\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 111, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/111\hfil Positive solutions] {Positive solutions for an $m$-point \\ boundary-value problem} \author[L. X. Truong, L. T. P. Ngoc, N. T. Long\hfil EJDE-2008/111\hfilneg] {Le Xuan Truong, Le Thi Phuong Ngoc, Nguyen Thanh Long} \address{Le Xuan Truong \newline University of Technical Education in HoChiMinh City, 01 Vo Van Ngan Str., Thu Duc Dist., HoChiMinh City, Vietnam} \email{lxuantruong@gmail.com} \address{Le Thi Phuong Ngoc \newline Nhatrang Educational College, 01 Nguyen Chanh Str., Nhatrang City, Vietnam} \email{ngoc1966@gmail.com} \address{Nguyen Thanh Long \newline Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University HoChiMinh City, 227 Nguyen Van Cu Str., Dist. 5, HoChiMinh City, Vietnam} \email{longnt@hcmc.netnam.vn, longnt2@gmail.com} \thanks{Submitted April 22, 2008. Published August 15, 2008.} \subjclass[2000]{34B07, 34B10, 34B18, 34B27} \keywords{Multi-point boundary; positive solution; \hfill\break\indent Guo-Krasnoselskii fixed point theorem} \begin{abstract} In this paper, we obtain sufficient conditions for the existence of a positive solution, and infinitely many positive solutions, of the $m$-point boundary-value problem \begin{gather*} x''(t) = f(t, x(t)), \quad 0 < t < 1, \\ x'(0) = 0, \quad x(1)=\sum_{i=1}^{m-2}\alpha _{i}x(\eta _{i})\,. \end{gather*} Our main tools are the Guo-Krasnoselskii's fixed point theorem and the monotone iterative technique. We also show that the set of positive solutions is compact. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} The existence and multiplicity of positive solutions for boundary-value problems have been extensively studied by many authors using various techniques, such fixed point theorem in cones, the nonlinear alternative of Leray-Schauder, the Leggett-William's fixed point theorem, monotone iterative techniques. We refer the reader to the references in this article and the references therein for the results of multi-point boundary-value problems. Han \cite{h1} studied the existence of positive solutions for the three-point boundary-value problem at resonance \begin{gather}\label{1.01} x''(t) = f(t, x(t)), \quad 0 < t < 1, \\ \label{1.02} x'(0) = 0, \quad x(\eta) = x(1), \end{gather} where $\eta \in (0, 1)$. The main tool is the fixed point theorem in cones. By the same method, Long and Ngoc \cite{l1} have studied the equation \eqref{1.01} together with the boundary conditions \begin{equation}\label{1.03} x'(0) = 0, \quad x(1) = \alpha x(\eta), \end{equation} where $\alpha$ and $\eta$ in $(0,1)$. The authors proved the existence of positive solutions and established the compactness of the set of positive solutions. Based on the above works, we investigate the $m$-point boundary-value problem consisting of the equation $\eqref{1.01}$ together with the boundary conditions \begin{equation}\label{1.04} x'(0) = 0, \quad x(1)=\sum_{i=1}^{m-2}\alpha _{i}x(\eta _{i}), \end{equation} where $m\geq 3$, $0 < \eta _{1} < \eta _{2} < \dots < \eta _{m-2} < 1$ and $\alpha_{i} \geq 0$, for all $i = 1, 2, \dots m -2$ such that $\sum_{i=1}^{m-2}\alpha _{i} < 1$. We shall establish the existence and multiplicity of positive solutions by applying well-know Guo-Krasnoselskii's fixed point theorem and applying the monotone iterative technique. Let $\beta \in (0, \frac{\pi}{2})$. Obviously, problem \eqref{1.01}, \eqref{1.04} is equivalent to the problem \begin{gather}\label{2.01} x''(t) + \beta^{2}x(t) = g(t, x(t)), \\ \label{2.02} x'(0) = 0, \quad x(1)=\sum_{i=1}^{m-2}\alpha _{i}x(\eta _{i}), \end{gather} where \begin{equation}\label{2.03} g(t, x) = f(t, x) + \beta^{2}x. \end{equation} In this paper, we sue the following assumptions: \begin{itemize} \item [(H1)] $\sum_{i=1}^{m-2}\alpha_{i}\cos{\beta\eta_{i}} - \cos{\beta} > 0$; \item [(H2)] $f: [0, 1] \times [0, +\infty) \to \mathbb{R}$ is a continuous function such that \begin{equation}\label{2.04} f(t, x) \geq - \beta^{2}x, \forall t\in [0,1], x \in [0, +\infty); \end{equation} \item [(H2')] The function $f(t,x)$ is nondecreasing in $x$ and satisfy (H2) \end{itemize} We put: \begin{gather*} K_{m} = \frac{1}{\sum_{i=1}^{m-2}\alpha_{i}\cos{\beta\eta_{i}} - \cos{\beta}};\\ M = \frac{\sin{\beta}}{\beta}(1+K_{m});\\ M_{0} = \frac{K_{m}\cos{\beta}}{\beta} \Big(1-\sum_{i=1}^{m-2}\alpha_{i}\Big)\sin{\beta(1- \eta_{m-2})}. \end{gather*} The main results for the existence and multiplicity of positive solutions are the following theorems, in which the operator $T$ and constant $c$, $ 00$ sufficiently large, \begin{equation}\label{2.10} H(t, s) \geq 0, \quad \forall (t, s) \in [0,1]\times [0,1], \end{equation} and that when $\mu>0$ sufficiently small, \begin{equation}\label{2.11} H(t, s) \leq 0, \quad \forall (t, s) \in [0,1]\times [0,1]. \end{equation} To prove \eqref{2.10}, we use that from \eqref{2.07}, for all $t, s \in [0,1]$, \begin{equation}\label{2.12} G(t, s) \leq \frac{1}{\beta}\sin{\beta(1-s)} + \frac{K_{m}}{\beta}\sin{\beta(1-s)}\leq \left(K_{m}+1\right)(1-s); \end{equation} therefore \begin{equation}\label{2.13} H(t, s) \geq \mu(1-s) - \left(K_{m}+1\right)(1-s) = \left(\mu - K_{m} - 1\right)(1-s). \end{equation} So, if we choose $\mu \equiv \mu_{1} \geq K_{m}+1$ then $H(t,s) \geq 0$, for all $t, s \in [0,1]$. To prove of \eqref {2.11}, we consider two cases: \textbf{Case 1: $s\in [0, \eta_{m-2}]$.} From \eqref{2.09} we can deduce that, for all $t \in [0,1]$, \begin{equation} \label{2.14} H(t, s) =\mu(1-s) - G(t, s) \leq \mu (1-s) - M_{0} \leq \mu -M_{0}. \end{equation} So, for $\mu \leq M_{0}$, we have $H(t, s)\leq 0$, for all $t \in [0,1]$, $s\in [0, \eta_{m-2}]$. \textbf{Case 2: $s \in [\eta_{m-2}, 1]$.} The function $z \mapsto \frac{\sin z}{z}$ is decreasing on $(0, \pi]$, so we obtain \[ \frac{\sin \beta(1-s)}{\beta(1-s)} \geq \frac{\sin \beta(1-\eta_{m-2})}{\beta(1-\eta_{m-2})}. \] Therefore, \begin{equation} \label{2.15} \begin{aligned} H(t,s)&=\mu(1-s) - G(t,s) \\ &\leq \mu(1-s) -\frac{K_{m}\cos \beta}{\beta}\sin\beta(1-s) \\ & \leq \mu(1-s) - K_{m}\cos \beta \frac{\sin\beta(1-s)}{\beta(1-s)}(1-s) \\ & \leq \Big[\mu - K_{m}\cos \beta \frac{\sin\beta(1 -\eta_{m-2})}{\beta(1-\eta_{m-2})}\Big](1-s). \end{aligned} \end{equation} If we choose $\mu \leq K_{m}\cos \beta \frac{\sin\beta(1-\eta_{m-2})}{\beta(1-\eta_{m-2})} \equiv M_{1}$, then $H(t,s)\leq 0$, for all $t\in [0,1]$, $s\in [\eta_{m-2},1]$. \smallskip Hence, for $\mu \equiv \mu_{2} \leq \min\{M_0, M_1\}= M_0$, we have $H(t,s)\leq 0$, for all $t, s\in [0,1]$. Finally, by letting $\Phi(s) = \mu_{1}(1-s)$ and $c = \frac{\mu_{2}}{\mu_{1}}$, the part $(iii)$ of this lemma is proved. \end{proof} Let $K$ be the cone in $C[0,1]$, consisting of all nonnegative functions and \[ P=\{x\in K: x(t) \geq c\|x\|, \; \forall t \in [0,1] \}. \] It is clear that $P$ is also a cone in $C[0,1]$. For each $x\in P$, denote $F(x)(t) = g(t, x(t))$, $t\in [0,1]$. From the assumption (H2) we deduce that the operator $F: P \to K$ is continuous. Therefore, the operator $T \equiv A\circ F : P \to K$ is a completely continuous. On the other hand, for $x \in P$, by Lemma \ref{lem2.3} we have \begin{gather}\label{2.16} Tx(t) = \int_{0}^{1}G(t,s)F(x)(s)ds \geq c\int_{0}^{1}\Phi(s)F(x)(s)ds,\\ \label{2.17} \|Tx\| =\max_{0\leq t\leq 1}\int_{0}^{1}G(t,s)F(x)(s)ds \leq \int\Phi(s)F(x)(s)ds, \end{gather} which implies \begin{equation}\label{2.18} Tx(t) \geq c\|Tx\|. \end{equation} Hence, we have the following result. \begin{lemma} \label{lem2.4} The operator $T \equiv A\circ F : P \to P$ is a completely continuous operator. \end{lemma} It is easy to verify the nonzero fixed points of the operator $T$ are the positive solutions of the problem \eqref{2.01}-\eqref{2.03}. \section{Proofs and corollaries of main Theorems} At first, by using the same method as in \cite{h1} and the monotone iterative technique, combining with Lemmas \ref{lem2.1}--\ref{lem2.4}, we prove Theorems \ref{thm1.1} and \ref{thm1.2}. For the convenience of the reader, let us state the following Guo-Krasnoselskii's fixed point theorem \cite{g1}. \begin{theorem}[Guo-Krasnoselskii] \label{thmGK} Let $X$ be a Banach space, and let $P \subset X$ be a cone. Assume $\Omega_{1}$, $\Omega_{2}$ are two open bounded subsets of $X$ with $0\in \Omega_{1}$, $\overline{\Omega}_{1} \subset \Omega_{2}$ and let $T: P\cap (\overline{\Omega}_{2} \backslash \Omega_{1}) \to P$ be a completely continuous operator such that \begin{itemize} \item [(i)] $\|Tu\| \leq \|u\|$, $u \in P \cap \partial\Omega_{1}$, and $\|Tu\| \geq \|u\|$, $u \in P \cap \partial\Omega_{2}$, or \item [(ii)] $\|Tu\| \geq \|u\|$, $u \in P \cap \partial\Omega_{1}$, and $\|Tu\| \leq \|u\|$, $u \in P \cap \partial\Omega_{2}$. \end{itemize} Then $T$ has a fixed point in $P\cap (\overline{\Omega}_{2} \backslash \Omega_{1})$. \end{theorem} \begin{proof}[Proof of Theorem \ref{thm1.1}] Let $$ \Omega_{1}=\{ x\in C[0,1]| : \|x\|0$ such that \begin{equation} f(t,x) \leq \left(-\beta^2 + \frac{\alpha}{M}\right)x, \quad \forall t\in [0,1], x\geq R. \end{equation} Therefore, \begin{equation} g\left(t,x(t)\right)=f\left(t,x(t)\right) + \beta^2x(t) \leq \frac{\alpha}{M}x(t) + \gamma, \quad \forall t\in [0,1], \end{equation} where $\gamma=\max\{g(t,x): (t,x)\in [0,1]\times [0,R]\}$. For $x\in \Sigma$ and $t\in [0,1]$, we have \begin{equation} x(t) = \int_{0}^{1}G(t,s)g\left(s,x(s)\right)ds\leq M\int_{0}^{1}\left(\frac{\alpha}{M}x(s) + \gamma\right)ds \leq \alpha \|x\| + M\gamma, \end{equation} so \begin{equation}\label{eq4.02} \|x\|\leq \frac{M\gamma}{1-\alpha}, \quad \forall x\in \Sigma. \end{equation} From the compactness of the operator $T:P \to P$, it follows from \eqref{eq4.02} that $T(\Sigma)$, and then $\Sigma\subset T(\Sigma)$ are relatively compact. To prove $\Sigma$ is closed, let $\{x_{n}\} \subset \Sigma$ be a sequence and $\lim_{n \to +\infty} \|x_n -\widehat{x}\| =0$. For $t\in [0,1]$, we have \begin{align*} &\big|\widehat{x}(t) - \int_{0}^{1}G(t,s)g\left(s,\widehat{x}(s)\right)ds\big| \\ &\leq |\widehat{x}(t) - x_{n}(t)| +\big|x_{n}(t) - \int_{0}^{1}G(t,s)g\left(s,x_{n}(s)\right)ds\big| \\ &\quad +\big|\int_{0}^{1}G(t,s)g\left(s,x_{n}(s)\right)ds - \int_{0}^{1}G(t,s)g\left(s,\widehat{x}(s)\right)ds\big| \\ &\leq |\widehat{x}(t) - x_{n}(t)| + M \int_{0}^{1}\left| g\left(s,x_{n}(s)\right) - g\left(s,\widehat{x}(s)\right)\right|ds . \end{align*} Let $n \to +\infty$, by the continuity of $g$, we deduce that $\big|\widehat{x}(t) - \int_{0}^{1}G(t,s)g\left(s,\widehat{x}(s)\right)ds\big| =0$. So \begin{equation} \widehat{x}(t)=\int_{0}^{1}G(t,s)g\left(s,\widehat{x}(s)\right)ds, \quad t\in [0,1], \end{equation} which implies that $\widehat{x}\in \Sigma$. Therefore, $\Sigma$ is closed. The proof of Theorem \ref{thm4.1} is complete. \end{proof} \subsection*{Open problem} With the assumptions of Theorem \ref{thm5.1}, is the set of positive solutions discrete or continuum? \subsection*{Acknowledgements} The authors wish to express their sincere thanks to the anonymous referee for his/her helpful comments and remarks. \begin{thebibliography}{00} \bibitem{a1} R. Avery, J. Henderson; \emph{Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian}, J. Math. Anal. Appl. \textbf{277} (2003) 395-404. \bibitem{c1} W. S. Cheung and J. Ren; \emph{Positive solution for m-point boundary-value problems}, J. Math. Anal. Appl. \textbf{303} (2005) 565-575. \bibitem{g1} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, NewYork, 1988. \bibitem{g2} Y. Guo, W. Shan and W. Ge; \emph{Positive solutions for second-order m-point boundary-value problems}, J. Comput. Appl. Math. \textbf{151} (2003) 415-424. \bibitem{h1} X. Han; \emph{Positive solutions for a three-point boundary-value problem at resonance}, J. Math. Anal. Appl. \textbf{336} (2007) 556-568. \bibitem{l1} N. T. Long and L. T. P. Ngoc; \emph{Note on three positive solutions for the three-point boundary-value problem}, Submited. \bibitem{m1} R. Ma; \emph{Positive solutions of a nonlinear three-point boundary-value problem}, Electron. J. Differential Eqns., Vol. \textbf{1998} (1998), No. 34, pp.1-8. \bibitem{m2} R. Ma; \emph{Existence results of a m-point boundary-value problems at resonance}, J. Math. Anal. Appl. \textbf{294} (2004) 147-5157. \bibitem{s1} Y. Sun; \emph{Positive solutions of nonlinear second-order m-point boundary-value problem}, Nonlinear Anal. \textbf{61} (2005) 1283-1294. \bibitem{y1} Q. Yao; \emph{Existence and iteration of $n$ symmetric positive solutions for a singular two-point boundary-value problem}; J. Comput. Appl. Math. \textbf{47} (2004) 1195-1200. \end{thebibliography} \end{document}