\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 116, pp. 1--20.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/116\hfil Positive solutions] {Positive solutions for singular three-point boundary-value problems} \author[R. P. Agarwal, D. O'Regan, B. Yan \hfil EJDE-2008/116\hfilneg] {Ravi P. Agarwal, Donal O'Regan, Baoqiang Yan} % in alphabetical order \address{Ravi P. Agarwal \newline Department of Mathematical Science, Florida Institute of Technology, Melbourne, Florida 32901, USA} \email{agarwal@fit.edu} \address{Donal O'Regan \newline Department of Mathematics, National University of Ireland, Galway, Ireland} \email{donal.oregan@nuigalway.ie} \address{Baoqiang Yan \newline Department of Mathematics, Shandong Normal University, Ji-nan, 250014, China} \email{yanbqcn@yahoo.com.cn} \thanks{Submitted January 17, 2008. Published August 25, 2008} \thanks{Supported by grants 10571111 from National Natural Science, and J07WH08 from \hfill\break\indent the Shandong Education Committee} \subjclass[2000]{34B15} \keywords{Three-point boundary value problems; singularity;\hfill\break\indent positive solutions; fixed point index} \begin{abstract} Using the theory of fixed point index, this paper discusses the existence of at least one positive solution and the existence of multiple positive solutions for the singular three-point boundary value problem: \begin{gather*} y''(t)+a(t)f(t,y(t),y'(t))=0,\quad 00$, $\beta>0$ and $\gamma>0$. Secondly, \eqref{e1.1}-\eqref{e1.2} may have at least two positive solutions. Thirdly, \eqref{e1.1}-\eqref{e1.2} may have no positive solutions. There are main five sections in our paper. In sections 2, we discuss a special Banach space and define a new cone in this space, and some lemmas are proved for convenience. In section 3, we discuss the nonexistence of positive solutions to \eqref{e1.1}-\eqref{e1.2}. In section 4, the existence of at least one positive solution to \eqref{e1.1}-\eqref{e1.2} is presented when $f(t,x,z)$ is singular at $x=0$ and $z=0$. In section 5, we consider the existence of at least two positive solutions to \eqref{e1.1}-\eqref{e1.2} when $f(t,x,z)$ is singular at $x=0$ and $z=0$ and $f$ is suplinear at $x=+\infty$. Some of the ideas in this paper were motivated from \cite{a1,a2,o1,o2}. \section{Preliminaries} Let $$ C^1[0,1]=\{y:[0,1]\to R : \text{ $y(t)$ and $y'(t)$are continuous on $[0,1]$}\} $$ with norm $\| y\| =\max\{\max_{t\in[0,1]}|y(t)|, \max_{t\in[0,1]}|y'(t)|\}$ and $$ P=\{y\in C^1[0,1]:y(t)\geq 0,\forall t\in[0,1]\}. $$ Obviously $C^1[0,1]$ is a Banach space and $P$ is a cone in $C^1[0,1]$. The following lemmas are needed later. \begin{lemma}[cite{g3}] \label{lem2.1} Let $\Omega$ be a bounded open set in real Banach space $E$, $P$ be a cone of $E$, $\theta\in\Omega $ and $A:\bar{\Omega}\cap P\to P $ be continuous and compact. Suppose \begin{equation} \lambda Ax\neq x,\quad \forall\, x\in \partial \Omega \cap P,\; \lambda \in(0,1] ,\label{e2.1} \end{equation} then $i(A,\Omega\cap P,P)=1$. \end{lemma} \begin{lemma}[\cite{g3}] \label{lem2.2} Let $\Omega$ be a bounded open set in real Banach space $E$, $P$ be a cone of $E$, $\theta\in\Omega $ and $A:\bar{\Omega}\cap P\to P $ be continuous and compact. Suppose \begin{equation} Ax\neq x, \quad \forall\ x\in \partial \Omega \cap P,\label{e2.2} \end{equation} then $i(A,\Omega\cap P,P)=0$. \end{lemma} \begin{lemma}[\cite{l1}] \label{lem2.3} Let $0<\alpha<1$, $a$, $h\in C((0,1), (0,\infty))$, $ a, h \in L^1[0,1]$ and \begin{align*} y(t)&=\frac{1}{1-\alpha}\int^1_0\int^s_0a(\tau)h(\tau) \,d\tau\,ds -\frac{\alpha}{1-\alpha}\int^\eta_0\int^s_0a(\tau)h(\tau)\,d\tau\,ds\\ &\quad -\int^t_0\int^s_0a(\tau)h(\tau)\,d\tau\,ds. \end{align*} Then \begin{equation} \min_{t\in[0,1]}y(t)\geq \frac{\alpha(1-\eta)}{1-\alpha\eta}\max_{t\in[0,1]}|y(t)|.