\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 63, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/63\hfil Positive solutions] {Positive solutions for singular three-point boundary-value problems with sign changing nonlinearities depending on $x'$} \author[Y. Chen, B. Yan, L. Zhang\hfil EJDE-2007/63\hfilneg] {Yun Chen, Baoqiang Yan, Lili Zhang} \address{Yun Chen \newline Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{chenyun001982@126.com} \address{Baoqiang Yan \newline Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{yanbqcn@yahoo.com.cn} \address{Lili Zhang \newline Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{kuaile100@163.com} \thanks{Submitted September 15, 2006. Published April 25, 2007.} \thanks{Supported by grants 10571111 from the National Natural Science, and Y2005A07 from the \hfill\break\indent Natural Science of Shandong Province} \subjclass[2000]{34B15, 34B10} \keywords{Three-point boundary value problem; singularity; positive solutions; \hfill\break\indent fixed point theorem} \begin{abstract} Using a fixed point theorem in cones, this paper shows the existence of positive solutions for the singular three-point boundary-value problem \begin{gather*} x''(t)+a(t)f(t,x(t),x'(t))=0,\quad 00 $ such that $ f(t,x,y)\geq \beta(t),y\in(-\delta,0)$; \item[(H2)] $\sup F[z,+\infty)=\sup\{F(x),z\leq x < +\infty\}< + \infty $ for all fixed $z\in(0,+\infty)$; \item[(H3)] $ \frac{1}{ G(y)}\not\in L (-\infty,-1]$; \end{itemize} \begin{lemma}[\cite{d1}] \label{lem2.1} Let $E$ be a Banach space, $K $ a cone of $E$, and $B_R=\{x\in E: \| x\| < R\}$, where $00$, there exists $y_n(t)\in C[0,1]$ with $y_n(t) \leq -\frac{1}{n}$ such that \begin{equation} y_n(t)=-\frac{1}{n}+\min\{0,-\int^t_0 a(s)f(s,Ay_n(s) +\frac{1}{n},y_n(s))ds\},\quad t\in[0,1]. \label{e2.1} \end{equation} \end{lemma} \begin{proof} For $y(t)\in P =\{y(t):y(t)\leq 0,y(t)\in C[0,1]\}$, define the operator \begin{gather*} Ty(t)=-\frac{1}{n}+\min\{0,-\int^t_0 a(s)f(s,Ay(s)+\frac{1}{n}, \min\{y(s),-\frac{1}{n}\})ds\},\\ A y(s)=\frac{1}{1- \alpha }\int^1_0 -y(\tau)d\tau -\frac{\alpha}{1-\alpha} \int ^\eta_0 -y(\tau)d\tau -\int^s_0 -y(\tau)d\tau, \end{gather*} where $n>0$ is a natural number. Using the equality $\min\{c,0\}=\frac{c-|c|}{2}$ and $$ c(y(t))=-\int^t_0 a(s)f(s,Ay(s)+\frac{1}{n},\min\{y(s),-\frac{1}{n}\})ds, $$ it is easy to know that $$ Ty(t)=-\frac{1}{n}+\frac{c(y(t))-|c(y(t)|}{2}. $$ Let $y_k(t),y(t)\in P,\| y_k-y\| \to 0$, then there exists a constant $h>0$, such that $\| y_k\| \leq h$ and $\| y\| \leq h$, and let $$ c(y_k(t))=-\int^t_0 a(s)f(s,Ay_k(s)+\frac{1}{n},\min\{y_k(s),-\frac{1}{n}\})ds, $$ which yields \begin{align*} |Ty_k(t)-Ty(t)| &=\frac12 \big|c(y_k(t))-c(y(t))-|c(y_k(t))|+|c(y(t))|\big|\\ &\leq \frac 12\big|c(y_k(t))-c(y(t))+|c(y_k(t))-c(y(t))|\big|. \end{align*} Assumption (P1) implies that $\{a(s)f(s,Ay_k(s)+\frac{1}{n},\min\{y_k(s),-\frac{1}{n}\}$ converges to $\{a(s)f(s,Ay(s)+\frac{1}{n}, \min\{y(s),-\frac{1}{n}\}$, for $s\in(0,1)$. By the Lebesgue dominated convergence theorem (the dominated function $a(s)k(s)F[\frac{1}{n},+\infty)G[-h-\frac{1}{n},-\frac{1}{n}]$), $|Ty_k(t)-Ty(t)|\to 0$, $T$ is a continuous operator in $P$. Let $C$ be a bounded set in $P$, i.e., there exists $h_1>0$ such that $\| y\| \leq h_1$, for any $y(t)\in C,t_1,t_2\in[0,1]$, $t_10$, there exists $\delta>0$ such that, when $|t_2-t_1|<\delta,|\int^{t_2}_{t_1}a(s)k(s)ds<\epsilon$ holds. Therefore, $\{Ty(t),y(t)\in P\}$ is equicontinuous. Hence $T$ is a completely continuous operator in $P$. By (H3), we may choose a sufficiently large $R_n>1$ to fit $$ \int^{-1}_{-R_n}\frac{dy}{G(y)}\geq\int_0^t a(s)k(s)ds \sup F [\frac{1}{n},+\infty). $$ For any fixed $n$, we prove that \begin{equation} y(t)\neq \lambda Ty(t)=\frac{-\lambda} {n}+\lambda\min\{0,-\int^t_0 a(s)f(s,Ay(s)+\frac{1}{n},\min\{y(s),-\frac{1}{n}\})ds\}\label{e*} \end{equation} for any $y(t)\in P$ with $\| y\| = R_n$ and $0<\lambda<1$. In fact, if there exist $y(t)\in P$ with $\| y\| = R_n$ and $0<\lambda<1$, such that \begin{equation} y(t)=\frac{-\lambda}{n} +\lambda\min\{0,-\int^t_0 a(s)f(s,Ay(s)+\frac{1}{n},\min\{y(s),-\frac{1}{n}\})ds\}. \label{e2.2} \end{equation} First, we prove an important fact: for $t,z\in[0,1]$, $t>z$, $y(t) t_2 \geq t_3> t_4 \geq t_5> \dots \geq t_{2m-1}>t_{2m} = z\geq 0$; \begin{enumerate} \item $y( t_1)=y(t')$, $y ( t_{2i} ) = y( t_{2i+1})$, $i=1,2,\dots m-1$, $y(t_{2m})=y(z)$; \item $y(t)$ is decreasing in $[t_{2i},t_{2i-1}]$, $i=1,2,\dots m$. (if $y(t)$ is decreasing in $ [0,t']$. Let $m=1$, i.e. $[t_2,t_1]=[0,t']$.) \end{enumerate} Note that $y(t)<-\frac{1}{n}$, $t\in(t_{2i},t_{2i-1}]$, which implies $$ -\int^t_0 a(s)f(s,Ay(s)+\frac{1}{n},\min\{y(s),-\frac{1}{n}\})ds<0, \quad t\in(t_{2i},t_{2i-1}]. $$ Differentiating \eqref{e2.2} and using (H2), we obtain \begin{gather*} -y'(t)= \lambda a(t)f(t,Ay(t)+\frac{1}{n},y(t))\\ \frac{ -y'(t)}{ G (y(t))} \leq a(t)k(t) \sup F[Ay(t)+\frac{1}{n},+\infty) \leq a(t)k(t) \sup F[\frac{1}{n},+\infty), \end{gather*} %\label{e2.4} for $t\in(t_{2i},t_{2i-1}]$, $i=1,2,\dots m$. Integrating from $t_{2i}$ to $t_{2i-1}$, we have $$ \int^{y(t_{2i})}_{y(t_{2i-1})}\frac{dy}{G(y)}\leq \int^{t_{2i-1}}_{t_{2i}} a(s)k(s)ds\sup F[\frac{1}{n},+\infty), \quad i=1,2,\dots m. $$ % \label{e2.5} Summing from $m$ to $1$, we have $$ \int_{y(t)}^{y(z)}\frac{dy}{G(y)}\leq \int_z^t a(s)k(s)ds\sup F[\frac{1}{n},+\infty). $$ Set $y(z)=-\frac{1}{n}$, $y(t)=-R_n$ in \eqref{e2.3}, we have $$ \int_{-R_n}^{-1}\frac{dy}{G(y)}\leq \int_{-R_n}^{-\frac{1}{n}}\frac{dy}{G(y)} \leq \int^t_0 a(s)k(s)ds\sup F[\frac{1}{n},+\infty), $$ which contradicts $$ \int_{-R_n}^{-1}\frac{dy}{G(y)}\geq \int^t_0 a(s)k(s)ds\sup F[\frac{1}{n},+\infty). $$ Hence \eqref{e*} holds. Put $r=\frac{1}{n}$, Lemma \ref{lem2.1} leads to the desired result. \end{proof} \section{Main results} Main result in this paper is as follows. \begin{theorem} \label{thm3.1} Let {\rm (H1)--(H3)} hold. Then the three-point boundary-value problem \eqref{e1.1} has at least one positive solution. \end{theorem} \begin{proof} Put $M_n=\min\{y_n(t):t\in[0,\eta]\}$. (H1) implies $\gamma =\sup\{M_n\}<0$. Set $\tau=\max\{\gamma,-\delta\},n >-\frac{1}{\tau}$. (1) First, we prove that \begin{equation} y_n(t)=-\frac{1}{n}-\int^t_0 a(s)f(s,Ay_n(s)+\frac{1}{n},y_n(s))ds, \quad t\in[0,1]. \label{e3.1} \end{equation} Set $y_n(t_n)=\tau,t_n\in(0,\eta] ,y_n(t)\geq\tau,t\in[0,t_n]$. We easily check that $y_n(t)$ is decreasing in $(0,t_n]$. We only need to prove that \begin{equation} y_n(t)\leq \tau,\quad t\in[t_n,1]. \label{e3.2} \end{equation} If there exist $t\in(t_n,1]$ such that $y_n(t)> \tau$, then we may choose $t',t''\in[t_n,1], t'\frac{\alpha}{1-\alpha}\int^1_\eta-y_n(\tau)d\tau \\ &\geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta),\quad t\in[0,1]. \end{align*} From \eqref{e2.3}, putting $t=t_n$, we know that \begin{equation} \int_{y_n(t_n)}^{-\frac{1}{n}}\frac{d y_n}{G(y_n)} \leq \int^{t_n}_0a(s)k(s)ds\sup F[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty). \label{e3.3} \end{equation} Equation \eqref{e3.3} shows $t_0=\inf\{t_n\}>0$. Also, $y_n(t)$ is decreasing for $t\in(0,t_0]$ and (H1) imply that $W(t)=\sup\{y_n(t)\}<0$, $t\in(0,t_0]$. (2) We show that $\{y_n(t)\}$ is equicontinuous on $[\frac{1}{3k},1-\frac{1}{3k}]$, for a natural number $k\geq 1$, and uniformly bounded on $[0,1]$. Using $y_n(t)$, $1$ and $0$ instead of $y_(t)$, $\lambda$ and $z$ in \eqref{e2.2} in Lemma \ref{lem2.2}, we notice that $$ A y_n(t)+ \frac{1}{n}\geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta),\quad t\in [0,1]. $$ We know from \eqref{e2.3}, \begin{equation} \int_{y_n(t)}^{-\frac{1}{n}}\frac{d y_n}{G(y_n)}\leq \int^t_0a(s)k(s)ds\sup F[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty) , \quad t\in [0,1] . \label{e3.4} \end{equation} Now we use (H3) and \eqref{e3.4} show that $\omega(t)=\inf \{y_n(t)\}>-\infty$ is bounded on $[0,1]$. On the other hand, it follows from \eqref{e3.1} and \eqref{e3.2} that \begin{equation} |y'_n(t)|\leq k(t)a(t)\sup F[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty) \sup G [\omega_k,\max\{\tau,W(\frac{1}{k})\}],\ (n \geq k). \label{e3.5} \end{equation} Where $\omega_k =\inf\{\omega(t)$, $t\in [\frac{1}{3k},1-\frac{1}{3k}] \}$. Thus \eqref{e3.5} and the absolute continuity of Lebesgue integral show that $ \{y_n(t)\}$ is equicontinuous on $[\frac{1}{3k},1-\frac{1}{3k}]$. Now the Arzela-Ascoli theorem guarantees that there exists a subsequence of $ \{y_n(t)\}$, which converges uniformly on $[\frac{1}{3k},1-\frac{1}{3k}]$. When $k=1$, there exists a subsequence $\{{y_n^{(1)}}(t)\}$ of $\{y_n(t)\}$, which converges uniformly on $[\frac{1}{3},\frac{2}{3}]$. When $k=2$, there exists a subsequence $\{{y_n^{(2)}}(t)\}$ of $\{{y_n^{(1)}}(t)\}$, which converges uniformly on $[\frac{1}{6},\frac{5}{6}]$. In general, there exists a subsequence $\{{y_n^{(k+1)}}(t)\}$ of $\{{y_n^{(k)}}(t)\}$, which converges uniformly on $[\frac{1}{3(k+1)},1-\frac{1}{3(k+1)}]$. Then the diagonal sequence $ \{y_k^{(k)}(t)\}$ converges everywhere in $(0,1)$ and it is easy to verify that $ \{y_k^{(k)}(t)\}$ converges uniformly on any interval $[c,d]\subseteq (0,1)$. Without loss of generality, let $ \{y_k^{(k)}(t)\}$ be itself of $ \{y_n(t)\}$ in the