\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 73, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/73\hfil Existence of positive solutions] {Existence of positive solutions for nonlinear dynamic systems with a parameter on a measure chain} \author[S.-H. Ma, J.-P. Sun, D.-B. Wang\hfil EJDE-2007/73\hfilneg] {Shuang-Hong Ma, Jian-Ping Sun, Da-Bin Wang} % in alphabetical order \address{Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China} \email[S.-H. Ma]{mashuanghong@lut.cn} \email[J.-P. Sun]{jpsun@lut.cn} \email[D.-B. Wang (Corresponding author)]{wangdb@lut.cn} \thanks{Submitted January 9, 2007. Published May 15, 2007.} \subjclass[2000]{34B15, 39A10} \keywords{Dynamic system; positive solution; cone; fixed point; measure chain} \begin{abstract} In this paper, we consider the following dynamic system with parameter on a measure chain $\mathbb{T}$, \begin{gather*} u^{\Delta\Delta}_{i}(t)+\lambda h_{i}(t)f_{i}(u_{1}(\sigma(t)), u_{2}(\sigma(t)),\dots ,u_{n}(\sigma(t)))=0,\quad t\in[a,b], \\ \alpha u_{i}(a)-\beta u^{\Delta}_{i}(a)=0,\quad \gamma u_{i}(\sigma(b))+\delta u^{\Delta}_{i}(\sigma(b))=0, \end{gather*} where $i=1,2,\dots ,n$. Using fixed-point index theory, we find sufficient conditions the existence of positive solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \newtheorem{definition}[theorem]{Definition} \section{Introduction} The theory of dynamic equations on time scales has become a new important mathematical branch (see, for example, \cite{a1,a3,b1,b2}) since it was initiated by Hilger \cite{h2}. At the same time, boundary-value problems (BVPs) for scalar dynamic equations on time scales have received considerable attention \cite{a4,a5,a6,a7,c1,e1,h1,l1,l2}. However, to the best of our knowledge, only a few papers can be found in the literature for systems of BVPs for dynamic equations on time scales \cite{l2}. Sun, Zhao and Li \cite{s1} considered the following discrete system with parameter \begin{gather*} \Delta^{2}u_{i}(k)+\lambda h_{i}(k)f_{i}(u_{1}(k),u_{2}(k),\dots , u_{n}(k))=0,\quad k\in[0,T],\\ u_{i}(0)=u_{i}(T+2)=0, \end{gather*} where $i=1,2,\dots ,n $, $\lambda>0$ is a constant, $T$ and $n\geq2$ are two fixed positive integers. They established the existence of one positive solution by using the theory of fixed-point index \cite{g1}. Motivated by \cite{s1}, the purpose of this paper is to study the following more general dynamic system with parameter on a measure chain $\mathbb{T}$, \begin{gather} u^{\Delta\Delta}_{i}(t)+\lambda h_{i}(t)f_{i}(u_{1}(\sigma(t)),u_{2}(\sigma(t)), \dots ,u_{n}(\sigma(t)))=0,\quad t\in[a,b], \label{e1.3} \\ \alpha u_{i}(a)-\beta u^{\Delta}_{i}(a)=0,\quad \gamma u_{i}(\sigma(b))+\delta u^{\Delta}_{i}(\sigma(b))=0, \label{e1.4} \end{gather} where, $i=1,2,\dots ,n$, $\lambda>0$ is constant, $a, b\in \mathbb{T}$, $\alpha$, $\beta$, $\gamma$, $\delta\geq0$, $\gamma(\sigma(b)-\sigma^{2}(b))+\delta\geq0$, $r=\gamma\beta+\alpha\delta+\alpha\gamma(\sigma(b)-a)>0$, and the function $\sigma(t)$ and $[a,b]$ is defined as in Section 2 below. Let $\mathbb{R}$ be the set of real numbers, and $\mathbb{R}_{+}=[0, \infty)$. For $u= (u_{1},u_{2},\dots ,u_{n})\in \mathbb{R}^{n}_{+}$, let $\| u\|=\sum_{i=1}^{n}u_{i}$. We make the following assumptions for $i=1,2,\dots ,n$: \begin{itemize} \item[(H1)] $h_{i}: [a, b]\to (0, \infty)$ is continuous. \item[(H2)] $f_{i}: \mathbb{R}^{n}_{+} \to\mathbb{R}_{+}$ is continuous. \end{itemize} For convenience, we introduce the following notation \begin{gather*} f^{0}_{i}= \lim_{\| u\| \to 0}\frac{f_{i}(u)}{\| u\|},\quad f^{\infty}_{i}= \lim_{\| u\| \to\infty}\frac{f_{i}(u)}{\| u\|},\quad u\in \mathbb{R}^{n}_{+},\\ f^{0}= \sum_{i=1}^{n}f^{0}_{i}\quad \text{and}\quad f^{\infty}= \sum_{i=1}^{n}f^{\infty}_{i}. \end{gather*} \section{Preliminaries} In this section, we introduce several definitions on measure chains and some notation. Also we give some lemmas which are useful in proving our main result. \begin{definition} \label{def2.1} \rm Let $\mathbb{T}$ be a closed subset of $\mathbb{R}$ with the properties \begin{gather*} \sigma(t)=\inf\{\tau\in \mathbb{T}:\tau>t\}\in \mathbb{T} \\ \rho(t)=\sup\{\tau\in \mathbb{T}:\tau\inf \mathbb{T}$, respectively. We assume throughout that $\mathbb{T}$ has the topology that it inherits from the standard topology on $\mathbb{R}$. We say $t$ is right-scattered, left-scattered, right-dense and left-dense if $\sigma(t)>t$, $\rho(t)0$, there is an open neighborhood $U$ of $t$, such that $$ | x(\sigma(t))-x(s)-\theta[\sigma(t)-s]|\leq\varepsilon|\sigma(t)-s|, \quad s\in U. $$ In this case, $\theta$ is called the $\Delta$-derivative of $x$ at $t\in \mathbb{T}$ and we denote it by $\theta=x^{\Delta }(t)$. It can be shown that if $x:\mathbb{T}\to \mathbb{R}$ is continuous at $t\in \mathbb{T}$, then \[ x^{\Delta}(t)=\frac{x(\sigma(t))-x(t)}{\sigma(t)-t} \] if $t$ is right-scattered, and \[ x^{\Delta}(t)=\lim_{s \to t}\frac{x(t)-x(s)}{t-s} \] if $t$ is right-dense. \end{definition} In the rest of the paper, we assume that the set $[a,\sigma(b)]$ is, such that \[ \xi=\min\{t\in \mathbb{T}: t\geq\frac{\sigma(b)+3a}{4}\},\quad \omega=\max\{t\in \mathbb{T}: t\leq\frac{3\sigma(b)+a}{4}\}, \] exist and satisfy $$ \frac{\sigma(b)+3a}{4}\leq\xi<\omega\leq\frac{3\sigma(b)+a}{4}. $$ We also assume that if $\sigma(\omega)=b$ and $\delta=0$, then $\sigma(\omega)<\sigma(b)$. We denote by $G(t,s)$ the Green function of the boundary-value problem \begin{gather*} -u^{\Delta\Delta}(t)=0,\quad t\in[a,b],\\ \alpha u(a)-\beta u^{\Delta}(a)=0,\quad \gamma u(\sigma(b))+\delta u^{\Delta}(\sigma(b))=0, \end{gather*} which is explicitly given in \cite{e1}, $$ G(t,s)=\begin{cases} \frac{1}{r}\{\alpha(t-a)+\beta\}\{\gamma(\sigma(b)-\sigma(s))+\delta\}, &t\leq s,\\ \frac{1}{r}\{\alpha(\sigma(s)-a)+\beta\}\{\gamma(\sigma(b)-t)+\delta\}, &t\geq \sigma(s), \end{cases} $$ for $t\in[a,\sigma^{2}(b)]$ and $s\in[a,b]$, where $r=\gamma\beta+\alpha\delta+\alpha\gamma(\sigma(b)-a)$. For this Green function, we have the following lemmas \cite{b1,b2,e1}. \begin{lemma} \label{lem2.1} Assume $\alpha, \beta, \gamma, \delta \geq 