\label{e2.3} \end{equation} \end{lemma} \begin{lemma} \label{lem2.4} Assume that $ f\in C((0,1)\times(0,+\infty)\times(-\infty,0), (0,+\infty))$, that $a\in C((0,1),(0,+\infty))$, and that for any constant $H>0$ there exists a function $\Psi_H(t)$ continuous on $(0,1)$, and positive on $(0,1)$ and a constant $0\leq \gamma<1$ such that \begin{equation} f(t,x,z)\geq \Psi_H(t)(-z)^{\gamma},\quad \forall t \geq 0, \; 00$ such that for any positive solution $x\in C[0,1]$ with $x'(t)<0$ for all $t\in(0,1)$ to \eqref{e1.1}-\eqref{e1.2} we have \begin{equation} x(t)\geq c_0, \quad t\in[0,1].\label{e2.5} \end{equation} Moreover, if $x_0\in C[0,1]$ is a positive solution to \begin{gather*} y''(t)+a(t)f(t,\max\{c_0,y(t)\},-|y'(t)|-\frac{1}{n})=0,\quad 00$. Let $H=1$. Then there exists a function $\Psi_1(t)$ continuous on $[0,1]$, and positive on $(0,1)$ a constant $0\leq\gamma<1$ such that $$ f(t,x,z)\geq \Psi_1(t)(-z)^{\gamma},\quad \forall t \geq 0, \; 00$, we have $x(t_*)=1$ and $x(0)\geq 1$. Then, Lemma \ref{lem2.3} yields \begin{equation} \min_{t\in[0,1]}|x(t)|\geq\frac{\alpha(1-\eta)}{1-\alpha\eta} \max_{t\in[0,1]}|x(t)|\geq\frac{\alpha(1-\eta)}{1-\alpha\eta}.\label{e2.6} \end{equation} If $t_*=0$ and $x(t_*)=1$, Lemma \ref{lem2.3} implies \begin{equation} \min_{t\in[0,1]}|x(t)|\geq\frac{\alpha(1-\eta)}{1-\alpha\eta} \max_{t\in[0,1]}|x(t)|\geq\frac{\alpha(1-\eta)}{1-\alpha\eta}\label{e2.7} \end{equation} also. If $t_*=0$ and $x(t_*)<1$, from \eqref{e2.4}, we have $$ -x''(t)=a(t)f(t,x(t),x'(t))\geq a(t)\Psi_1(t)(-x'(t))^{\gamma}, \quad t\in(0,1). $$ Also note $$ -\frac{x''(t)}{(-x'(t))^{\gamma}}\geq a(t)\Psi_1(t),\quad t\in(0,1). $$ Integrating from $0$ to $t$, we have $$ \frac{1}{1-\gamma}(-x'(t))^{1-\gamma}\geq\int_0^ta(s)\Psi_1(s)ds, t\in(0,1), $$ which implies $$ -x'(t)\geq[(1-\gamma)\int_0^ta(s)\Psi_1(s)ds]^{\frac{1}{1-\gamma}},\quad t\in(0,1). $$ Integration from $\eta$ to $1$ yields $$ x(\eta)-x(1)\geq\int_{\eta}^1[(1-\gamma)\int_{\eta}^{1}\int_0^ta(s) \Psi_1(s)ds]^{\frac{1}{1-\gamma}}dt. $$ Since $x(1)=\alpha x(\eta)$, we have \begin{equation} x(1)\geq\frac{\alpha}{1-\alpha}\int_{\eta}^1[(1-\gamma) \int_0^ta(s)\Psi_1(s)ds]^{\frac{1}{1-\gamma}}dt.\label{e2.8} \end{equation} Let $c_0=\frac{1}{2}\min\{1,\frac{\alpha(1-\eta)}{1-\alpha\eta}, \frac{\alpha}{1-\alpha}\int_{\eta}^1[(1-\gamma)\int_0^ta(s) \Psi_1(s)ds]^{\frac{1}{1-\gamma}}dt\}$. Combining \eqref{e2.6}, \eqref{e2.7} and \eqref{e2.8}, we have $$ \min_{t\in[0,1]}x(t)\geq c_0. $$ Suppose that $x_0$ satisfies \begin{gather*} x''_0(t)+a(t)f(t,\max\{c_0,x_0(t)\},-|x'_0(t)|-\frac{1}{n})=0, \quad t\in(0,1),\\ x_0'(0)=0,\quad x_0(\eta)=\alpha x_0(1). \end{gather*} Then $x_0''(t)<0$ and so $x_0¡¯(t)<0$ for $t\in (0,1)$. Then $x_0$ satisfies \begin{gather*} x''_0(t)+a(t)f(t,\max\{c_0,x_0(t)\},x'_0(t)-\frac{1}{n})=0, \quad t\in(0,1),\\ x_0'(0)=0,\quad x_0(\eta)=\alpha x_0(1). \end{gather*} There are are two cases to be considered: \noindent (1) $x_0(t)\geq 1$ for all $t\in[0,1]$. In this case, since $c_0\leq 1$, we have $$ x''_0(t)+a(t)f(t,\max\{c_0,x_0(t)\},x'_0(t)-\frac{1}{n}) =x''_0(t)+a(t)f(t,x_0(t),x'_0(t)-\frac{1}{n})=0, $$ for $00$, we have $x_0(t_*)=1$ and $x_0(0)\geq 1$. Then $$ \min_{t\in[0,1]}x_0(t)\geq\frac{\alpha(1-\eta)}{1-\alpha\eta} \max_{t\in[0,1]}|x_0(t)|\geq\frac{\alpha(1-\eta)}{1-\alpha\eta}. $$ If $t_*=0$ and $x_0(t_*)=1$, we have $$ \min_{t\in[0,1]}x_0(t)\geq\frac{\alpha(1-\eta)}{1-\alpha\eta} \max_{t\in[0,1]}|x_0(t)|\geq\frac{\alpha(1-\eta)}{1-\alpha\eta} $$ also. If $t_*=0$ and $x_0(t_*)<1$, from \eqref{e2.4}, we have $$ -x_0''(t)=a(t)f(t,\max\{c_0,x_0(t)\},x_0'(t)-\frac{1}{n})\geq a(t)\Psi_1(t)(-x_0'(t)+\frac{1}{n})^{\gamma}, \quad t\in(0,1). $$ Also note $$ -\frac{x_0''(t)}{(-x_0'(t)+\frac{1}{n})^{\gamma}}\geq a(t)\Psi_1(t),\quad t\in(0,1). $$ Integrating from $0$ to $t$, we have $$ \frac{1}{1-\gamma}[(-x_0'(t)+\frac{1}{n})^{1-\gamma} -({\frac{1}{n}})^{1-\gamma}]\geq\int_0^ta(s)\Psi_1(s)ds, t\in(0,1), $$ which implies $$ -x_0'(t)+\frac{1}{n}\geq[(1-\gamma)\int_0^ta(s)\Psi_1(s)ds ]^{\frac{1}{1-\gamma}}, t\in(0,1). $$ Integration from $\eta$ to $1$ yields $$ x_0(\eta)-x_0(1)\geq\int_{\eta}^1[(1-\gamma) \int_{\eta}^{1}\int_0^ta(s)\Psi_1(s)ds]^{\frac{1}{1-\gamma}}]dt-(1-\eta) \frac{1}{n}. $$ Since $x_0(1)=\alpha x_0(\eta)$, we have $$ x_0(1)\geq\frac{\alpha}{1-\alpha}\int_{\eta}^1[(1-\gamma) \int_{\eta}^{1}\int_0^ta(s)\Psi_1(s)ds]^{\frac{1}{1-\gamma}}]dt -\frac{\alpha}{1-\alpha}(1-\eta)\frac{1}{n}\geq c_0. $$ Consequently, the definition of $c_0$ implies that $x_0(t)\geq c_0$ for all $t\in[0,1]$. Therefore, $$ x''_0(t)+a(t)f(t,\max\{c_0,x_0(t)\},x'_0(t)-\frac{1}{n})= x''_0(t)+a(t)f(t,x_0(t),x'_0(t)-\frac{1}{n})=0, $$ for $00$, there is a $N>0$ such that \begin{equation} \|x_n-x_m\|_q<\varepsilon,\quad \forall n>N,\; m>N\,.