rest. Put $y(t)=\lim_{n\to\infty}y_n(t),t\in(0,1)$. Then $y(t)$ is continuous in $(0,1)$ and $y(t)<0,t\in(0,1)$. (3) Now \eqref{e3.4} shows that $$ \sup\{\max\{-y_n(t),t\in[0,1]\}\}<+\infty. $$ We have \begin{equation} \lim_{t\to 0+}{\sup\{\int^t_0-{{y_n}(s)}ds\}}=0, \quad \lim_{t\to 1-}{\sup\{\int_t^1-{{y_n}(s)}ds\}}=0, \label{e3.6} \end{equation} and we obtain \begin{equation} \begin{aligned} A y_n(t) &=\frac{1}{1- \alpha }\int^1_0-y_n(\tau)d\tau -\frac{\alpha}{1-\alpha} \int ^\eta_0 -y_n(\tau)d\tau -\int^t_0 -y_n(\tau)d\tau \\ &<\frac{1}{1- \alpha }\int^1_0 -y_n(\tau)d\tau < +\infty, \quad t\in[0,1]. \end{aligned} \label{e3.7} \end{equation} Since \eqref{e3.6} and \eqref{e3.7} hold, Fatou's theorem of the Lebesgue integral implies $Ay(t)<+\infty$, for any fixed $t\in(0,1)$. (4) $y(t)$ satisfies $$ y(t)=-\int^t_0 a(s)f(s,Ay(s),y(s))ds, \quad t\in(0,1). % \label{e3.8} $$ Since $y_n(t)$ converges uniformly on $[a,b]\subset(0,1)$, \eqref{e3.6} leads that ${A y_n(s)}$ converges to $Ay(s)$ for any $s\in(0,1)$. For each fixed $t\in(0,1)$, thee exists $d>0$ such that $0k$. Since $y_n(s)\leq \max \{\tau,W(d)\}$, $A y_n(s)+ \frac{1}{n}\geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta)$, $s\in [d,t]$, the set $\{A y_n(s)\}$ or $\{y_n(s)\}$ is bounded and equicontinuous on $[d,t]$. Let $n\to\infty$ \begin{equation} y(t)-y(d)=-\int^t_d a(s)f(s,Ay(s),y(s))ds. \label{e3.10} \end{equation} Putting $t=d$ in \eqref{e3.4}, we have $$ \int_{y_n(d)}^{-\frac{1}{n}}\frac{d y_n}{G(y_n)}\leq \int^d_0a(s)k(s)ds\sup F[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty) . % \label{e3.11} $$ Let $n\to\infty$ and $d\to 0+$, we obtain $$ y(0+)=\lim_{d\to 0+}y(d)=0. $$ Letting $d\to0+$ in \eqref{e3.10}, we have \begin{equation} y(t)=-\int^t_0 a(s)f(s,Ay(s),y(s))ds ,\quad t\in(0,1), \label{e3.12} \end{equation} and $Ay(1)=\alpha Ay(\eta)$. Hence $x(t)=Ay(t)$ is a positive solution of \eqref{e1.1}. \end{proof} \begin{corollary} \label{coro3.1} Suppose that {\rm (H1)-(H3)} hold , then the set of positive solutions of \eqref{e1.1} is compact. \end{corollary} \begin{proof} Let $M=\{y\in C[0,1]:Ay(t) \text{is a positive solution of \eqref{e1.1}} \}$. First we show that $M$ is compact. Note that (1) $M$ is not empty; (2) $M$ is relatively compact(bounded, equicontinuous). (3) $M$ is closed. Obviously Theorem \ref{thm3.1} implies $M$ is not empty. First we show that $M\in C[0,1]$ is relatively compact. For any $y(t)\in M$, differentiating \eqref{e3.12} and using (H2), we obtain \begin{gather*} -y'(t)= \lambda a(t)f(t,Ay(t),y(t)) \\ \begin{aligned}\frac{ -y'(t)}{ G (y(t))} &\leq a(t)k(t) \sup F[Ay(t),+\infty)\\ &\leq a(t)k(t) \sup F[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty), \quad t\in [0,1]. \end{aligned} \end{gather*} %\label{e3.13} Integrating from $0$ to $t$, we have \begin{equation} \int_{y(t)}^{0}\frac{d y}{G(y)}\leq \int^1_0a(s)k(s)ds\sup F[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty) , \quad t\in [0,1] . \label{e3.14} \end{equation} Now (H3) and \eqref{e3.14} show that for any $y(t)\in M$, there exists $K>0$ such that $|y(t)|0$, there is a $\epsilon'>0$ such that \begin{equation} |I^{-1}(s_1)-I^{-1}(s_2)|<\overline{\epsilon},\forall|s_1-s_2| <\epsilon',s_1,s_2\in[I(-K),0]. \label{e3.18} \end{equation} Inequality \eqref{e3.17} guarantees that for $\epsilon'>0$, there is a $\delta'>0$ such that $$ |I(y(t_1))-I(y(t_2))|<\epsilon',\forall|t_1-t_2|<\delta',\quad t_1,t_2\in[0,1]. %\label{e3.19} $$ This inequality and \eqref{e3.18}imply $$ |y(t_1)-y(t_2)|=|I^{-1}(I(y(t_1))-I^{-1}(I(y(t_2))|<\overline{\epsilon},\quad t_1,t_2\in[0,1], $$ %\label{e3.20} which means that $M$ is equicontinuous. So $M$ is relatively compact. Second, we show that $M$ is closed. Suppose that $\{y_n\}\subseteq M$ and $$ \lim_{n\to+\infty}\max_{t\in[0,1]}|y_n(t)-y_0(t)|=0. $$ Obviously $y_0\in C[0,1]$ and $\lim_{n\to+\infty}Ay_n(t)=Ay_0(t)$, $t\in[0,1]$. Moreover, \begin{align*} Ay_n(t)&=\frac{1}{1- \alpha }\int^1_0-y_n(\tau)d\tau -\frac{\alpha}{1-\alpha} \int ^\eta_0 -y_n(\tau)d\tau -\int^t_0 -y_n(\tau)d\tau \\ &<\frac{1}{1- \alpha }\int^1_0 -y_n(\tau)d\tau \\ &< \frac{K}{1- \alpha }, \quad t\in[0,1]. \end{align*} % \label{e3.21} For $y_n(t)\in M$, from \eqref{e3.12} we obtain $$ y_n(t)=-\int^t_0 a(s)f(s,Ay_n(s),y_n(s))ds ,\quad t\in(0,1). $$% \label{e3.22} For fixed $t\in(0,1)$, there exists $d>0$ such that $00$, $\sigma \geq 0$, and let $F(x)=1+x^{-\gamma},G(y)=1+ (-y)^{-\sigma}+(-y)\ln(-y)$. Then \begin{gather*} f(t,x,y)\leq k(t)F(x) G(y), \quad \delta = -1,\quad \beta (t)= k(t), \\ \int^{-1}_{-\infty}\frac{dy}{G(y)}=+\infty. \end{gather*} By Theorem \ref{thm3.1}, equation \eqref{e1.1} has at least a positive solution and Corollary \ref{coro3.1} implies the set of solutions is compact. \end{example} \begin{thebibliography}{00} \bibitem{d1} K. Deimling; \emph{Nonlinear Functional Analysis}, Spring-Verlag, Berlin, 1985. \bibitem{g1} Y. Guo, W. Ge; \emph{Positive solutions for three-point boundary value problems with dependence on the first order derivative}, J. Math. Anal. Appl., 290, (2004), pp291-301. \bibitem{i1} V. A. Il'in, E. I. Moiseev; \emph{Nonlocal boundary value problem of the second kind for a Sturm-Liouvile operator}, Differential Equation 23 (8) (1987), pp. 979-987. \bibitem{i2} V. A. Il'in, E. I. Moiseev; \emph{Nonlocal value problem of the first kind for a Sturm-Liouvile operator in its differential and finite difference aspects}, Differential Equations, 23 no. 7 (1987), pp. 803-810. \bibitem{l1} B. Liu; \emph{Positive solutions of a nonlinear three-point boundary value problem}, Applied Mathematics and Computation 132 (2002), pp. 11-28. \bibitem{m1} R. Ma; \emph{Positive solutions for a nonlinear three-point boundary value problem}, Electron. J. Differential Equations 1999, no. 34 (1999), pp. 1-8. \bibitem{y1} G. Yang; \emph{Positive solutions of some second order nonlinear singular differential equations}, Computers Math. Appl. 45 (2003), pp. 604-615. \bibitem{y2} G. Yang; \emph{Second order singular boundary value problems with sign-changing nonlinearities on infinity intervals}. Nonlinear Analysis Forum, 9 (2)(2004), pp. 169-174. \end{thebibliography} \end{document}