0$, $\gamma(\sigma(b)-\sigma^{2}(b))+\delta\geq0$, and $$ r=\gamma\beta+\alpha\delta+\alpha\gamma(\sigma(b)-a)>0\,. $$ Then, for $(t,s)\in[a,\sigma^{2}(b)]\times[a,b]$, $0\leq G(t,s)\leq G(\sigma(s),s)$. \end{lemma} \begin{lemma} \label{lem2.2} (i) If $(t,s)\in[(\sigma(b)+3a)/4, (3\sigma(b)+a)/4]\times [a,b]$, then $G(t,s)\geq lG(\sigma(s),s)$, where $$ l=\min\Big\{\frac{\alpha[\sigma(b)-a]+4\beta}{4\alpha[\sigma(b)-a]+4\beta},\, \frac{\gamma[\sigma(b)-a]+4\delta}{4\gamma[\sigma(b)-\sigma(a)] +4\delta}\Big\}; $$ (ii) If $(t,s)\in[\xi,\sigma(\omega)]\times[a,b]$, then $G(t,s)\geq kG(\sigma(s),s)$, where $$ k=\min\Big\{l,\min_{s\in[a,b]}\frac{G(\sigma(\omega),s)}{G(\sigma(s),s)}\Big\}. $$ \end{lemma} The following well-known result of the fixed-point index is crucial in our arguments. \begin{lemma}[\cite{g1}] \label{lem2.3} Let $E$ be a Banach space and $K$ a cone in $E$. For $r>0$, define $K_{r}=\{u\in K: \| u\|0$. If there exists $f_{i_{0}}$ such that \begin{equation} \label{e2.2} f_{i_{0}}(u_{1}(\sigma(t)),u_{2}(\sigma(t)),\dots ,u_{n}(\sigma(t)))\geq \eta\sum_{i=1}^{n}u_{i}(t),\quad t\in[\xi, \sigma(\omega)], \end{equation} then $\| A(u)\| \geq \lambda k \eta\Gamma\| u\|$. \end{lemma} \begin{proof} From the definition of $K$ and \eqref{e2.2}, we have \begin{align*} \| A(u)\| &=\sum_{i=1}^{n}| A_{i}(u)|_{0}\\ &\geq | A_{i_{0}}|_{0} =\lambda \max_{t\in[a, \sigma^{2}(b)]}\int^{\sigma(b)}_{a}G(t, s)h_{i_{0}}(s)f_{i_{0}}(u_{1}(\sigma(s)),\dots , u_{n}(\sigma(s)))\Delta s\\ &\geq \lambda\max_{t\in[a, \sigma^{2}(b)]} \int^{\sigma(\omega)}_{\xi}G(t, s)h_{i_{0}}(s)f_{i_{0}}(u_{1}(\sigma(s)),\dots , u_{n}(\sigma(s)))\Delta s\\ &\geq \lambda\eta \max_{t\in[a, \sigma^{2}(b)]}\int^{\sigma(\omega)}_{\xi}G(t, s)h_{i_{0}}(s)\sum_{i=1}^{n}u_{i}(s)\Delta s\\ &\geq k\lambda\eta\| u\| \gamma_{i_{0}}\\ &\geq k\lambda\eta \Gamma\| u\|. \end{align*} The proof is complete. \end{proof} For each $i=1,2,\dots , n$, we define a new function $\tilde{f_{i}}: \mathbb{R}_{+} \to \mathbb{R}_{+}$ by $$ \tilde{f_{i}}(t)=\max\{f_{i}(u): u\in \mathbb{R}^{n}_{+},\; \| u\|\leq t\}. $$ Denote $$ \tilde{f^{0}_{i}}= \lim_{t\to 0}\frac{\tilde{f_{i}}(t)}{t},\quad \tilde{f^{\infty}_{i}}=\lim_{t\to\infty}\frac{\tilde{f_{i}}(t)}{t}. $$ As in \cite[Lemma 2.8]{w1}, we can obtain the following result. \begin{lemma} \label{lem2.6} Assume that (H2) holds. Then, $\tilde{f^{0}_{i}}= f^{0}_{i}$ and $\tilde{f^{\infty}_{i}}= f^{\infty}_{i}$. \end{lemma} \begin{lemma} \label{lem2.7} Assume that (H1) and (H2) hold. Let $h>0$. If there exists $\varepsilon>0$, such that \begin{equation} \label{e2.3} \tilde{f_{i}}(h) \leq \varepsilon h,\quad i=1,2,\dots , n, \end{equation} then $\| A(u)\| \leq \lambda\varepsilon C\|u\|$, for $u\in \partial K_{h}$, where $$ C= \sum^{n}_{i=1}[\max_{t\in[a, \sigma^{2}(b)]}\int^{\sigma(b)}_{a}G(t, s) h_{i}(s)\Delta s]\,. $$ \end{lemma} \begin{proof} Suppose $u\in\ \partial K_{h}$; i.e., $u\in\ K$ and $\| u\|=h$, then it follows from \eqref{e2.3} that \begin{align*} A_{i}(u)(t)& =\lambda\int^{\sigma(b)}_{a}G(t,s)h_{i}(s)f_{i}(u_{1}(\sigma(s)), \dots , u_{n}(\sigma(s)))\Delta s\\ &\leq \lambda\int^{\sigma(b)}_{a}G(t,s)h_{i}(s)\tilde{f_{i}}(h)\Delta s\\ &\leq \lambda\varepsilon h\int^{\sigma(b)}_{a}G(t,s)h_{i}(s)\Delta s\\ &\leq \lambda\varepsilon h\max_{t\in[a, \sigma^{2}(b)]} \int^{\sigma(b)}_{a}G(t,s)h_{i}(s)\Delta s,\quad t\in[a, \sigma^{2}(b)],\; i=1,2,\dots , n. \end{align*} So, $$ | A_{i}(u)|_{0}\leq\lambda\varepsilon h\max_{t\in[a, \sigma^{2}(b)]} \int^{\sigma(b)}_{a}G(t,s)h_{i}(s)\Delta s,\quad i=1,2,\dots , n. $$ Therefore, $$ \| A(u)\|= \sum^{n}_{i=1}| A_{i}(u)|_{0} \leq\ \lambda\varepsilon h\sum^{n}_{i=1}[\max_{t\in[a, \sigma^{2}(b)]}\int^{\sigma(b)}_{a}G(t, s)h_{i}(s)\Delta s] = \lambda\varepsilon C\| u\|. $$ The proof is complete. \end{proof} \section{Main Result} Our main result is the following theorem. \begin{theorem} \label{thm3.1} Assume that (H1) and (H2) hold. Then, for all $\lambda>0$, \eqref{e1.3} and \eqref{e1.4} has a positive solution if one of the following two conditions holds: \begin{itemize} \item[(a)] $f^{0}=0$ and $f^{\infty}=\infty$; \item[(b)] $f^{0}=\infty$ and $f^{\infty}= 0$. \end{itemize} \end{theorem} \begin{proof} First, we suppose that (a) holds. Since $f^{0}=0$ implies that $f^{0}_{i}=0$, $i=1,2,\dots ,n$, it follows from Lemma \ref{lem2.6} that $\tilde{f^{0}_{i}}=0$, $i=1,2,\dots ,n$. Therefore, we can choose $r_{1}>\ 0$, such that $$ \tilde{f_{i}}(r_{1}) \leq \varepsilon r_{1},\quad i=1,2,\dots , n, $$ where the constant $\varepsilon>0$ satisfies $\lambda\varepsilon C < 1$, and $C$ is defined in Lemma \ref{lem2.7}. By Lemma \ref{lem2.7}, we have \begin{equation} \label{e3.1} \| A(u)\|\leq \lambda\varepsilon C\| u\|< \| u\|,\quad \text{for } u\in\ \partial K_{r_{1}}. \end{equation} Now, since $f^{\infty}=\infty$, there exists $f_{i_{0}}$ so that $f^{\infty}_{i_{0}}= \infty$. Therefore, there is $H>0$, such that $$ f_{i_{0}}(u)\geq \eta\| u\|,\quad\text{for } u\in \mathbb{R}^{n}_{+}, \quad \text{and}\quad \| u\|\geq H, $$ where $\eta\ >0$ is chosen so that $\lambda\eta k\Gamma\ >1$. Let $r_{2}=\max\{2r_{1}, \frac{1}{k}\ H\}$. If $u\in\ \partial K_{r_{2}}$, then $$ \| u\|= \sum^{n}_{i=1}| u_{i}|_{0} \geq \sum^{n}_{i=1}u_{i}(t)\geq k\| u\| = kr_{2}\geq H,\quad t\in [\xi, \sigma(\omega)], $$ which implies that $$ f_{i_{0}}(u_{1}(\sigma(t)),u_{2}(\sigma(t)),\dots ,u_{n}(\sigma(t))) \geq\eta\| u\|\geq \eta\sum_{i=1}^{n}u_{i}(t),\quad t\in[\xi, \sigma(\omega)]. $$ It follows from Lemma \ref{lem2.5} that \begin{equation} \label{e3.2} \| A(u)\|\geq \lambda\eta\Gamma k\| u\| > \| u\|,\quad \text{for } u\in \partial K_{r_{2}}. \end{equation} By \eqref{e3.1}, \eqref{e3.2} and Lemma \ref{lem2.3}, $$ i(A, K_{r_{1}}, K)=1\quad\text{and}\quad i(A, K_{r_{2}}, K)=0. $$ It follows from the additivity of the fixed-point index that $$ i(A, K_{r_{2}}\backslash \bar{K}_{r_{1}}, K)=-1, $$ which implies that $A$ has a fixed point $u\in K_{r_{2}}\backslash \bar{K}_{r_{1}}$. The fixed point $u\in K_{r_{2}}\backslash \bar{K}_{r_{1}}$ is the desired positive solution of \eqref{e1.3} and \eqref{e1.4}. Next, we suppose that (b) holds. Since $f^{0}=\infty$, there