection*{Notation} As above and henceforth, the integral $\int_\mathbb{R}\dots dx$ is simply denoted by $\int\dots$. For any $t$, the function $x\mapsto\varphi_j(x,t)$ is simply denoted by $\varphi_j(t)$. $\overline{f}$ denotes the complex conjugate of $f$. $f_x$ and $f_t$ denote the derivative of $f$ with respect to $x$ and $t$, respectively. By $f^{(m)}$ we denote the $m$th order derivatives of $f$. $\|\cdot\|_{L^q}$ denotes the norm in $L^q(\mathbb{R})$ or $(L^q(\mathbb{R}))^N$ which will be understood from the context. $\hbox{Re}$ denotes the real part and $\mathop{\rm Im}$ the imaginary part. \section{Preliminaries} Throughout this paper, we always assume that the conditions of Theorem \ref{th11} hold. The following proposition is useful in what follows. \begin{proposition}\label{pr21} For any $\overrightarrow{\psi}=(\psi_1(x), \dots, \psi_N(x))\in (H^1(\mathbb{R}))^N$, there is $T>0$ and a unique solution $\overrightarrow{\varphi}\in C([0,T), (H^1(\mathbb{R}))^N)$ satisfying \eqref{SE-j}. Moreover, there holds the following conservation laws: \begin{gather}\label{eq21} \int|\varphi_j(t)|^2\equiv\int|\psi_j|^2,\\ \label{eq22} E(\overrightarrow{\varphi}(t))=\sum_{j=1}^N\int\Big(|\varphi_{jx}|^2-{2\over p}\mu_j|\varphi_j|^p\Big)-2\sum_{k0$, we have \begin{equation}\label{eq31} \|\rho u\|_{L^\infty(|x|>r)}\leq \|u\|^{1/2}_{L^2(|x|>r)} \Big(2\|\rho^2u_x\|_{L^2(|x|>r)}+\|u(\rho^2)_x\|_{L^2(|x|>r)}\Big)^{1/2}. \end{equation} \end{lemma} \begin{lemma}[{\cite[Lemma 2.3]{ot}}] \label{le32} Let $v(x)$ be in $L^2$. We define $R(x)$ such that $R(x)=|x|$ for $|x|<1$ and $R(x)=1$ for $|x|>1$. Put $v_\varepsilon(x)=\varepsilon^{-1/2}v(x/\varepsilon)$ for $\varepsilon>0$. Then for any $\delta>0$, there exists an $\varepsilon_0>0$ such that $\|Rv_\varepsilon\|_{L^2}\leq \delta$ for $0<\varepsilon<\varepsilon_0$. \end{lemma} We are now in a position to prove the theorem. Observe that $p=6$, $p_j+p_k=6$ for $j, k\in\{1, \dots, N\}$ and the solution $\varphi_j(x,t)$ of \eqref{SE-j} has the following scaling invariance. More precisely, if we put \begin{equation}\label{eq32} \varphi_{\varepsilon j}(x,t)=\varepsilon^{-1/2}\varphi_j(x/\varepsilon, t/\varepsilon^2),\quad \varphi_{\varepsilon k}(x,t)=\varepsilon^{-1/2}\varphi_k(x/\varepsilon, t/\varepsilon^2) \end{equation} for $\varepsilon>0$, then $\varphi_{\varepsilon j}$ and $\varphi_{\varepsilon k}$ also satisfy \eqref{SE-j} and \eqref{SE-j} with $k$ instead of $j$ and with initial data $\varphi_{\varepsilon j}(x,0)=\psi_{\varepsilon j}=\varepsilon^{-1/2}\psi_j(x/\varepsilon)$ and $\varphi_{\varepsilon k}(x,0)=\psi_{\varepsilon k} =\varepsilon^{-1/2}\psi_k(x/\varepsilon)$, respectively. The proof is divided into two steps. In the first step, we show that if $-E(\overrightarrow{\psi})$ is large and $\|\overrightarrow{\psi}\|_{L^2(|x|>1)}$ is small (but $\|\overrightarrow{\psi}\|_{L^2(|x|<1)}$ may be large), then $\|\overrightarrow{\varphi}(t)\|_{L^2(|x|>1)}$ is small for all $t>0$. In the second step, for any initial data $\overrightarrow{\psi}$ with negative energy, we use the scaling transform (\ref{eq32}) to choose $\varepsilon>0$ so small that $-E(\overrightarrow{\psi}_\varepsilon)$ ($\overrightarrow{\psi}_\varepsilon=(\psi_{\varepsilon 1}, \dots, \psi_{\varepsilon N}))$ is sufficiently large and $\|\overrightarrow{\psi}_\varepsilon\|_{L^2(|x|>1)}$ is small enough. Then the proof of the second step is reduced to the first step and we complete the proof. Let $\phi: [0,\infty)\to \mathbb{R}_+$ be a function with bounded third order derivatives and be such that $$ \phi(s)=\begin{cases} s, & 0\leq |s| < 1, \\ s-(s-1)^3, & 1< s < 1+{\sqrt{3}\over 3}, \\ s-(s+1)^3, & -(1+{\sqrt{3}\over 3})< s <-1, \\ \hbox{smooth}, \phi'<0, & 1+{\sqrt{3}\over 3}\leq |s| < 2,\\ 0, & \quad 2\leq |s|. \end{cases} $$ Putting $\Phi(x)=\int_0^x\phi(y)dy$ and $E_0=E(\overrightarrow{\psi})$, we have the following proposition. \begin{proposition}\label{pr33} Let $\varphi_j(t)$ be a solution of \eqref{SE-j} in $C([0,T), H^1(\mathbb{R}))$ with $\varphi_j(0)=\psi_j$. Put $a_0=3/(16M)$. If $\varphi_j(t)$ satisfies \begin{equation}\label{eq33} \sum_{j=1}^N\|\varphi_j(t)\|^4_{L^2(|x|>1)}\leq 2a_0,\quad 0\leq t < T, \end{equation} then we have \begin{equation}\label{eq34} \begin{aligned} &-\sum_{j=1}^N\mathop{\rm Im}\int\phi\varphi_j(t)\overline{\varphi}_{jx}(t) +\sum_{j=1}^N\mathop{\rm Im}\int\phi \psi_j\overline{\psi}_{jx}\\ &\leq\Big(2E_0+4M(1+M)^2\sum_{j=1}^N\|\psi_j\|^6_{L^2} +{M\over 2}\sum_{j=1}^N\|\psi_j\|^2_{L^2}\Big)t, \end{aligned} \end{equation} where $M=\|\phi_{xx}\|_{L^\infty}+\|\phi^{(3)}\|_{L^\infty}+\sum_{k,j=1}^N\beta_{kj} +\sum_{j=1}^N\mu_j$. \end{proposition} \begin{proof} From the energy conserved identity \begin{align*} -\sum_{j=1}^N\int_{|x|<1}|\varphi_{jx}|^2 &=E(\overrightarrow{\varphi}(t))-\sum_{j=1}^N\int_{|x|>1}|\varphi_{jx}|^2\\ &\quad +{1\over 3}\sum_{j=1}^N\mu_j\int|\varphi_j|^6+ 2\sum_{k1}2\big(1-\phi_x\big)|\varphi_{jx}|^2 +{2\over 3}\sum_{j=1}^N\mu_j\int\big(1-\phi_x\big)|\varphi_j|^6\\ &\quad-{1\over 2}\sum_{j=1}^N\int|\varphi_j|^2\phi^{(3)} +4\sum_{k1}(1-\phi_x)|\varphi_j|^6\leq \|\varphi_j\|^2_{L^2(|x|>1)}\|\rho\varphi_j\|^4_{L^\infty(|x|>1)}\\ &\leq\|\varphi_j\|^4_{L^2(|x|>1)}\Big(2\|\rho^2\varphi_{jx}\|_{L^2(|x|>1)} +\|\varphi_j(\rho^2)_x\|_{L^2(|x|>1)}\Big)^2\\ &\leq 8\|\varphi_j\|^4_{L^2(|x|>1)}\|\rho^2\varphi_{jx}\|^2_{L^2(|x|>1)} + 2\|\varphi_j\|^6_{L^2(|x|>1)}\|(\rho^2)_x\|^2_{L^\infty(|x|>1)}. \end{aligned} \end{equation} On the other hand, we have from the definition of $\phi$ and $\rho$ that $|(\rho^2)_x|\leq \sqrt{3}$ for $1<|x|<1+1/\sqrt{3}$. For $|x|>1+1/\sqrt{3}$, we also have $|(\rho^2)_x|\leq{1\over 2}\|\phi_{xx}\|_{L^\infty}$. It follows that $|(\rho^2)_x|\leq\sqrt{3}(1+{1\over 2}\|\phi_{xx}\|_{L^\infty})$. So \begin{equation}\label{eq36} \begin{aligned} &\int_{|x|>1}(1-\phi_x)|\varphi_j|^6\\ &\leq 8\|\varphi_j\|^4_{L^2(|x|>1)}\|\rho^2\varphi_{jx}\|^2_{L^2(|x|>1)} + 6(1+{1\over 2}\|\phi_{xx}\|_{L^\infty})^2\|\varphi_j\|^6_{L^2(|x|>1)}. \end{aligned} \end{equation} It is deduced from $$ \int\big(1-\phi_x\big)|\varphi_k|^{p_k}|\varphi_j|^{p_j}\leq {p_k\over 6} \int\big(1-\phi_x\big)|\varphi_k|^6+{p_j\over 6}\int\big(1-\phi_x\big)|\varphi_j|^6 $$ that \begin{equation}\label{eq37} \begin{aligned} &2E_0 -\sum_{j=1}^N\int_{|x|>1}2\big(1-\phi_x\big)|\varphi_{jx}|^2 +{2\over 3}\sum_{j=1}^N\mu_j\int\big(1-\phi_x\big)|\varphi_j|^6\\ &-{1\over 2}\sum_{j=1}^N\int|\varphi_j|^2\phi^{(3)} +4\sum_{k1}2\big(1-\phi_x\big)|\varphi_{jx}|^2 +{2\over 3}\sum_{j=1}^N\mu_j\int\big(1-\phi_x\big)|\varphi_j|^6-{1\over 2}\sum_{j=1}^N\int|\varphi_j|^2\phi^{(3)}\\ &\quad +{2\over 3}\sum_{j1)}+{M\over 2}\sum_{j=1}^N\|\varphi_j\|^2_{L^2(|x|>1)}\Big)d\tau\\ &\leq\int_0^t\Big(2E_0 +4M(1+M)^2\sum_{j=1}^N\|\varphi_j\|^6_{L^2}+{M\over 2}\sum_{j=1}^N\|\varphi_j\|^2_{L^2}\Big)d\tau\\ &=\Big(2E_0+4M(1+M)^2\sum_{j=1}^N\|\psi_j\|^6_{L^2} +{M\over 2}\sum_{j=1}^N\|\psi_j\|^2_{L^2}\Big)t. \end{aligned} \end{equation} The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{th11}] We assume the solution $\varphi_j(t)$ of \eqref{SE-j} exists for all $t\geq 0$ and then derive a contradiction. The proof is divided into two steps.\\ {\bf Step 1.} In this step, we assume the initial data $\overrightarrow{\varphi}(0)=\overrightarrow{\psi}$ satisfies \begin{gather}\label{eq39} \eta=-2E_0-4M(1+M)^2\sum_{j=1}^N\|\psi_j\|^6_{L^2}-{M\over 2}\sum_{j=1}^N\|\psi_j\|^2_{L^2}>0, \\ \label{eq310} 4\Big(\sum_{j=1}^N\int\Phi|\psi_j|^2\Big)^2 \Big({4\over\eta}\sum_{j=1}^N\|\psi_{jx}\|^2_{L^2}+1\Big)^2\leq a_0, \end{gather} where $M$ and $a_0$ are defined as in Proposition \ref{pr33}. We first prove that if the initial data $\varphi_j(0)=\psi_j$ satisfies (\ref{eq39}) and (\ref{eq310}), then $\varphi_j(t)$ satisfies (\ref{eq33}) for all $t\geq 0$. We prove this by contradiction. Since $\eta>0$ and $1\leq 2\Phi(x)$ for $|x|>1$, we have from (\ref{eq310}) that \begin{equation}\label{eq311} \sum_{j=1}^N\|\psi_j\|^4_{L^2(|x|>1)}\leq a_0. \end{equation} Define $T_0$ as $$ T_0=\sup\{t>0;\ \sum_{j=1}^N\|\varphi_j(s)\|^4_{L^2(|x|>1)}\leq 2a_0, 0\leq s0$. If $T_0=+\infty$, then we are done. Assuming now that $T_0<+\infty$, the continuity in $L^2$ of $\varphi_j(t)$ implies \begin{equation}\label{eq312} \sum_{j=1}^N\|\varphi_j(T_0)\|^4_{L^2(|x|>1)}= 2a_0. \end{equation} As $\varphi_j(t)$ satisfies all the assumptions in Proposition \ref{pr33} on $[0,T_0)$, we get from (\ref{eq27}), (\ref{eq39}) and Proposition \ref{pr33} that for $01$, (\ref{eq310}) and (\ref{eq315}) imply \begin{align*} \Big(\sum_{j=1}^N\|\varphi_j(t)\|^2_{L^2(|x|>1)}\Big)^2&\leq \Big(2\sum_{j=1}^N\int\Phi|\varphi_j(t)|^2\Big)^2\\ &\leq 4\Big(\sum_{j=1}^N\int\Phi|\psi_j|^2\Big)^2\Big({4\over\eta} \sum_{j=1}^N\|\psi_{jx}\|^2_{L^2}+1\Big)^2\\ &\leq a_0,\quad 0\leq t1)}\leq a_0, \end{equation} which contradicts to (\ref{eq312}). So if the initial data $\overrightarrow{\varphi}(0)=\overrightarrow{\psi}$ satisfies (\ref{eq39}) and (\ref{eq310}), then $\varphi_j(t)$ satisfies (\ref{eq33}) for all $t\geq 0$. Therefore, since all the assumptions in Proposition \ref{pr33} hold with $T=\infty$, $\varphi_j(t)$ satisfies (\ref{eq33}) with $T_0=\infty$, which implies that $\sum_{j=1}^N\int\Phi|\varphi_j(t)|^2$ goes to negative in finite time. This is a contradiction. Hence if the initial data $\overrightarrow{\varphi}(0)=\overrightarrow{\psi}$ satisfies (\ref{eq39}) and (\ref{eq310}), then $\overrightarrow{\varphi}(t)$ must blow up in finite time. \noindent{\bf Step 2.} In this step, we prove the theorem for all the initial data with negative energy. The main idea is to use the scaling invariance of the \eqref{SE-j}. In the first place, for $\varepsilon>0$, let $\varphi_{\varepsilon j}(x,t)=\varepsilon^{-1/2}\varphi_j(x/\varepsilon,t/\varepsilon^2)$. Put $\varphi_{\varepsilon j}(x,0)=\psi_{\varepsilon j}(x)=\varepsilon^{-1/2}\psi_j(x/\varepsilon)$. Then $\varphi_{\varepsilon j}$ is also a solution of \eqref{SE-j} with initial data $\psi_{\varepsilon j}$ in $C([0,+\infty),H^1(\mathbb{R}))$. Moreover, $\varphi_{\varepsilon j}(t)$ satisfies \begin{gather}\label{eq317} \|\varphi_{\varepsilon j}(t)\|_{L^2}=\|\psi_{\varepsilon j}\|_{L^2}=\|\psi_j\|_{L^2}, \quad t\geq 0; \\ \label{eq318} E(\overrightarrow{\varphi}_\varepsilon (t))=\varepsilon^{-2}E(\overrightarrow{\psi}),\quad t\geq 0. \end{gather} In the second place, we show that there exists an $\varepsilon>0$ such that \begin{gather}\label{eq319} \eta_\varepsilon=-2E(\overrightarrow{\psi}_\varepsilon)-4M(1+M)^2\sum_{j=1}^N\|\psi_{\varepsilon j}\|^6_{L^2}-{M\over 2}\sum_{j=1}^N\|\psi_{\varepsilon j}\|^2_{L^2}>0; \\ \label{eq320} 4\Big(\sum_{j=1}^N\int\Phi|\psi_{\varepsilon j}|^2\Big)^2\Big({4\over\eta_\varepsilon}\sum_{j=1}^N\|\psi_{\varepsilon jx}\|^2_{L^2}+1\Big)^2\leq a_0. \end{gather} Using (\ref{eq318}), (\ref{eq319}) follows by choosing $\varepsilon>0$ such that \begin{equation}\label{eq321} \varepsilon^2<-2E_0\Big(4M(1+M)^2\sum_{j=1}^N\|\psi_ j\|^6_{L^2}+{M\over 2}\sum_{j=1}^N\|\psi_ j\|^2_{L^2}\Big)^{-1}. \end{equation} Now we have from (\ref{eq317}) and (\ref{eq318}) that for some $\varepsilon_1>0$ and $0<\varepsilon<\varepsilon_1$, $$ {4\over\eta}\sum_{j=1}^N\|\psi_{\varepsilon jx}\|^2_{L^2}\leq C_0(\varepsilon_1), $$ $C_0(\varepsilon_1)$ denotes positive constant $C_0$ depending on $\varepsilon_1$. On the other hand, Lemma \ref{le32} implies that there exists an $\varepsilon_2>0$ with $\varepsilon_2<\varepsilon_1$ and \begin{equation}\label{eq322} \sum_{j=1}^N\int\Phi|\psi_{\varepsilon j}|^2\leq 2\sum_{j=1}^N\|R\psi_{\varepsilon j}\|_{L^2}^2\leq {1\over 4}(C_0(\varepsilon_1)+1)^{-1}a_0^{1\over 2} \end{equation} for $0<\varepsilon<\varepsilon_2$, where $R$ is defined as in Lemma \ref{le32}. Thus if $0<\varepsilon<\varepsilon_2$ and satisfying (\ref{eq321}), then $\overrightarrow{\varphi}_\varepsilon(0)=\overrightarrow{\psi}$ satisfies (\ref{eq319}) and (\ref{eq320}). Therefore the proof of the theorem in the general case is reduced to Step 1 when we consider $\varphi_{\varepsilon j}(x,t)$ instead of $\varphi_j(x,t)$. The proof of Theorem \ref{th11} is complete. \end{proof} \subsection*{Acknowledgement} The authors want to thank the anonymous referee for the helpful comments. \begin{thebibliography}{00} \bibitem{aa} N. Akhmediev and A. Ankiewicz; Partially coherent solitons on a finite background, {\it Phys. Rev. Lett.} {\bf 82} (1999), 2661. \bibitem{bc} H. Berestycki and T. Cazenave; Instabilite des etats stationnaires dans les equations de Schrodinger et de Klein-Gordon non linearires, {\it C. R. Acad. Sci. Paris,} Seire I, {\bf 293} (1981), 489-492. \bibitem{bz} A. L. Berkhoer and V. E. Zakharov; Self exitation of waves with different polarizations in nonlinear media, {\it Sov. Phys. JETP} {\bf 31} (1970), 486-490. \bibitem{caz} T. Cazenave; Semilinear Schr\"{o}dinger equations, Courant Institute of Mathematical Sciences, Vol. {\bf 10}, Providence, Rhode Island, 2005. \bibitem{cz} R. Cipolatti and W. Zumpichiatti; Orbital stable standing waves for a system of coupled nonlinear Schr\"{o}dinger equations, {\it Nonl. Anal. TMA} {\bf 42} (2000), 445-461. \bibitem{cho} K. W. Chow; Periodic solutions for a system of four coupled nonlinear Schr\"{o}dinger equations, {\it Phys. Lett. A.} {\bf 285} (2001), 319-V326. \bibitem{gla} R.T. Glassey; On the blowing-up of solutions to the Cauchy problem for the nonlinear Schr\"{o}dinger equation, {\it J. Math. Phys.} {\bf 18} (1977), 1794-1797. \bibitem{hio} F. T. Hioe; Solitary waves for $N$ coupled Schr\"{o}dinger equations, {\it Phys. Rev. Lett.} {\bf 82} (1999), 1152-1155. \bibitem{npf} G. K. Newbould, D. F. Parker and T. R. Faulkner; Coupled nonlinear Schr\"{o}dinger equations arising in the study of monomode step-index optical fibers, {\it J. Math. Phys.} {\bf 30} (1989), 930-936. \bibitem{ot} T. Ogawa and Y. Tsutsumi; Blow up of $H^1$ solutions for the one-dimensional nonlinear Schr\"{o}dinger equation with critical power nonlinearity, {\it Proc. AMS} {\bf 111} (1991), 487-496. \end{thebibliography} \end{document}