\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 146, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/146\hfil Existence of positive solutions] {Existence of positive solutions for singular fractional differential equations} \author[T. Qiu, Z. Bai \hfil EJDE-2008/146\hfilneg] {Tingting Qiu, Zhanbing Bai} % not in alphabetical order \address{Tingting Qiu \newline College of Information Science and Engineering\\ Shandong University of Science and Technology \\ Qingdao, 266510, China} \email{qiutingting19833@163.com} \address{Zhanbing Bai \newline College of Information Science and Engineering\\ Shandong University of Science and Technology \\ Qingdao, 266510, China} \email{zhanbingbai@163.com} \thanks{Submitted April 4, 2008. Published October 24, 2008.} \thanks{Supported by grants 10371006 from the National Nature Science Foundation of China, \hfill\break\indent and 10626033 from the Mathematics Tianyuan Foundation of China.} \subjclass[2000]{34B15} \keywords{Boundary value problem; positive solution; \hfill\break\indent singular fractional differential equation; fixed-point theorem} \begin{abstract} In this article, we establish the existence of a positive solution to a singular boundary-value problem of nonlinear fractional differential equation. Our analysis rely on nonlinear alternative of Leray-Schauder type and Krasnoselskii's fixed point theorem in a cone. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Many papers and books on fractional calculus differential equation have appeared recently. Most of them are devoted to the solvability of the linear fractional equation in terms of a special function and to problems of analyticity in the complex domain(see, for example \cite{LM,YL}). Moreover, Delbosco and Rodino \cite{DD} considered the existence of a solution for the nonlinear fractional differential equation $D_{0^{+}}^{\alpha}u=f(t,u)$, where $0<\alpha<1$, and $f:[0,a]\times \mathbb{R}\to \mathbb{R}, 00$ of a function $f:(0,\infty)\to \mathbb{R}$ is given by $$ I_{0+}^{\alpha}f(t)=\frac{1}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1}f(s)ds, $$ provided that the right-hand side is pointwise defined on $(0,\infty)$. \end{definition} \begin{definition} \rm The Caputo fractional derivative of order $\alpha>0$ of a continuous function $f:(0,\infty)\to \mathbb{R}$ is given by $$ D_{0^+}^{\alpha}f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}\frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}}ds, $$ where $n-1<\alpha\leq n$, provided that the right-hand side is pointwise defined on $(0,\infty)$. \end{definition} \begin{lemma}[\cite{SG2}] Let $n-1<\alpha\leq n$, $u\in C^{n}[0,1]$. Then $$ I_{0+}^{\alpha}D_{0+}^{\alpha}u(t)=u(t)-C_{1}-C_{2}t-\dots-C_{n}t^{n-1}, $$ where $C_{i}\in \mathbb{R}$, $i=1,2,\dots n$. \end{lemma} \begin{lemma}[\cite{SG2}] ~~The relation $$I_{a+}^{\alpha}I_{a+}^{\beta}\varphi=I_{a+}^{\alpha+\beta}\varphi$$ is valid in following case $$Re\beta >0,~~Re(\alpha+\beta) >0,~~\varphi(x)\in L_{1}(a,b).