exists $f_{i_{0}}$ so that $f^{0}_{i_{0}}= \infty$. Therefore, there is $r_{1}> 0$, such that $$ f_{i_{0}}(u)\geq \eta\| u\|,\quad \text{for } u\in \mathbb{R}^{n}_{+}, \quad \text{and}\quad \| u\|\leq r_{1}, $$ where $\eta\ >0$ is chosen so that $\lambda\eta k\Gamma\ >1$. If $u\in \partial K_{r_{1}}$, then $$ f_{i_{0}}(u_{1}(\sigma(t)),u_{2}(\sigma(t)),\dots ,u_{n}(\sigma(t))) \geq\eta\| u\|\geq \eta\sum_{i=1}^{n}u_{i}(t),\quad t\in[\xi, \sigma(\omega)]. $$ It follows from Lemma \ref{lem2.5} that \begin{equation} \label{e3.3} \| A(u)\|\geq \lambda\eta\Gamma k\| u\| > \| u\|,\quad \text{for } u\in \partial K_{r_{1}}. \end{equation} In view of $f^{\infty}= 0$ implies that $f^{\infty}_{i}= 0$, $i=1,2,\dots ,n$, it follows from Lemma \ref{lem2.6} that $\tilde{f_{i}^{\infty}}=0$, $i=1,2,\dots ,n$. Therefore, we can choose $r_{2}> 2r_{1}$, such that $$ \tilde{f_{i}}(r_{2})\leq \varepsilon r_{2},\quad i=1,2,\dots , n, $$ where the constant $\varepsilon>0$ satisfies $$ \lambda\varepsilon C< 1, $$ and $C$ is defined in Lemma \ref{lem2.7}. We have by Lemma \ref{lem2.7} that \begin{equation} \label{e3.4} \| A(u)\|\leq \lambda\varepsilon C\| u\|< \| u\|,\quad \text{for } u\in\ \partial K_{r_{2}}. \end{equation} By \eqref{e3.3}, \eqref{e3.4} and Lemma \ref{lem2.3}, $$ i(A, K_{r_{1}}, K)=0\quad \text{and}\quad i(A, K_{r_{2}}, K)=1. $$ It follows from the additivity of the fixed-point index that $$ i(A, K_{r_{2}}\backslash \bar{K}_{r_{1}}, K)=1, $$ which implies that $A$ has a fixed point $u\in K_{r_{2}}\backslash \bar{K}_{r_{1}}$, which is the desired positive solution of \eqref{e1.3} and \eqref{e1.4}. \end{proof} \begin{remark} \label{rmk3.1} \rm It is worth noting that these techniques can be extended to the following multi-point system based in \cite{a6}, \begin{gather*} (p_{i}y^{\Delta}_{i})^{\Delta}(t)-q_{i}(t)y_{i}(t) +\lambda h_{i}(t)f_{i}(y_{1}(\sigma(t)),y_{2}(\sigma(t)),\dots , y_{m}(\sigma(t)))=0, \quad t\in (t_{1},t_{n}), \\ \alpha y_{i}(t_{1})-\beta p_{i}(t_{1})y^{\Delta}_{i}(t_{1}) =\sum^{n-1}_{k=2}a_{ki}y_{i}(t_{k}), \quad \gamma y_{i}(t_{n})+\delta p_{i}(t_{n})y^{\Delta}_{i}(t_{n})=\sum^{n-1}_{k=2}b_{ki}y_{i}(t_{k}), \end{gather*} for $i=1,2,\dots , m$. \end{remark} \begin{example} \label{exa3.1}\rm Let $\mathbb{T}=\{1-(\frac{1}{2})^{\mathbb{N}_{0}}\}\cup[1,2]$. We consider the dynamic system \begin{gather} u^{\Delta\Delta}_{i}(t)+\lambda f_{i}(u_{1}(\sigma(t)),u_{2}(\sigma(t)), \dots ,u_{n}(\sigma(t)))=0,\quad t\in[0,1], \label{e3.5}\\ u_{i}(0)- u^{\Delta}_{i}(0)=0,\quad u_{i}(1)+ u^{\Delta}_{i}(1)=0, \label{e3.6} \end{gather} $i=1,2,\dots ,n$, where $f_{i}:\mathbb{R}^{n}_{+}\to\mathbb{R}_{+}$ is define by $$ f_{i}(u_{1},u_{2},\dots ,u_{n})=(u_{1}+u_{2}+\dots +u_{n})^{i+1},\quad i=1,2,\dots ,n. $$ It is easy to see that $$ f^{0}= 0\quad \text{and}\quad f^{\infty}= \infty. $$ So, it follows from Theorem \ref{thm3.1} that for all $\lambda>0$, \eqref{e3.5}-\eqref{e3.6} has at least one positive solution. \end{example} \subsection*{Acknowledgment} The authors would like to thank the anonymous referees for their