\label{e2.9} \end{equation} Then $$ \max_{t\in[0,1]}|x_n(t)-x_m(t)|<\varepsilon,\quad \forall n>N,\; m>N. $$ Thus, there is a $x_0\in C[0,1]$ such that \begin{equation} \lim_{n\to+\infty}\max_{t\in[0,1]}|x_n(t)-x_0(t)|=0.\label{e2.10} \end{equation} For $1>\delta>0$, since $(1-\delta)\max_{t\in[0,1-\delta]}|x'_n(t)-x'_m(t)| \leq\max_{t\in[0,1-\delta]}q(t)|x'_n(t)-x'_m(t)|$, we have $$ \max_{t\in[0,1-\delta]}|x'_n(t)-x'_m(t)|\leq \frac{1}{1-\delta}\max_{t\in[0,1-\delta]}q(t)|x'_n(t)-x'_m(t)| <\frac{1}{1-\delta}\varepsilon, $$ which implies that for any $\delta>0$, $x'_n(t)$ is uniformly convergent on $[0,1-\delta]$. Hence, $x_0(t)$ is continuously differentiable on $[0,1)$. And since $q(t)x'_{N+1}(t)$ is uniformly continuous on $[0,1]$, there exists a $\delta'>0$ such that $$ |q(t_1)x'_{N+1}(t_1)-q(t_2)x'_{N+1}(t_2)|<\varepsilon \quad \text{for } |t_1-t_2|<\delta¡¯, t_1, t_2 \in [0,1). $$ Then \begin{align*} &|q(t_1)x'_0(t_1)-q(t_2)x'_{0}(t_2)|\\ &=|q(t_1)x'_{0}(t_1)-q(t_1)x'_{N+1}(t_1)\\ &\quad +q(t_1)x'_{N+1}(t_1)-q(t_2)x'_{N+1}(t_2)+q(t_2)x'_{N+1}(t_2)-q(t_2)x'_{0}(t_1)|\\ &\leq|q(t_1)x'_{0}(t_1)-q(t_1)x'_{N+1}(t_1)|\\ &\quad +|q(t_1)x'_{N+1}(t_1)-q(t_2)x'_{N+1}(t_2)|+|q(t_2)x'_{N+1}(t_2)-q(t_2)x'_{0}(t_1)|\\ &<3\varepsilon,\quad \text{ for } |t_1-t_2|<\delta',\; t_1, t_2\in [0,1), \end{align*} which implies that $\lim_{t\to 1^-}q(t)x_0'(t)$ exists. Let $q(1)x_0(1)=\lim_{t\to 1^{-}}q(t)x'_0(t)$. Now from \eqref{e2.9}, we have for any $t\in[0,1]$, $$ q(t)|x_n'(t)-x_m'(t)|<\varepsilon,\quad \forall n>N, m>N. $$ Letting $m\to+\infty$, for all $t\in[0,1]$, we have \begin{equation} q(t)|x_n'(t)-x_0'(t)|\leq\varepsilon,\quad \forall n>N .\label{e2.11} \end{equation} Combining \eqref{e2.10} and \eqref{e2.11} shows $C^1_q[0,1]$ is a Banach space. Clearly $P_q$ is a cone of $C^1_q[0,1]$. The proof is complete. \end{proof} \begin{lemma} \label{lem2.6} For each $y\in P_q$, $\|y\|_q=\max_{t\in[0,1]}|y(t)|$. \end{lemma} \begin{proof} For $y\in P$, obviously $\|y\|_q\geq\max_{t\in[0,1]}|y(t)|$. On the other hand, since $y\in P_q$, $$ \max_{t\in[0,1]}|y(t)|\geq y(0)\geq\max_{t\in[0,1]}q(t)|y'(t)|. $$ Then \begin{align*} \|y\|_q &=\max\{\max_{t\in[0,1]}|y(t)|,\max_{t\in[0,1]}q(t)|y'(t)|\}\\ &\leq \max\{\max_{t\in[0,1]}|y(t)|,y(0)\}=\max_{t\in[0,1]}|y(t)|. \end{align*} Consequently, $\|y\|_q=\max_{t\in[0,1]}|y(t)|$. The proof is complete. \end{proof} Now we list the following conditions to be used in this article. \begin{itemize} \item[(H)] $f \in C( (0,1) \times (0,\infty) \times (-\infty,0), (0,\infty))$ and there are three functions $g,h\in C((0,+\infty),(0,+\infty))$, $\Phi\in C((0,1),[0,+\infty))$, with $\Phi(t)>0$ for all $t\in(0,1)$, and \begin{equation} \label{e2.12} f(t,x,z)\leq\Phi(t)h(x)g(|z|)\quad \forall\, (t,x,z)\in(0,1)\times(0,+\infty)\times (-\infty,0). \end{equation} \item[(H')] For any constant $H>0$ there exists a function $\Psi_H(t)$ continuous on $(0,1)$ and positive on $(0,1)$, and a constant $0\leq \gamma<1$ such that \begin{equation} \label{e2.13} f(t,x,z)\geq \Psi_H(t)(-z)^{\gamma},\quad \forall t \in(0,1), \; 00$. Suppose that (H) and (H') hold. A standard argument (see \cite{g3,g4}) applied to \eqref{e2.14} yields that $A_n:P\to P$ is continuous and completely continuous for each $n\in N$. \begin{lemma} \label{lem2.7} Suppose {\rm (H)} and {\rm (H')} holds and $\int_0^1a(t)\Phi(t)\sup_{\frac{1}{c}\leq u\leq \frac{1}{c}+\frac{1}{1-t}c}g(u)dt<+\infty$ for all $c>1$. Then $A_n:P_q\to P_q$ is a continuous and completely continuous for each $n\in N$. \end{lemma} \begin{proof} For $y\in P_q$, it is easy to see that $|y'(t)|\leq\frac{1}{1-t}\|y\|_q$ for all $t\in[0,1)$. Also (H) and Lemma \ref{lem2.3} yield $$ \frac{\alpha(1-\eta)}{1-\alpha\eta}\max_{t\in[0,1]}|(A_ny)(t)| \leq (A_ny)(t)<+\infty,\quad \forall t\in[0,1] $$ and $(A_ny)'(t)>-\infty$ for all $t\in[0,1)$. Moreover, since \begin{align*} (A_ny)(0) &=\frac{1}{1-\alpha}\int^1_0\int^s_0a(\tau)f(\tau,\max\{c_0,y(\tau)\}, -|y'(\tau)|-\frac{1}{n})\,d\tau\,ds\\ &\quad -\frac{\alpha}{1-\alpha}\int^\eta_0\int^s_0a(\tau) f(\tau,\max\{c_0,y(\tau)\},-|y'(\tau)|-\frac{1}{n})\,d\tau\,ds\\ &\geq \int^1_0\int^s_0a(\tau)f(\tau,\max\{c_0,y(\tau)\}, -|y'(\tau)|)\,d\tau\,ds\\ &=\int^1_0(1-s)a(s)f(s,\max\{c_0,y(s)\},-|y'(s)|-\frac{1}{n})ds \end{align*} and \begin{align*} q(t)|(A_nx)'(t)| &=(1-t)\int_0^ta(s)f(s,\max\{c_0,y(s)\},-|y'(s)|-\frac{1}{n})ds\\ &\leq\int^1_0(1-s)a(s)f(s,\max\{c_0,y(s)\},-|y'(s)|-\frac{1}{n})ds, \end{align*} we have $$ (A_nx)(0)\geq \max_{t\in[0,1]}q(t)|(A_nx)'(t)|. $$ Consequently, $A_nP_q\subseteq P_q$ for each $n\in N=\{1,2,\dots\}$. Moreover, since $$ \lim_{t\to 1^-}|(A_ny)'(t)|=\int_0^1a(s)f(s,\max\{c_0,y(s)\},|y'(s)| -\frac{1}{n})ds, $$ we can assume that $A_ny\in C^1[0,1]$. Next we show that $A_n:P_q\to P_q$ is continuous and completely continuous. Suppose that $\{y_m\}\subseteq P_q$, $y_0\in P_q$ with $\lim_{m\to+\infty}\|y_m-y_0\|_q=0$. Then, there is an $M>c_0$ such that $$ \|y_m\|_q\leq M, \|y_0\|_q\leq M, \quad m\in N. $$ Then $|y_m'(t)|\leq M/(1-t)$ for $m\in\{1,2,\dots\}$ and so $$ f(t,\max\{c_0,y_m(t)\},-|y_m'(t)|-\frac{1}{n}) \leq \Phi(t)\max_{c_0\leq u\leq M}h(u)\sup_{\frac{1}{n}\leq u\leq \frac{1}{n}+\frac{1}{1-t}M}g(u), $$ for $t\in(0,1)$. Moreover, since $$ \lim_{m\to+\infty}f(t,\max\{c_0,y_m(t)\},-|y_m'(t)|-\frac{1}{n}) =f(t,\max\{c_0,y_0(t)\},-|y_0'(t)|-\frac{1}{n}), $$ for $t\in(0,1)$, the Lebesgue Dominated Convergence Theorem guarantees that \begin{align*} &\max_{t\in[0,1]}|(A_ny_m)(t)-(A_ny_0)(t)|\\ &\leq\frac{1}{1-\alpha}\int^1_0\int^s_0a(\tau) \Big|f(\tau,\max\{c_0,y_m(\tau)\},-|y'_m(\tau)|-\frac{1}{n})\\ &\quad -f(\tau,\max\{c_0,y_0(\tau)\},-|y'_0(\tau)|-\frac{1}{n})\Big|\,d\tau\,ds \\ &\quad +\frac{\alpha}{1-\alpha}\int^\eta_0\int^s_0a(\tau) \Big||f(\tau,\max\{c_0,y_m(\tau)\},-|y'_m(\tau)|-\frac{1}{n})\\ &\quad -f(\tau,\max\{c_0,y_0(\tau)\},-|y'_0(\tau)|-\frac{1}{n})Big|\,d\tau\,ds \\ &\quad +\int\int_0^1\int_0^sa(\tau) \Big|f(\tau,\max\{c_0,y_m(\tau)\},-|y'_m(\tau)| \\ &\quad -\frac{1}{n})-f(\tau,\max\{c_0,y_0(\tau)\}, -|y'_0(\tau)|-\frac{1}{n})\Big|\,d\tau\,ds \to 0, \quad\text{as } m\to+\infty. \end{align*} Since $A_ny_m$, $A_ny_0\in P_q$, Lemma \ref{lem2.6} yields $$ \lim_{m\to+\infty}\|A_ny_m-A_ny_0\|_q =\max_{t\in[0,1]}|(A_ny_m)(t)-(A_ny_0)(t)|=0, $$ which implies that $A_n:P_q\to P_q$ is continuous. Suppose $D\subseteq P_q$ is bounded. Then, there is an $M>c_0$ such that $\|y\|_q\leq M$ for all $y\in D$. Then $|y'(t)|\leq M/(1-t)$ for all $y\in D$, and so $$ f(t,\max\{c_0,y(t)\},-|y'(t)|-\frac{1}{n}) \leq \Phi(t)\max_{c_0\leq u\leq M}h(u)\sup_{\frac{1}{n} \leq u\leq\frac{1}{n}+\frac{1}{1-t}M}g(u), \quad t\in(0,1). $$ Thus \begin{align*} &\max_{t\in[0,1]}|(A_ny)(t)|\\ &\leq\frac{1}{1-\alpha}\int^1_0\int^s_0a(\tau)|f(\tau,\max\{c_0,y(\tau)\}, -|y'(\tau)|-\frac{1}{n})|\,d\tau\,ds\\ &\quad +\frac{\alpha}{1-\alpha}\int^\eta_0\int^s_0a(\tau) |f(\tau,\max\{c_0,y(\tau)\},-|y'(\tau)|-\frac{1}{n})|\,d\tau\,ds\\ &\quad +\int_0^1\int_0^sa(\tau)|f(\tau,\max\{c_0,y(\tau)\}, -|y'(\tau)|-\frac{1}{n})|\,d\tau\,ds\\ &\leq\frac{1}{1-\alpha}\int^1_0\int^s_0a(\tau)\Phi(s) \max_{c_0\leq u\leq M}h(u)\sup_{\frac{1}{n}\leq u\leq\frac{1}{n} +\frac{1}{1-\tau}M}g(u)\,d\tau\,ds\\ &\quad +\frac{\alpha}{1-\alpha}\int^\eta_0\int^s_0\Phi(s)a(\tau) \max_{c_0\leq u\leq M}h(u)\sup_{\frac{1}{n}\leq u\leq\frac{1}{n} +\frac{1}{1-\tau}M}g(u)\,d\tau\,ds\\ &\quad +\int_0^1\int_0^sa(\tau)\Phi(\tau)\max_{c_0\leq u\leq M}h(u) \sup_{\frac{1}{n}\leq u\leq\frac{1}{n}+\frac{1}{1-\tau}M}g(u)\,d\tau\,ds \end{align*} and \begin{align*} &\max_{t\in[0,1]}|(A_ny)'(t)|\\ &\leq \max_{t\in[0,1]}\int_0^ta(\tau)|f(\tau,\max\{c_0,y(\tau)\}, -|y'(\tau)|-\frac{1}{n})|d\tau\\ &\leq\max_{t\in[0,1]}\int_0^ta(\tau)\Phi(\tau) \max_{c_0\leq u\leq M}h(u)\sup_{\frac{1}{n}\leq