$$ \end{lemma} \begin{lemma} Given $f\in C[0,1],$ and $2<\alpha\leq3,$ the unique solution of \begin{equation} \begin{array}{ll} $$D_{0^+}^{\alpha}u(t)+f(t)=0,$$ & \hbox{$00.$ The proof is complete. \end{proof} \begin{lemma}[\cite{MA}] Let $E$ be a Banach space, $P\subseteq E$ a cone, and $\Omega_1$, $\Omega_2$ are two bounded open balls of $E$ centered at the origin with $\overline{\Omega}_1\subset\Omega_2$. Suppose that $A:P\cap(\overline{\Omega}_2\setminus\Omega_1)\to P$ is a completely continuous operator such that either \begin{itemize} \item[(i)] $\|Ax\| \leq \|x\|$, $x\in P\cap\partial\Omega_1$ and $\|Ax\| \geq \|x\|$, $x\in P\cap\partial\Omega_2$, or \item[(ii)] $\|Ax\| \geq \|x\|$, $x\in P\cap\partial\Omega_1$ and $\|Ax\| \leq \|x\|$, $x\in P\cap\partial\Omega_2$ \end{itemize} holds. Then $A$ has a fixed point in $P\cap(\overline{\Omega}_2\setminus\Omega_1)$. \end{lemma} \begin{lemma}[\cite{AG}] Let $E$ be a Banach space with $C\subseteq E$ closed and convex. Assume $U$ is a relatively open subset of $C$ with $0\in U$ and $A:\overline{U}\to C$ is a continuous compact map. Then either \begin{itemize} \item[(1)] $A$ has a fixed point in $\overline{U}$; or \item[(2)] there exists $u\in\partial U$ and $\lambda\in(0,1)$ with $u=\lambda Au$. \end{itemize} \end{lemma} \section{Main Results} For our construction, we let $E=C[0,1]$ and $\|u\|=\max\limits_{0 \le t \le 1}|u(t)|$ which is a Banach space. We seek solutions of (1.1) that lie in the cone \begin{equation*} P=\{u\in E:u(t)\geq0, \; 0\leq t\leq 1\}\,. \end{equation*} Define operator $T:P\to P$, by \begin{equation*} Tu(t)=\int_{0}^{1}G(t,s)f(s,u(s))ds\,. \end{equation*} \begin{lemma} Let $0<\sigma<1$, $2<\alpha\leq3$, $F:(0,1]\to \mathbb{R}$ is continuous and $\lim\limits_{t\to0^{+}}F(t)=\infty$. Suppose that $t^{\sigma}F(t)$ is continuous function on $[0,1]$. Then the function $$ H(t)=\int_{0}^{t}G(t,s)F(s)ds $$ is continuous on $[0,1]$. \end{lemma} \begin{proof} By the continuity of $t^{\sigma}F(t)$ and $H(t)=\int_{0}^{t}G(t,s)s^{-\sigma}s^{\sigma}F(s)ds$ It is easily to check that $H(0)=0$. The proof is divided into three cases: \noindent\textbf{Case 1:} $t_{0}=0, \forall t\in (0,1]$. Since $t^{\sigma}F(t)$ is continuous in $[0,1]$, there exists a constant $M>0$, such that $\big|t^{\sigma}F(t)\big|\leq M$, for $t\in[0,1]$. Hence \begin{align*} \big|H(t)-H(0)\big| &=\Big|\int_{0}^{t}\frac{(\alpha-1)t(1-s)^{\alpha-2}-(t-s)^{\alpha-1}} {\Gamma(\alpha)}s^{-\sigma}s^{\sigma}F(s)ds\\ &\quad +\int_{t}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds\Big|\\ & =\Big|\int_{0}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds- \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}s^{-\sigma} s^{\sigma}F(s)ds\Big|\\ & \leq \Big|\int_{0}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds\Big| +\Big|\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} s^{-\sigma}s^{\sigma}F(s)ds\Big|\\ & \leq