valuable suggestions which led to an improvement of this paper. \begin{thebibliography}{00} \bibitem{a1} B. Aulbach, S. Hilger; \emph{Linear dynamic processes with inhomogeneous time scale}, Nonlinear Dyn. Quantum Dyn. Sys., (Gaussig, 1990) volume 59 of Math. Res., 9-20. Akademie Verlag, Berlin, 1990. \bibitem{a2} R. P. Agarwal, M. Bohner; \emph{Basic calculus on time scales and some of its applications}. Results Math., 35 (1999), 3-22. \bibitem{a3} R. P. Agarwal, M. Bohner, P. Wong; \emph{Sturm-Liouville eigenvalue problems on time scales}. Apply. Math. Comput., 99 (1999), 153-166. \bibitem{a4} R. P. Agarwal, D. O'Regan; \emph{Triple solutions to boundary value problems on time scales}. Appl. Math. Lett., 13(4) (2000), 7-11. \bibitem{a5} R. P. Agarwal, D. O'Regan; \emph{Nonlinear boundary value problems on time scales}, Nonlinear Anal., 44 (2001), 527-535. \bibitem{a6} D. R. Anderson; \emph{Second-order $n$-point problems on time scales with changing-sign nonlinearity}, Advances in Dynamical Systems and Applications, 1:1 (2006), 17-27. \bibitem{a7} R. I. Avery, D. R. Anderson; \emph{Existence of three positive solutions to a second-order boundary value problem on a measure chain}. J. Comput. Appl. Math., 141 (2002), 65-73. \bibitem{b1} M. Bohner, A. Peterson, \emph{Dynamic Equations on Time scales, An Introduction with Applications}, Birkh\"{a}user, Boston, 2001. \bibitem{b2} M. Bohner, A. Peterson, editors, \emph{Advances in Dynamic Equations on Time Scales}, Birkh\"{a}user, Boston, 2003. \bibitem{c1} C. J. Chyan, J. Henderson; \emph{Twin solutions of boundary value problems for differential equations on measure chains}. J. Comput. Appl. Math., 141 (2002), 123-131. \bibitem{e1} L. Erbe, A. Peterson; \emph{Positive Solutions for a nonlinear differential equation on a measure chain}. Math. Comput. Modelling, 32 (5-6) (2000), 571-585. \bibitem{g1} D. Guo, V. Lakshmikantham, \emph{Nonlinear Problems in Abstract Cones}, Academic Press, San Diego, CA, 1988. \bibitem{h1} J. Henderson; \emph{Multiple solutions for $2m^{th}$-order Sturm-Liouville boundary value problems on a measure chain}. J. Difference Equations and Appl., 6 (2-3) (2000), 417-429. \bibitem{h2} S. Hilger; \emph{Analysis on measure chains-A unified approach to continuous and discrete calculus}. Results Math., 18 (1990), 18-56. \bibitem{l1} W. C. Lian, C. C. Chou, C. T. Liu, F. H. Wong; \emph{Existence of solutions for nonlinear BVPs of second-order differential equations on measure chains}. Math. Comput. Modelling, 34 (7/8) (2001), 821-837. \bibitem{l2} W. T. Li, H. R. Sun; \emph{Multiple positive solutions for nonlinear dynamical system on a measure chain}. J. Comput. Appl. Math., 162 (2004), 421-430. \bibitem{s1} J. P. Sun, Y. H. Zhao, W. T. Li; \emph{Existence of positive solution for second-order nonlinear discrete system with parameter}. Math. Comput. Modelling, 41 (2005), 493-499. \bibitem{w1} H. Wang; \emph{On the number of positive solutions of nonlinear systems}. J. Math. Anal. Appl., 281 (2003), 287-306. \end{thebibliography} \end{document}