u\leq\frac{1}{n} +\frac{1}{1-\tau}M}g(u)d\tau. \end{align*} Also $A_n D$ is bounded in the norm $\|x\|_0=\max\{\max_{t\in[0,1]}|x(t)|,\max_{t\in[0,1]}|x'(t)|\}$. For $t_1$, $t_2\in[0,1]$, $y\in D$, we have \begin{align*} &|(A_ny)(t_1)-(A_ny)(t_2)|\\ &=|\int_{t_1}^{t_2}\int_0^sa(\tau)\Phi(\tau)|f(\tau,\max\{c_0,y(\tau)\}, -|y'(\tau)|-\frac{1}{n})|\,d\tau\,ds|\\ &\leq|\int_{t_1}^{t_2}\int_0^sa(\tau)\Phi(\tau)\max_{c_0\leq u\leq M}h(u) \sup_{\frac{1}{n}\leq u\leq\frac{1}{n}+\frac{1}{1-\tau}M}g(u)\,d\tau\,ds| \end{align*} and \begin{align*} |(A_ny)'(t_1)-(A_ny)'(t_2)| &=|\int_{t_1}^{t_2}a(\tau)|f(\tau,\max\{c_0,y(\tau)\},-|y'(\tau)| -\frac{1}{n})|d\tau |\\ &\leq|\int_{t_1}^{t_2}a(\tau)\Phi(\tau)\max_{c_0\leq u\leq M}h(u)\sup_{\frac{1}{n}\leq u\leq\frac{1}{n}+\frac{1}{1-\tau}M}g(u)d\tau|, \end{align*} which implies that $\{(A_ny)(t)|y\in D\}$ and $\{(A_ny)'(t)|y\in D\}$ are equicontinuous on $[0,1]$. The Arzela-Ascoli Theorem guarantees that $A_nD$ and $(A_nD)'$ are relatively compact in $C[0,1]$. Since \begin{align*} \|A_ny\|_q &=\max\{\max_{t\in[0,1]}|(A_ny)(t)|,\max_{t\in[0,1]}(1-t)|(A_ny)'(t)|\}\\ &\leq\max\{\max_{t\in[0,1]}|(A_ny)(t)|,\max_{t\in[0,1]}|(A_ny)'(t)|\}, \end{align*} the set $A_nD$ is relatively compact in $C^1_q[0,1]$. Consequently, $A_n:P_q\to P_q$ is continuous and completely continuous for each $n\in\{1,2,\dots\}$. The proof is complete. \end{proof} \section{Nonexistence of positive solutions to \eqref{e1.1}-\eqref{e1.2}} In this section, we notice that the presence of $z$ in $f(t,x,z)$ can lead to the nonexistence of positive solutions to \eqref{e1.1}-\eqref{e1.2}. \begin{theorem} \label{thm3.1} Suppose {\rm (H)} holds and $\int_0^z\frac{1}{g(r)}dr=+\infty$ for all $z\in(0,+\infty)$ and $\int_0^1a(s)\Phi(s)ds<+\infty$. Then \eqref{e1.1}-\eqref{e1.2} has no positive solution. \end{theorem} \begin{proof} Suppose $x_0(t)$ is a positive solution to \eqref{e1.1}-\eqref{e1.2}. Then \begin{gather*} x''_0(t)+a(t) f(t,x_0(t),x'_0(t))=0, \quad t\in(0,1)\\ x_0'(0)=0,\quad x_0(1)=\alpha x_0(\eta), \end{gather*} which means that there is a $t_0\in(0,1)$ with $x_0'(t_0)<0$, $x_0(t_0)>0$ (otherwise $x'(t) \geq 0$ for all $t\in (0,1)$ which would contradict $x(1)=\alpha x(\eta)1$, $d>0$. This problem has no positive solution. It is easy to see that $f(t,x,z)=(1-t)^a(|z|)^{a}[x^{b}+(x+1)^{-d}+1]$ for all $(t,x,z)\in[0,1]\times[0,+\infty)\times(-\infty,+\infty)$. Obviously, $g(r)=r^a$ and $\int_0^z\frac{1}{g(r)}dr=+\infty$ for all $z\in(0,+\infty)$. Then Theorem \ref{thm3.1} guarantees that \eqref{e3.1}-\eqref{e3.2} has no positive solution. \end{example} \section{Existence of at least one positive solution to \eqref{e1.1}-\eqref{e1.2}} In this section our nonlinearity $f$ may be singular at $y'=0$ and $y=0$ and $\Phi$ . Throughout this section we will assume that the following conditions hold: \begin{itemize} \item[(H1)] $a(t)\in C(0,1)$, $a(t)>0$ for all $t\in(0,1)$; \item[(H2)] Conditions (H) and (H') hold and $I(z)=\int^z_0\frac{1}{g(r)}dr<+\infty$ for all $z\in[0,+\infty)$ with $$ \sup_{c_0 \leq r\leq c} h(r) \int^1_0 a(s)\Phi(s) ds <\int^{\infty}_0 \frac{dr}{g(r)} $$ for all $c\in[c_0,+\infty)$ and suppose $$ \sup_{c_0\leq c<+\infty}\frac{c}{\frac{1-\alpha\eta}{1-\alpha}I^{-1} (\sup_{c_0\leq r\leq c}h(r)\int_0^1a(s)\Phi(s)ds)}>1, $$ where $c_0$ is defined in Lemma \ref{lem2.4}. \end{itemize} \begin{theorem} \label{thm4.1} Suppose that {\rm (H1)--(H2)} hold. Then \eqref{e1.1}-\eqref{e1.2} has at least one positive solution $ y_0\in C[0,1]\cap C^2(0,1)$ with $y_0(t)>0$ on $[0,1]$ and $y'_0(t)<0$ on $(0,1)$. \end{theorem} \begin{proof} Choose $R_1>0$ with \begin{equation} \frac{R_1 }{\frac{1-\alpha\eta}{1-\alpha}I^{-1}(\sup_{c_0\leq r \leq R_1}h(r)\int_0^1a(s)\Phi(s)ds)}>1.\label{e4.1} \end{equation} From the continuity of $ I^{-1}$ and $I$, we can choose $\varepsilon>0$ and $\varepsilon1. \label{e4.2} \end{equation} Let $n_0\in\{1,2,\dots\}$ with $\frac{1}{n_0} < \min\{\varepsilon,\frac{1}{2}\frac{1-\alpha}{\alpha(1-\eta)}c_0\} \}$ and let $N_0 =\{n_0,n_0+1, \dots\}$. Now (H1)--(H2) guarantee that for each $n\in N_0$, $A_n:P\to P$ is a continuous and completely continuous operator. Let $\Omega_1=\{y\in C^1[0,1]:\| y\| 0$, there is a $\varepsilon'>0$ such that \begin{equation} |I^{-1}(s_1)-I^{-1}(s_2)|<\bar\varepsilon, \forall\ |s_1-s_2|<\varepsilon', \quad s_1, s_2\in[0,I(R_1)].