M\int_{0}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}ds+M\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} s^{-\sigma}ds\\ &=\frac{Mt}{\Gamma(\alpha-1)}B(1-\sigma,\alpha-1) +\frac{M}{\Gamma(\alpha)}t^{\alpha-\sigma}B(1-\sigma,\alpha)\\ & =\frac{\Gamma(1-\sigma)Mt}{\Gamma(\alpha-\sigma)} +\frac{\Gamma(1-\sigma)Mt^{\alpha-\sigma}}{\Gamma(1+\alpha-\sigma)} \to 0 \quad\text{(as $t\to 0$)} \end{align*} where $B$ denotes the beta function. \noindent\textbf{Case 2:} $t_{0}\in(0,1)$, for all $t\in(t_{0},1]$ \begin{align*} & \big|H(t)-H(t_{0})\big|\\ &=\Big|\int_{0}^{t}\frac{(\alpha-1)t(1-s)^{\alpha-2}-(t-s)^{\alpha-1}} {\Gamma(\alpha)}s^{-\sigma}s^{\sigma}F(s)ds\\ &\quad +\int_{t}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds-\int_{t_{0}}^{1} \frac{t_{0}(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds\\ &\quad -\int_{0}^{t_{0}}\frac{(\alpha-1)t_{0}(1-s)^{\alpha-2}-(t_{0}-s)^{\alpha-1}} {\Gamma(\alpha)}s^{-\sigma}s^{\sigma}F(s)ds\Big|\\ & =\Big|\int_{0}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds- \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}s^{-\sigma}s^{\sigma}F(s)ds\\ & \quad -\int_{0}^{1}\frac{t_{0}(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds +\int_{0}^{t_{0}}\frac{(t_{0}-s)^{\alpha-1}}{\Gamma(\alpha)}s^{-\sigma} s^{\sigma}F(s)ds\Big|\\ & =\Big|\int_{0}^{1}\frac{(t-t_{0})(1-s)^{\alpha-2}}{\Gamma(\alpha-1)} s^{-\sigma}s^{\sigma}F(s)ds\\ &\quad -\int_{0}^{t_{0}}\frac{(t-s)^{\alpha-1}-(t_{0}-s)^{\alpha-1}}{\Gamma(\alpha)} s^{-\sigma}s^{\sigma}F(s)ds -\int_{t_{0}}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}s^{-\sigma} s^{\sigma}F(s)ds\Big|\\ &\leq\frac{M(t-t_{0})}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha-2} s^{-\sigma}ds+\frac{M}{\Gamma(\alpha)}\int_{0}^{t_{0}} \Big[(t-s)^{\alpha-1}-(t_{0}-s)^{\alpha-1}\Big]s^{-\sigma}ds\\ &\quad -\frac{M}{\Gamma(\alpha)}\int_{t_{0}}^{t}(t-s)^{\alpha-1}s^{-\sigma}ds\\ &\leq\frac{M(t-t_{0})}{\Gamma(\alpha-1)}B(1-\sigma,\alpha-1) +\frac{Mt^{\alpha-\sigma}}{\Gamma(\alpha)}B(1-\sigma,\alpha) -\frac{Mt_{0}^{\alpha-\sigma}}{\Gamma(\alpha)}B(1-\sigma,\alpha)\\ &=\frac{\Gamma(1-\sigma)M(t-t_{0})}{\Gamma(\alpha-\sigma)} +\frac{\Gamma(1-\sigma)Mt^{\alpha-\sigma}}{\Gamma(1+\alpha-\sigma)} -\frac{\Gamma(1-\sigma)Mt_{0}^{\alpha-\sigma}}{\Gamma(1+\alpha-\sigma)} \to 0 \quad\text{(as $t\to t_{0}$).} \end{align*} \noindent\textbf{Case 3:} $t_{0}\in(0,1]$, for all $t\in[0,t_{0})$. The proof is similar to that of Case 2; we omitted it. \end{proof} \begin{lemma} Let $0<\sigma<1$, $2<\alpha\leq3$, $f:(0,1]\times[0,+\infty)\to[0,+\infty)$ is continuous and $\lim\limits_{t\to0^{+}}f(t,\cdot)=+\infty$, $t^{\sigma}f(t,u(t))$ is continuous function on $[0,1]\times[0,+\infty)$, then the operator $T:P\to P$ is completely continuous. \end{lemma} \begin{proof} For each $u\in P$, let $Tu(t)=\int_{0}^{1}G(t,s)f(s,u(s))ds$. By Lemma3.1 and the fact that $f,G(t,s)$ are non-negative, we have $T:P\to P$. Let $u_{0}\in P$ and $\|u_{0}\|=C_{0}$, if $u\in P$ and $\|u-u_{0}\|<1$, then $\|u\|<1+C_{0}=C$. By the continuity of $t^{\sigma}f(t,u(t))$, we know that $t^{\sigma}f(t,u(t))$ is uniformly continuous on $[0,1]\times[0,C]$. Thus for all $\epsilon>0$, there exists $\delta>0(\delta<1)$, such that $|t^{\sigma}f(t,u_{2})-t^{\sigma}f(t,u_{1})|<\epsilon$, for all $t\in[0,1]$, and $u_{1},u_{2}\in [0,C]$ with $|u_{2}-u_{1}|<\delta$. Obviously, if $\|u-u_{0}\|<\delta$, then $u(t),u_{0}(t)\in[0,C]$ and $\|u(t)-u_{0}(t)\|<\delta$, for all $t\in[0,1]$. Hence, \begin{equation} |t^{\sigma}f(t,u(t))-t^{\sigma}f(t,u_{0}(t))|<\epsilon, \quad \mbox{for all t}\in[0,1]. \end{equation} $u\in P$, with $\|u-u_{0}\|<\delta$. It follows from (3.1) that \begin{align*} \|Tu-Tu_{0}\|&=\max_{0\leq t\leq1}\big|Tu(t)-Tu_{0}(t)\big|\\ & \leq\max_{0\leq t\leq1}\int_{0}^{1}G(t,s)s^{-\sigma}\big|s^{\sigma}f(s,u(s)) -s^{\sigma}f(s,u_{0}(s))\big|ds\\ &<\epsilon\int_{0}^{1}G(t,s)s^{-\sigma}ds\\ &=\epsilon\int_{0}^{1}\frac{(\alpha-1)(1-s)^{\alpha-2}-(1-s)^{\alpha-1}} {\Gamma(\alpha)}s^{-\sigma}ds\\ &\leq\frac{\epsilon}{\Gamma(\alpha-1)}\int_{0}^{1} (1-s)^{\alpha-2}s^{-\sigma}ds\\ &=\frac{\epsilon}{\Gamma(\alpha-1)} B(1-\sigma,\alpha-1)=\frac{\Gamma(1-\sigma)\epsilon}{\Gamma(\alpha-\sigma)}. \end{align*} By the arbitrariness of $u_{0}$, $T:P\to P$ is continuous. Let $M\subset P$ be bounded; i.e., there exists a positive constant $b$ such that $\|u\|\leq b$, for all $u\in p$. Since $t^{\sigma}f(t,u)$ is continuous in $[0,1]\times[0,+\infty)$, let $$ L=\max_{0\leq t\leq1,u\in M}t^{\sigma}f(t,u)+1, \quad \forall u \in M. $$ Then \[ \big|Tu(t)\big| \leq\int_{0}^{1}G(t,s)s^{-\sigma}|s^{\sigma}f(s,u(s))|ds \leq L\int_{0}^{1}G(1,s)s^{-\sigma}ds =\frac{\Gamma(1-\sigma)L}{\Gamma(\alpha-\sigma)}; \] thus $$ \|Tu\|=\max_{0\leq t\leq1}\big|Tu(t)\big| \leq\frac{\Gamma(1-\sigma)L}{\Gamma(\alpha-\sigma)}\,. $$ So, $T(M)$ is equicontinuous. For $\epsilon>0$ set \begin{equation*} \delta=\min\Big\{\frac{\epsilon}{\frac{\Gamma(1-\alpha)L}{\Gamma(\alpha-\sigma)} +\frac{\Gamma(1-\alpha)L}{\Gamma(1+\alpha-\sigma)}}, \frac{\epsilon\Gamma(\alpha-\sigma)}{2L\Gamma(1-\sigma)}, \frac{\epsilon}{\frac{\Gamma(1-\alpha)L}{\Gamma(\alpha-\sigma)} +\frac{\Gamma(1-\alpha)L2^{\alpha}}{\Gamma(1+\alpha-\sigma)}}\Big\}\,. \end{equation*} For $u\in M$, $t_{1}, t_{2}\in[0,1]$, with $t_{1}\mu)$ such that \begin{itemize} \item[(H1)] $t^{\sigma}f(t,\omega)\leq \rho\frac{\Gamma(\alpha-\sigma)} {\Gamma(1-\sigma)}$, for $(t,\omega)\in[0,1]\times[0,\rho]$; \item[(H2)] $t^{\sigma}f(t,\omega)\geq \mu\frac{\Gamma(\alpha-\sigma)} {\Gamma(1-\sigma)}$, for $(t,\omega)\in[0,1]\times[0,\mu]$. \end{itemize} Then (1.1) has at least one positive solution. \end{theorem} \begin{proof} From Lemma 3.2 we have $T:P\to P$ is completely continuous. We divide the proof into the following two steps. \noindent\textbf{Step1:} Let $\Omega_{1}=\{u\in P:\|u\|<\frac{\alpha-\sigma-1}{\alpha-\sigma}\mu\}$, for $u\in K\cap\partial\Omega_{1}$ and all $t\in[0,1]$, we have $0\leq u(t)\leq\frac{\alpha-\sigma-1}{\alpha-\sigma} \mu$. It follows from (H2) that \begin{align*} Tu(1) & =\int_{0}^{1}G(1,s)f(s,u(s))ds=\int_{0}^{1}G(1,s)s^{-\sigma}s^{\sigma}f(s,u(s))ds\\ & \geq \mu\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \int_{0}^{1}G(1,s)s^{-\sigma}ds\\ & =\mu\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \Big[\int_{0}^{1}\frac{(\alpha-1)(1-s)^{\alpha-2}-(1-s)^{\alpha-1}} {\Gamma(\alpha)}s^{-\sigma}ds\Big]\\ & =\mu\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \Big[\int_{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha-1)} s^{-\sigma}ds-\int_{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)} s^{-\sigma}ds\Big]\\ & =\mu\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \big[\frac{B(1-\sigma,\alpha-1)}{\Gamma(\alpha-1)} -\frac{B(1-\sigma,\alpha-1)}{\Gamma(\alpha)}\big]\\ &\geq\frac{\alpha-\sigma-1}{\alpha-\sigma}\mu=\|u\|\,. \end{align*} Hence, $$ \|Tu\|=\max_{0\leq t\leq1}|Tu(t)|\geq \frac{\alpha-\sigma-1}{\alpha-\sigma}\mu=\|u\|, $$ for $u\in P\cap\partial\Omega_{1}$. \noindent\textbf{Step 2:} Let $\Omega_{2}=\{u\in P:\|u\|<\rho\}$, for $u\in K\cap\partial\Omega_{2}$ and all $t\in[0,1]$, we have $0\leq u(t)\leq \rho$. By assumption (H1), \begin{align*} Tu(t) &=\int_{0}^{1}G(t,s)f(s,u(s))ds\\ &=\int_{0}^{1}G(t,s)s^{-\sigma}s^{\sigma}f(s,u(s))ds\\ & \leq \rho\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \Big[\int_{0}^{t}\frac{(\alpha-1)t(1-s)^{\alpha-2}-(t-s)^{\alpha-1}} {\Gamma(\alpha)}s^{-\sigma}ds \\ &\quad +\int_{t}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)}s^{-\sigma}ds\Big]\\ & \leq \rho\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \Big[\int_{0}^{1}\frac{t(1-s)^{\alpha-2}}{\Gamma(\alpha-1)}s^{-\sigma}ds -\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}s^{-\sigma}ds\Big]\\ & \leq\rho\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \Big[\frac{t}{\Gamma(\alpha-1)}\int_{0}^{1}s^{-\sigma}(1-s)^{\alpha-2}ds\Big]\\ &\leq\rho\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \frac{B(1-\sigma,\alpha-1)}{\Gamma(\alpha-1)}\\ &=\rho\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)} \frac{\Gamma(1-\sigma)}{\Gamma(\alpha-\sigma)}=\rho\,. \end{align*} So $\|Tu(t)\|\leq\|u\|$, for $u\in P\cap\partial\Omega_{2}$. Therefore, by (ii) of Lemma 2.6, we complete the proof. \end{proof} \begin{theorem} Let $0<\sigma<1$, $2<\alpha\leq3$, $f:(0,1]\times[0,+\infty)\to[0,+\infty)$ is continuous and $\lim\limits_{t\to0^{+}}f(t,\cdot)=+\infty$, $t^{\sigma}f(t,y)$ is continuous function on $[0,1]\times[0,+\infty)$. Suppose the following conditions are satisfied: \begin{itemize} \item[(H3)] there exists a continuous, nondecreasing function $\varphi :[0,+\infty)\to(0,\infty)$ with $t^{\sigma}f(t,\omega)\leq \varphi(\omega)$, for $(t,\omega)\in[0,1]\times[0,+\infty)$ \item[(H4)] there exists $r>0$, with $\frac{r}{\varphi(r)}>\frac{\Gamma(\alpha-\sigma)}{\Gamma(1-\sigma)}$ \end{itemize} Then (1.1) has one positive solution. \end{theorem} \begin{proof} Let $U=\{u\in P:\|u\|