\label{e4.18} \end{equation} Also \eqref{e4.15} guarantees that, for $\varepsilon'>0$, there is a $\delta'>0$ such that \begin{equation} |I( y'_n(t_2)-\frac{1}{n})-I( y'_n(t_1)-\frac{1}{n})|<\varepsilon', \forall\ |t_1-t_2|<\delta',\quad t_1,t_2\in[0,1].\label{e4.19} \end{equation} Now \eqref{e4.18} and \eqref{e4.19} yield \begin{align*} | y'_n(t_2)- y'_n(t_1)| &=|-y'_n(t_2)+\frac{1}{n}+ y'_n(t_1)-\frac{1}{n}|\\ &=|I^{-1}(I(-y'_n(t_2)+\frac{1}{n}))-I^{-1}(I( -y'_n(t_1)+\frac{1}{n}))|\\ &< \bar\varepsilon, \quad \forall\ |t_1-t_2|<\delta',\; t_1,t_2\in[0,1], \end{align*} which implies \begin{equation} \text{the functions belonging to $\{y' _n\}$ are equicontinuous on $[0,1]$.} \label{e4.20} \end{equation} Consequently \eqref{e4.10}, \eqref{e4.11}, \eqref{e4.12} and \eqref{e4.20}, the Arzela-Ascoli Theorem guarantees that $\{y _n\}$ and $\{y' _n\}$ are relatively compact in $C[0,1]$; i.e., there is a function $y_0 \in C^1[0,1]$, and a subsequence $\{y_{n_j}\}$ of $\{y_n\}$ such that $$ \lim_{j\to +\infty}\max_{t\in[0,1]}|y_{n_j}(t)-y_0(t)|=0,\quad \lim_{j\to +\infty}\max_{t\in[0,1]}|y'_{n_j}(t)-y'_0(t)|=0. $$ Since $y'_{n_j}(0)=0$, $y_{n_j}(1)=\alpha y_{n_j}(\eta)$, $y'_{n_j}(t)<0$, $y_{n_j}(t)>0$, $t\in(0,1)$, $j\in\{1,2,\dots\}$, then one has \begin{equation} y'_0(0)=0, y_0(1)=\alpha y_0(\eta), y'_0(t)\leq 0, y_0(t)\geq 0, t\in(0,1).\label{e4.21} \end{equation} Now since $\sup_{n\geq 1}\|y_n\|\leq R_1$, (H') guarantees that there exists a $\Psi_{R_1}(t)$ continuous and $\Psi_{R_1}(t)>0$ on $(0,1)$ such that $$ f(t,x,z)\geq \Psi_{R_1}(t)(-z)^{\gamma},\quad t\in(0,1),\; x\in(0,R_1],\; z<0. $$ Then $$ -y_{n_j}''(t)=a(t)f(t,\max\{c_0,y_{n_j}(t)\},y_{n_j}'(t)-\frac{1}{n_j}))\geq a(t)\Psi_{R_1}(t)(-y_{n_j}'(t)+\frac{1}{n_j})^{\gamma}, $$ for $t\in(0,1)$. Also note that $$ -\frac{y''(t)}{(-y_{n_j}'(t)+\frac{1}{n_j})^{\gamma}}\geq a(t)\Psi_{R_1}(t),\quad t\in(0,1). $$ Integrating from $0$ to $t$, we have $$ \frac{1}{1-\gamma}(-y_{n_j}'(t)+\frac{1}{n_j})^{1-\gamma} -\frac{1}{1-\gamma}(\frac{1}{n_j})^{1-\gamma}\geq\int_0^ta(s)\Psi_1(s)ds, \quad t\in(0,1), $$ which implies $$ -y_{n_j}'(t)+\frac{1}{n_j}\geq[(1-\gamma)(\int_0^ta(s)\Psi_1(s)ds +\frac{1}{1-\gamma}(\frac{1}{n_j})^{1-\gamma})]^{\frac{1}{1-\gamma}}, \quad t\in(0,1). $$ Letting $j\to+\infty$, we have $$ -y_0'(t)\geq[(1-\gamma)(\int_0^ta(s)\Psi_1(s)ds)]^{\frac{1}{1-\gamma}}, \quad t\in(0,1). $$ Consequently, $y'_0(t)<0$ for all $t\in(0,1)$, which together with $y_0(1)>0$ guarantees that $y_0(t)>0$ for all $t\in[0,1]$. Therefore, \begin{gather*} \min\{\min_{s\in[\frac{1}{2},t]}y_0(s),\min_{s\in[\frac{1}{2},t]}|y'_0(s)|\} >0,\quad \text{for all } t\in[\frac{1}{2},1),\\ \min\{\min_{s\in[t,\frac{1}{2}]}y_0(s),\min_{s\in[t,\frac{1}{2}]}|y'_0(s)|\} >0,\quad \text{for all } t\in(0,\frac{1}{2}]. \end{gather*} Since $$ y_{n_j}'(t)-y_{n_j}'(\frac{1}{2}) =- \int_{\frac{1}{2}}^{t} a(s)f(s,\max\{c_0,y_{n_j}(s)\},y_{n_j}'(s) -\frac{1}{n_j})ds,\quad t\in(0,1), $$ letting $j\to +\infty$, one has $$y_0'(t)-y_0'(\frac{1}{2})= - \int_{\frac{1}{2}}^{t} a(s)f(s,\{c_0,y_0(s)\},y_0'(s))ds,t\in(0,1).$$ Now by direct differentiation, we have $$ y''_0(t)+a(t)f(t,\{c_0,y_0(t)\},y'_0(t))=0,00$, $a>0$, $1>\gamma\geq 0$, $b\geq 0$ and $d>0$. Then, there is a $\alpha_0>0$ such that \eqref{e4.22}-\eqref{e4.23} has one positive solution $y_0\in C[0,1]\cap C^2(0,1)$ with $y_0(t)>0$ on $[0,1]$ and $y_0'(t)<0$ on $(0,1)$ for all $0<\alpha<\alpha_0$. Let $a(t)\equiv \mu$, $\Phi(t)\equiv1$ for all $t\in[0,1]$, $h(x)=x^b+(\frac{1}{\alpha})^{\frac{1}{2}d}x^{-d}$ for $x\in(0,+\infty)$ and $g(z)=z^{\frac{1}{2}}+z^{-a}$ for $z\in(0,+\infty)$. From the proof of Lemma \ref{lem2.4}, we have $c_0=\frac{7}{192}\alpha^{\frac{1}{2}}$ with $\alpha\leq1$, and then $\alpha[y^b+(\frac{1}{\alpha})^{\frac{1}{2}d}y^{-d}]\leq\alpha y^{b}+(\frac{192}{7})^{d}$ for all $y\in[c_0,+\infty)$. Let $I(z)=\int_0^z\frac{1}{r^{\frac{1}{2}}+r^{-a}}dr$. Thus there exists an $\alpha_0$ such that $$ \frac{I(1/3)}{\alpha\sup_{c_0\leq r\leq1}h(r)}>1, \quad \forall \alpha\in(0,\alpha_0] $$ and then $$ \sup_{c_0\leq c<+\infty}\frac{c}{3I^{-1}(\sup_{c_0\leq r\leq c}h(r)\alpha)}>1. $$ Hence, the conditions (H1) and (H2) hold. Thus Theorem \ref{thm4.1} guarantees that \eqref{e4.22} and \eqref{e4.23} has at least one positive solution. \end{example} \section{Multiple positive solutions to \eqref{e1.1}-\eqref{e1.2}} In this section our nonlinearity $f$ may be singular at $y'=0$ and $y=0$. Throughout this section we will assume that the following conditions hold: \begin{itemize} \item[(P1)] $a(t)\in C(0,1)$, $a(t)>0$ for all $t\in(0,1)$; \item[(P2)] Conditions (H) and (H') hold and $I(z)=\int^z_0\frac{1}{g(r)}dr<+\infty$ for all $z\in[0,+\infty)$ with $\sup_{c_0 \leq r\leq c} h(r) \int^1_0 a(s)\Phi(s) ds <\int^{\infty}_0 \frac{dr}{g(r)}$ for all $c\in[c_0,+\infty)$ and suppose $$\sup_{c_0\leq c<+\infty}\frac{c}{\frac{1-\alpha\eta}{1-\alpha}I^{-1}(\sup_{c_0\leq r\leq c}h(r)\int_0^1a(s)\Phi(s)ds)}>1,$$ where $c_0$ is defined by Lemma \ref{lem2.4}; \item[(P3)] $\lim_{u\to+\infty} f(t,u,z)/u =+\infty$ uniformly for $(t,z)\in[\frac{1}{4},\frac{3}{4}]\times(0,+\infty)$. \end{itemize} \begin{theorem} \label{thm5.1} Suppose that {\rm (P1)--(P3)} hold. Then \eqref{e1.1}-\eqref{e1.2} has at least two positive solutions $y_{1,0}$, $y_{1,0}\in C[0,1]\cap C^2(0,1)$ with $y_{1,0}(t)>0$, $y_{2,0}(t)>0$ on $[0,1]$ and $y_{1,0}'(t)<0$, $y_{2,0}'(t)<0$ on $(0,1)$. \end{theorem} \begin{proof} Choose $R_1>0$ with \begin{equation} \frac{R_1}{\frac{1-\alpha\eta}{1-\alpha}I^{-1} \big(\sup_{c_0\leq r\leq R_1}h(r)\int_0^1a(s)\Phi(s)ds\big)}>1.\label{e5.1} \end{equation} From the continuity of $ I^{-1}$ and $I$, we can choose $\varepsilon>0$ and $\varepsilon1.\label{e5.2} \end{equation} Let $n_0\in\{1,2,\dots\}$ so that $\frac{1}{n_0} < \min\{\varepsilon,\frac{1}{2}\frac{1-\alpha}{\alpha(1-\eta)}c_0\}$ and let $N_0 =\{n_0,n_0+1, \dots\}$. Lemma \ref{lem2.7} guarantees that for each $n\in N_0$, $A_n:P_q\to P_q$ is a continuous and completely continuous operator. From $(P_3)$, there is a $R'>R_1$ such that $$ f(t,x,y)\geq N^* x, \quad \forall x\geq R', $$ where $N^*>(\int_{1/4}^{3/4}(1-s)a(s)ds \frac{\alpha(1-\eta)}{1-\alpha\eta})^{-1}$. Let $$ R_2>\max\{R',\frac{1-\alpha\eta}{\alpha(1-\eta)}R'\}. $$ Now let $$ \Omega_1=\{y\in C^1_q[0,1]:\| y\|_qR'. $$ Then, we have \begin{align*} x_0(0)&\geq (Ax_0)(0)\\ &=\frac{1}{1-\alpha}\int^1_0\int^s_0a(\tau)f(\tau,\max\{c_0,x_0(\tau)\},-|x_0'(\tau)|- \frac{1}{n})\,d\tau\,ds\\ &\quad -\frac{\alpha}{1-\alpha}\int^\eta_0\int^s_0a(\tau)f(\tau,\max\{c_0,x_0(\tau)\},-|x_0'(\tau)|- \frac{1}{n})\,d\tau\,ds\\ &\geq\int_{1/4}^{3/4}(1-s)a(s)f(\tau,\max\{c_0,x_0(s)\},-|x_0'(s)|- \frac{1}{n}) ds\\ &\geq\int_{1/4}^{3/4} (1-s)a(s)N*\max\{c_0,x_0(s)\} ds\\ &\geq\int_{1/4}^{3/4} (1-s)a(s)ds N*\frac{\alpha(1-\eta)}{1-\alpha\eta}R_2\\ &>\|x_0\|_q, \end{align*} which is a contradiction. Thus, \eqref{e5.4} is true. Then Lemma \ref{lem2.2} implies \begin{equation} i(A_n,\Omega_2\cap P,P)=0, \quad n\in N_0.\label{e5.10} \end{equation} From \eqref{e5.9} and \eqref{e5.10}, we have \begin{equation} i(A_n,(\Omega_2-\overline{\Omega}_1)\cap P,P)=-1, \quad n\in N_0.\label{e5.11} \end{equation} By \eqref{e5.9}, \eqref{e5.11}, there is a $x_{1,n}\in \Omega_1\cap P$ and another $x_{2,n}\in \Omega_2\cap P$ such that $$ A_nx_{1,n}=x_{1,n}, \quad A_n x_{2,n}=x_{2,n},\quad n\in N_0. $$ Now we consider $\{x_{1,n}\}_{n\in N_0}$ and $\{x_{2,n}\}_{n\in N_0}$. By Lemma \ref{lem2.4}, we have $x_{1,n}(t)\geq c_0$ and $x_{2,n}\geq c_0$. We consider $\{x_{1,n}\}_{n\in N_0}$. Obviously $\max_{t\in[0,1]}|x_{1,n}(t)|\leq R_1$ for all $n\in N_0$ and $\max_{t\in[0,1]}(1-t)|x'_{1,n}(t)|\leq R_1$ for all $n\in N_0$. Also $|x'_{1,n}(t)|\leq\frac{1}{1-t}R_1$ for all $t\in[0,1)$ and $n\in N_0$. Hence, the functions belonging to $\{x_{1,n}\}$ are uniformly bounded on $[0,1]$. Since $x_{1,n}(t)$ satisfies \begin{align*} x''_{1,n}(t)+a(t)f(t,\max\{c_0,x_{1,n}(t)\},x_{1,n}'(t)-\frac{1}{n})=0, \quad 0R_1. $$ Consequently, $x_{1,0}$ and $x_{2,0}$ are different positive solutions to \eqref{e1.1}-\eqref{e1.2}. \end{proof} \begin{example} \label{exa5.1} \rm Consider the three-point boundary value problems \begin{gather*} y''+\alpha(1-t)^a[1+(-y')^e+(-y')^{-a}][1+y^b+y^{-d}]=0,\quad t\in(0,1),\label{e5.12}\\ y'(0)=0,y(1)=\frac{1}{2}y(\frac{1}{2}) \label{e5.13} \end{gather*} where $1\geq e\geq 0$, $a>0$, $b\geq 0$, $d>0$ and $\alpha>0$. Then there is a $\alpha_0>0$ such that \eqref{e5.11}-\eqref{e5.12} has at least two positive solutions $y_{1,0}$, $y_{2,0}\in C[0,1]\cap C^2(0,1)$ with $y_{1,0}(t)>0$, $y_{2,0}(t)>0$ on $[0,1]$ and $y_{1,0}'(t)<0$, $y_{2,0}'(t)<0$ on (0,1) for all $0<\alpha\leq\alpha_0$. Let $a(t)\equiv \mu$, $\Phi(t)=(1-t)^a$ for all $t\in[0,1]$, $h(x)=1+x^b+x^{-d}$ for $x\in(0,+\infty)$ and $g(z)=1+z^{e}+z^{-a}$ for $z\in(0,+\infty)$. From the proof of Lemma \ref{lem2.4}, we have $c_0=\frac{1}{2}\min\{\frac{1}{3},\frac{1}{a+1}(\frac{1}{2} -\frac{1}{a+2}(\frac{1}{2})^{a+2})\}$, and then $\alpha(1-t)^a[1+y^b+y^{-d}]\leq\alpha (1-t)^a[1+y^{b}+{c_0}^{-d}]$ for all $y\in[c_0,+\infty)$. Let $I(z)=\int_0^z\frac{1}{1+r^{e}+r^{-a}}dr$. Thus there exists an $\alpha_0$ such that $$ \frac{I(\frac{1}{3})}{\alpha\frac{1}{a+1}\sup_{c_0\leq r\leq1}h(r)}>1, \quad \forall \alpha\in(0,\alpha_0] $$ and then $$ \sup_{c_0\leq c<+\infty}\frac{c}{3I^{-1}(\sup_{c_0\leq r\leq c}h(r)\int_0^1a(s)\Phi(s)ds)}>1. $$ Hence, the conditions (P1), (P2) and (P3) hold. Thus Theorem \ref{thm5.1} guarantees that \eqref{e5.12}-\eqref{e5.13} has at least two positive solutions. \end{example} \begin{thebibliography}{00} \bibitem{a1} R. P.Agarwal, D. O'Regan; Nonlinear Superlinear Singular and Nonsingular Second Order Boundary Value Problems, \emph{Journal of differential equations}, \textbf{143} (1998), 60-95. \bibitem{a2} R. P. Agarwal, D. O'Regan; Second order boundary value problems of singular type, \emph{Journal of Mathematical Analysis and Applications}, \textbf{226}(1998), pp414-430. \bibitem{c1} Y. Chen, B. Yan, L. Zhang; Positive solutions for singular three-point boundary-value problems with sign changing nonlinearities depending on $x'$, \emph{Electronic Journal of Differential Equations}, \textbf{2007} (2007), No. 63, pp. 1-9. \bibitem{g1} C. P. Gupta; Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, \emph{J. Math. Anal. Appl.}, \textbf{168} (1992), pp. 540-551. \bibitem{g2} C. P. Gupta, S. I. Trofimchuk; A sharper condition for the solvability of a three-point second order boundary value problem, \emph{J. Math. Anal. Appl.}, \textbf{205} (1997), pp. 586-597. \bibitem{g3} D. Guo and V. Lakshmikantham; Nonlinear problems in abstract cones. Academic Press. Inc. New York, 1988. \bibitem{g4} Y. Guo, W. Ge; Positive solutions for three-point boundary value problems with dependence on the first order derivative, \emph{J. Math. Anal. Appl.}, \textbf{290} (2004), pp. 291-301. \bibitem{h1} J. Henderson; Uniqueness implies existence for three-point boundary value problems for second order differential equations, \emph{Applied Mathematics Letters}, \textbf{18} (2005), pp. 905-909. \bibitem{k1} R. A. Khan, J. R. L. Webb; Existence of at least three solutions of a second-order three-point boundary value problem, \emph{Nonlinear Analysis}, \textbf{64} (2006), pp. 1356-1366. \bibitem{k2} M. A. Krasnoselskii; Positive solutions of operaor equation, Noordhoff, Groningen, 1964. \bibitem{l1} B. Liu; Positive solutions of a nonlinear three-point boundary value problem, \emph{Appl. Math. Comput.}, \textbf{132} (2002), pp. 11-28. \bibitem{o1} D. O'Regan; Existence theory for ordinary differential equations, Kluwer. Dordrecht. 1997. \bibitem{o2} D. O'Regan; Theory of singular boundary value problems. World Scientific, Singapore. 1994. \bibitem{y1} B. Yan, Y. Liu; Positive solutions for superlinear second order singular three-point boundary value problems with derivative dependence, \emph{Mathematica Acta Scientia}, to appear. \end{thebibliography} \end{document}