\documentclass[reqno]{amsart} \usepackage{amssymb} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 15, pp. 1--38.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/15\hfil Asymptotic behavior] {Asymptotic behavior for a quadratic nonlinear Schr\"{o}dinger equation} \author[N. Hayashi, P. I. Naumkin\hfil EJDE-2008/15\hfilneg] {Nakao Hayashi, Pavel I. Naumkin} % in alphabetical order \address{Nakao Hayashi \newline Department of Mathematics\\ Graduate School of Science\\ Osaka University, Osaka\\ Toyonaka, 560-0043, Japan} \email{nhayashi@math.wani.osaka-u.ac.jp} \address{Pavel I. Naumkin \newline Instituto de Matem\'{a}ticas\\ Universidad Nacional Aut\'{o}noma de M\'{e}xico, Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoac\'{a}n, Mexico} \email{pavelni@matmor.unam.mx} \thanks{Submitted March 19, 2007. Published February 1, 2008.} \thanks{P. I. Naumkin is partially supported by CONACYT} \subjclass[2000]{35B40, 35Q55} \keywords{Nonlinear Schrodinger equation; large time asymptotic; \hfill\break\indent self-similar solutions} \begin{abstract} We study the initial-value problem for the quadratic nonlinear Schr\"{o}dinger equation \begin{gather*} iu_{t}+\frac{1}{2}u_{xx}=\partial _{x}\overline{u}^{2},\quad x\in \mathbb{R},\; t>1, \\ u(1,x)=u_{1}(x),\quad x\in \mathbb{R}. \end{gather*} For small initial data $u_{1}\in \mathbf{H}^{2,2}$ we prove that there exists a unique global solution $u\in \mathbf{C}([1,\infty );\mathbf{H}^{2,2})$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|\leq C\sqrt{t}$ by the self-similar solution $\frac{1}{\sqrt{t}}MS(\frac{x}{\sqrt{t}})$ such that the total mass \begin{equation*} \frac{1}{\sqrt{t}}\int_{\mathbb{R}}MS(\frac{x}{\sqrt{t}}) dx=\int_{\mathbb{R}}u_{1}(x)dx, \end{equation*} and in the far region $|x|>\sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schr\"{o}dinger equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{\label{S1}Introduction} We consider the quadratic nonlinear Schr\"{o}dinger equation \begin{equation} \begin{gathered} iu_{t}+\frac{1}{2}u_{xx}=\partial _{x}\overline{u}^{2}, \quad x\in \mathbb{R},\; t>1, \\ u(1,x)=u_{1}(x),\quad x\in \mathbb{R}. \end{gathered} \label{1.1} \end{equation} In general, the quadratic type nonlinearities in the one dimensional case are considered to be subcritical with respect to the large time asymptotic behavior of solutions. Different types of the quadratic nonlinearities, including derivatives of the unknown function were considered previously (see \cite{hn17,hn19,ho1,o2,to} and references cited therein). We choose the initial time value $t=1$ for the convenience of the forthcoming calculations (note that by the change $t'=t-1$ it can be transformed to the usual case of the initial time value $t'=0$). If we replace the nonlinear term of \eqref{1.1} by $\partial _{x}u^{2}$, then we can represent the solution $u$ by the formula (see \cite{o1}) \begin{equation*} u(t,x)=s(t,x)-\frac{1}{2}\frac{(2s(t,x)\psi (t,x)+\partial _{x}\psi (t,x) )\exp \big(2\int_{0}^{x}s(t,y)dy\big)}{1+\psi (t,x)\exp \big(2\int_{0}^{x}s(t,y)dy\big)} \end{equation*} through the Hope-Cole transformation, where \begin{equation*} s(t,x)=\frac{1}{\sqrt{t}}e^{\frac{ix^{2}}{2t}}\frac{1}{C-2\sqrt{ 2i}\int_{0}^{\frac{x}{\sqrt{t}}\sqrt{-\frac{i}{2}}}e^{-y^{2}}dy}, \end{equation*} $C$ is a constant determined by \begin{equation*} \int u_{1}(x)dx=\int s(t,x)dx=\int e^{\frac{i\xi ^{2}}{2}}\frac{1}{C-2\sqrt{2i}\int_{0}^{\xi \sqrt{-\frac{i}{2}}}e^{-y^{2}}dy} d\xi \end{equation*} and $\psi $ is the solution of the linear Schr\"{o}dinger equation $i\psi _{t}+\frac{1}{2}\psi _{xx}=0$ with the initial data \begin{equation*} \psi (1,x)= \Big(\exp \big(-2\int_{0}^{x}(u_{1}( y)-s(1,y))dy\big)-1\Big) \exp \big(-2\int_{0}^{x}s(1,y)dy\big). \end{equation*} See Appendix \ref{S8} for details. However the Hope-Cole transformation can not be applied to our problem. Recently in \cite{hn17} we considered the nonlinear Schr\"{o}dinger equation \begin{equation*} iu_{t}+\frac{1}{2}u_{xx}=\lambda (\overline{u}_{x})^{2}+\mu u_{x}^{2}, \end{equation*} with $\lambda \mathbf{,}\mu \in \mathbf{C.}$ We applied a method similar to the normal forms of Shatah \cite{s}, making a transformation of the original equation with quadratic nonlinearity to a nonlinear Schr\"{o}dinger equation with critical cubic nonlinearity \begin{align*} \mathcal{L}(u-\frac{\mu }{2}u^{2}-\lambda \mathcal{G}( \overline{u},\overline{u})) &= -\mu u(\mathcal{L}u)+2\lambda \mathcal{G}(\overline{ \mathcal{L}u},\overline{u})\\ &= -\lambda \mu u(\overline{u}_{x})^{2}-\lambda \mu uu_{x}^{2}+2|\lambda |^{2}\mathcal{G}(\overline{u} ,u_{x}^{2})+2\lambda \overline{\mu }\mathcal{G}(\overline{u}, \overline{u}_{x}^{2}), \end{align*} where $\mathcal{L}=i\partial _{t}+\frac{1}{2}\partial _{x}^{2}$, $\mathcal{G} $ is a symmetric bilinear operator. Then for small initial data $u_{0}\in \mathbf{H}^{3,1}$ we obtained the large time asymptotic behavior of small solutions which has an additional logarithmic oscillation. We note that if $\int u(t,x)dx=0$ in \eqref{1.1}, then by introducing a new variable $v=\int_{-\infty }^{x}udx$, we have for $v$, \begin{equation*} iv_{t}+\frac{1}{2}v_{xx}=(\overline{v}_{x})^{2}. \end{equation*} Therefore in the case of $\int u_{1}(x)dx=0$, asymptotic behavior of solutions has been shown in \cite{hn17}. In \cite{hn19} we studied the one dimensional quadratic nonlinear Schr \"{o}dinger equation $iu_{t}+\frac{1}{2}u_{xx}=t^{-\alpha }| u_{x}|^{2}$ with $\alpha \in (0,1)$. Heuristically the solution should have a quasilinear character if $\alpha \in (\frac{1}{2},1)$. However we showed that the asymptotic behavior of solutions does not have a quasilinear character for all range $\alpha \in (0,1) $ due to the special structure of the nonlinear term. For the case $\alpha \in [\frac{1}{2},1)$ we proved that if the initial data $u_{0}\in \mathbf{H}^{3,0}\cap \mathbf{H}^{2,2}$ are small then the solution has a slow time-decay as $t^{-\frac{\alpha }{2}}$. And the derivative $u_{x}$ of the solution has a quasilinear behavior $t^{-1/2}$ as $t\to \infty $. When $\alpha \in (0,\frac{1}{2})$, if we assume that the initial data $u_{0}$ are analytic and small, then the same result as for the case $\alpha \in [\frac{1}{2},1)$ holds. The aim of the present paper is to prove existence of global solutions and large time behavior of solutions to the Cauchy problem \eqref{1.1}. Here we use the method similar to the normal forms of Shatah and the transformation in \cite{H-O}. Also we use the following factorization formulas for the free Schr\"{o}dinger evolution group \begin{gather*} \mathcal{U}(t)\mathcal{F}^{-1}=M(t)\mathcal{D}_{t} \mathcal{V}(t), \\ \mathcal{FU}(-t)=i\mathcal{V}(-t)\overline{E} (t)\mathcal{D}_{1/t}. \end{gather*} Here we denote \begin{equation*} M(t)=e^{\frac{i}{2t}x^{2}},\quad E(t)=e^{\frac{it}{2}\xi ^{2}}, \end{equation*} the dilation operator $({\mathcal{D}}_{a}\phi )(x)=\frac{1}{\sqrt{ia}}\phi ( \frac{x}{a})$ and $\mathcal{V}(t)=\mathcal{F}M(t) \mathcal{F}^{-1}$. Note that ${\mathcal{D}}_{1/t}M(t) =E(t){\mathcal{D}}_{1/t}$. So we represent the solution \begin{equation*} u(t)=\mathcal{U}(t)\mathcal{F}^{-1}w( t)=\mathcal{D}_{t}E(t)v(t), \end{equation*} where $w=\mathcal{V}(-t)v(t)$. The direct Fourier transform $\hat{\phi}(\xi )$ of the function $\phi ( x)$ is defined by \begin{equation*} \mathcal{F}\phi =\hat{\phi}=\frac{1}{\sqrt{2\pi }}\int_{\mathbb{R}}e^{-ix\xi }\phi (x)dx, \end{equation*} then the inverse Fourier transformation is given by \begin{equation*} \mathcal{F}^{-1}\phi =\frac{1}{\sqrt{2\pi }}\int_{\mathbb{R}}e^{ix\xi }\phi (\xi )d\xi . \end{equation*} Denote the usual Lebesgue space $\mathbf{L}^{p}=\{\phi \in \mathbf{S} ';\|\phi \|_{\mathbf{L}^{p}}<\infty \}$, where the norm $\|\phi \|_{\mathbf{L}^{p}}=(\int_{\mathbb{R} }|\phi (x)|^{p}dx)^{1/p}$ if $1\leq p<\infty $ and $\|\phi \|_{\mathbf{L}^{\infty }}=$ ess$. \sup_{x\in \mathbb{R}}|\phi (x)|$ if $p=\infty $. The weighted Lebesgue norm is $\|\phi \|_{\mathbf{L} ^{p,a}}=\|\langle \cdot \rangle ^{a}\phi \|_{\mathbf{L}^{p}}$. Weighted Sobolev space is \begin{equation*} \mathbf{H}^{m,a}=\{\phi \in \mathbf{S}':\|\phi \| _{\mathbf{H}^{m,a}}\equiv \|\langle i\partial \rangle ^{m}\phi \|_{\mathbf{L}^{2,a}}<\infty \}, \end{equation*} where $m,a\in \mathbb{R}$, $\langle x\rangle =\sqrt{1+x^{2}}$. The usual Sobolev space is $\mathbf{H}^{m}=\mathbf{H}^{m,0}$, so the index $0$ we usually omit if it does not cause a confusion. Different positive constants we denote by the same letter $C$. Denote $\mathbf{Y}=\{\phi \in \mathbf{L}^{\infty },\phi '\in \mathbf{H}^{1,1}\}$. \begin{theorem}\label{T1.1} Let the initial data $M(1)u_{1}=e^{\frac{i}{2} x^{2}}u_{1}\in \mathbf{Y}$ with a norm $\|u_{1}\|_{\mathbf{Y} }\leq \varepsilon $, where $\varepsilon >0$ is sufficiently small. Then there exists a unique solution $u\in \mathbf{C}([1,\infty );\mathbf{Y})$ of the Cauchy problem \eqref{1.1}. \end{theorem} We denote by $\frac{1}{\sqrt{t}}M\Psi (\frac{x}{\sqrt{t}})$ a self-similar solution of the quadratic nonlinear Schr\"{o}dinger equation ( \ref{1.1}) such that the total mass \begin{equation*} \frac{1}{\sqrt{t}}\int_{\mathbb{R}}M\Psi (\frac{x}{\sqrt{t}}) dx=\int_{\mathbb{R}}u_{1}(x)dx. \end{equation*} The following theorem states that the large time asymptotic behavior of solution of \eqref{1.1} is defined by this self-similar solution in the region $|x|\leq C\sqrt{t}$ and in the far region $|x|>\sqrt{t}$ it has rapidly oscillating structure similar to that of the cubic Schr\"{o}dinger equations. \begin{theorem}\label{T1.2} Let the initial data $M(1)u_{1}=e^{\frac{i}{2}x^{2}}u_{1}\in \mathbf{Y}$ with a norm $\|u_{1}\|_{\mathbf{Y}}$ $\leq \varepsilon $, where $\varepsilon >0$ is sufficiently small. Then there exist unique functions $H_{j}$ and $B_{j}\in \mathbf{{{L}^{\infty }}}$ ($B_{j}$ are real-valued), $j=1,2$, such that the following asymptotic formula is valid \begin{align*} u(t,x) &= \frac{1}{\sqrt{t}}M(t)\Psi (\frac{x}{\sqrt{t}} )\\ &\quad +\frac{1}{\sqrt{t}}M(t)\sum_{j=1}^{2}H_{j}({\frac{x}{t}} )\exp \Big(iB_{j}({\frac{x}{t}})\log \frac{1+\frac{ |x|}{\sqrt{t}}}{1+\frac{|x|}{t}}\Big)\\ &\quad +O(t^{-\frac{1}{2}-\varkappa }) \end{align*} for $t\to \infty $ uniformly with respect to $x\in \mathbb{R}$, where $\varkappa >0$. \end{theorem} We organize the rest of our paper as follows. In Sections \ref{S2}--\ref{S6} we prove some preliminary estimates. Section \ref{S7} is devoted to the proof of Theorem \ref{T1.1}. We prove Theorem \ref{T1.2} in Section \ref{S8} . Section \ref{S10} is devoted to the proof of existence of the self-similar solution. \section{\label{S2}Transformation of equation} We represent the solution $u(t)=\mathcal{U}(t) \mathcal{F}^{-1}w(t)$, where the free Schr\"{o}dinger evolution group $\mathcal{U}(t)=\mathcal{F}^{-1}e^{\frac{it}{2}\xi ^{2}} \mathcal{F}$. Applying the Fourier transformation to equation \eqref{1.1}, changing the dependent variable $w(t,\xi )=e^{\frac{it}{2}\xi ^{2}}\widehat{u}(t,\xi )$, we get \begin{equation} w_{t}(t,\xi )=\frac{\xi }{\sqrt{2\pi }}\int_{\mathbb{R}}e^{itS} \overline{w(t,\eta -\xi )}\overline{w(t,-\eta )} d\eta , \label{2.1} \end{equation} where $S=\frac{1}{2}(\xi ^{2}+(\xi -\eta )^{2}+\eta ^{2})$. Using the identity \begin{equation*} e^{itS}=\frac{d}{dt}\Big(\frac{2+itS}{(1+itS)^{2}} te^{itS}\Big)+\frac{itS-1}{(1+itS)^{3}}e^{itS} \end{equation*} in view of the symmetry $\eta \leftrightarrow \xi -\eta $ we rewrite equation (\ref{2.1}) as \begin{equation} \begin{aligned} &\partial _{t}(w(t,\xi )-\int_{\mathbb{R}}e^{itS} \overline{w(t,\eta -\xi )}\overline{w(t,-\eta )} Ad\eta ) \\ &= t^{-1}\int_{\mathbb{R}}e^{itS}\overline{w(t,\eta -\xi ) w(t,-\eta )}\widetilde{A}d\eta \\ &\quad +\sqrt{\frac{2}{\pi }}\int_{\mathbb{R}^{2}}e^{itQ}\overline{w(t,\eta -\xi )}w(t,\eta -\zeta )w(t,\zeta )A\eta d\eta d\zeta , \end{aligned} \label{2.2} \end{equation} where \begin{gather*} Q=\frac{1}{2}(\xi ^{2}+(\xi -\eta )^{2}-(\eta -\zeta )^{2}-\zeta ^{2}), \\ A=\frac{\xi t(2+itS)}{\sqrt{2\pi }(1+itS)^{2}}=- \frac{i\xi }{\sqrt{2\pi }}(1+t\partial _{t})(\frac{1}{it} +S)^{-1}, \\ \widetilde{A}=\frac{\xi t(itS-1)}{\sqrt{2\pi }( 1+itS)^{3}}=-\frac{i\xi }{\sqrt{2\pi }}(2+t\partial _{t}) t\partial _{t}(\frac{1}{it}+S)^{-1}. \end{gather*} Now we return to the function $u=$ $\mathcal{U}(t)\mathcal{F} ^{-1}w(t)$ to get, from (\ref{2.2}), \begin{equation} (i\partial _{t}+\frac{1}{2}\partial _{x}^{2})(u-\mathcal{Q }(\overline{u},\overline{u}))=t^{-1}\widetilde{\mathcal{Q }}(\overline{u},\overline{u})+\mathcal{Q}(\overline{u} ,\partial _{x}u^{2}), \label{2.3} \end{equation} where \begin{align*} &\mathcal{Q}(\overline{u},\overline{u})=\mathcal{U}( t)\mathcal{F}^{-1}\int_{\mathbb{R}}e^{itS}\overline{w(t,\eta -\xi )}\overline{w(t,-\eta )}Ad\eta \\ &= -\frac{1}{\sqrt{2\pi }}\partial _{x}\mathcal{F}^{-1}\int_{\mathbb{R}} \overline{\widehat{u}(\eta -\xi )}\overline{\widehat{u}( -\eta )}(1+t\partial _{t})(\frac{1}{it}+S) ^{-1}d\eta , \end{align*} \begin{align*} &\widetilde{\mathcal{Q}}(\overline{u},\overline{u})=\mathcal{U} (t)\mathcal{F}^{-1}\int_{\mathbb{R}}e^{itS}\overline{w( t,\eta -\xi )}\overline{w(t,-\eta )}\widetilde{A}d\eta \\ &= -\frac{1}{\sqrt{2\pi }}\partial _{x}\mathcal{F}^{-1}\int_{\mathbb{R}} \overline{\widehat{u}(\eta -\xi )}\overline{\widehat{u}( -\eta )}(3+t\partial _{t})\partial _{t}(\frac{1}{it }+S)^{-1}d\eta . \end{align*} In the next lemma we give an $x$-representation of the operator \begin{equation*} \mathcal{I}(\phi ,\psi )=\mathcal{F}^{-1}\int_{\mathbb{R}} \widehat{\phi }(\xi -\eta )\widehat{\psi }(\eta ) (\frac{1}{it}+S)^{-1}d\eta . \end{equation*} Denote the convolution with a kernel $g$ \begin{equation*} (\psi \ast \phi )_{g}\equiv \int_{\mathbb{R}^{2}}g( t,y,z)\psi (x-y)\phi (x-z)dydz. \end{equation*} \begin{lemma}\label{Lemma 2.1} The representation $\mathcal{I}(\phi ,\psi ) =(\psi *\phi )_{g}$ is true, where \begin{equation*} g(t,y,z)\equiv \sqrt{\frac{2}{3\pi }}K_{0}\Big(\sqrt{\frac{4}{ 3it}(y^{2}-yz+z^{2})}\Big) \end{equation*} and $K_{0}$ is the Macdonalds function. \end{lemma} \begin{proof} We substitute the Fourier transformation \begin{align*} \mathcal{I}(\phi ,\psi ) &=\frac{1}{\sqrt{2\pi }}\int_{\mathbf{R }}d\eta \widehat{\psi }(\frac{\xi }{2}-\eta )\int_{\mathbb{R} }d\xi e^{ix\xi }\widehat{\phi }(\frac{\xi }{2}+\eta ) \big(\frac{1}{it}+\frac{3}{4}\xi ^{2}+\eta ^{2}\big)^{-1} \\ &= \frac{8}{3(2\pi )^{\frac{3}{2}}}\int_{\mathbb{R}}d\eta \int_{ \mathbb{R}}dye^{-iy\eta }\psi (x-y)\int_{\mathbb{R}}dze^{iz\eta }\phi (x-z)\\ &\quad \times \int_{\mathbb{R}}d\xi \cos (\frac{y+z}{2}\xi )( \xi ^{2}+\frac{4}{3}\eta ^{2}-\frac{4i}{3t})^{-1}. \end{align*} By \cite{Er} we find \begin{equation*} \int_{0}^{\infty }\frac{\cos (z\xi )}{\xi ^{2}+a^{2}}d\xi = \frac{\pi }{2a}e^{-a|z|} \end{equation*} for $\mathop{\rm Re}a>0$. Hence \begin{align*} \mathcal{I}(\phi ,\psi ) &=\frac{2}{\sqrt{6\pi }}\int_{\mathbf{R }^{2}}dydz\psi (x-y)\phi (x-z)\\ &\quad \times \int_{0}^{\infty }\frac{\cos ((z-y)\eta ) }{\sqrt{\eta ^{2}-\frac{i}{t}}}e^{-\frac{1}{\sqrt{3}}|y+z|\sqrt{ \eta ^{2}-\frac{i}{t}}}d\eta . \end{align*} We compute by \cite{Er} for $\mathop{\rm Re}a>0$, $\mathop{\rm Re}\beta >0$ \begin{equation} \int_{0}^{\infty }\frac{\cos ((z-y)\eta )e^{-\beta \sqrt{\eta ^{2}+a^{2}}}d\eta }{\sqrt{\eta ^{2}+a^{2}}}=K_{0}(a\sqrt{ \beta ^{2}+(z-y)^{2}}). \label{2.4} \end{equation} Then taking $a=\frac{1}{\sqrt{it}}$, $\beta =\frac{1}{\sqrt{3}}| y+z|$ we find the representation of the lemma. The proof is complete. \end{proof} By Lemma \ref{Lemma 2.1} we can rewrite the operators $\mathcal{Q}$ and $\widetilde{\mathcal{Q}}$ in equation (\ref{2.3}) as $\mathcal{Q}(\phi ,\psi )=(\psi \ast \phi )_{q}$ and $\widetilde{\mathcal{Q }}(\phi ,\psi )=(\psi \ast \phi )_{\widetilde{q}}$ with \begin{gather*} q = -\frac{1}{\sqrt{2\pi }}(1+t\partial _{t})(\partial _{y}+\partial _{z})g(t,y,z), \\ \widetilde{q} = -\frac{1}{\sqrt{2\pi }}(2+t\partial _{t}) t\partial _{t}(\partial _{y}+\partial _{z})g(t,y,z). \end{gather*} In the same way as in paper \cite{H-O} we change the variables $u( t,x)=t^{-1/2}e^{\frac{it}{2}\xi ^{2}}v(t,\xi )$ and $\xi =\frac{x}{t}$ in equation (\ref{2.3}) to obtain \begin{equation} \mathcal{L}(v-\overline{E}(\overline{Ev}*\overline{Ev}) _{h})=\mathcal{P}_{1}-\mathcal{P}_{2}, \label{2.5} \end{equation} where \begin{equation*} \mathcal{L}=i\partial _{t}+\frac{1}{2t^{2}}\partial _{\xi }^{2},\mathcal{P} _{1}=t^{-1}\overline{E}(\overline{Ev}*\overline{Ev})_{ \widetilde{h}},\mathcal{P}_{2}=t^{-1}\overline{E}(\overline{Ev} *\partial _{\zeta }(E^{2}v^{2}))_{h}, \end{equation*} and by changing $x=\xi t$, $y=\eta t$, $z=\zeta t$. Denote the operators \begin{align*} \mathcal{G}_{a,b}(\phi ,\psi )&= \overline{E}^{a+b}( E^{a}\phi *E^{b}\psi )_{h} \\ &= \overline{E}^{a+b}\int_{\mathbb{R}^{2}}h(t,\eta ,\zeta )e^{ \frac{a}{2}it(\xi -\eta )^{2}}\phi (\xi -\eta )e^{ \frac{b}{2}it(\xi -\zeta )^{2}}\psi (\xi -\zeta ) d\eta d\zeta , \end{align*} \begin{align*} \widetilde{\mathcal{G}}_{a,b}(\phi ,\psi )&= \overline{E} ^{a+b}(E^{a}\phi *E^{b}\psi )_{\widetilde{h}} \\ &= \overline{E}^{a+b}\int_{\mathbb{R}^{2}}\widetilde{h}(t,\eta ,\zeta )e^{\frac{a}{2}it(\xi -\eta )^{2}}\phi (\xi -\eta )e^{\frac{b}{2}it(\xi -\zeta )^{2}}\psi (\xi -\zeta )d\eta d\zeta , \end{align*} \begin{align*} \mathcal{H}_{a,b}(\phi ,\psi )&= \overline{E}^{a+b}( E^{a}\phi *\partial _{\zeta }(E^{b}\psi ))_{h} \\ &= \overline{E}^{a+b}\int_{\mathbb{R}^{2}}h(t,\eta ,\zeta )e^{ \frac{a}{2}it(\xi -\eta )^{2}}\phi (\xi -\eta ) \partial _{\zeta }e^{\frac{b}{2}it(\xi -\zeta )^{2}}\psi ( \xi -\zeta )d\eta d\zeta \end{align*} with \begin{gather*} h(t,\eta ,\zeta )=-\frac{\sqrt{t}}{\pi \sqrt{3}}( 1+t\partial _{t})(\partial _{\eta }+\partial _{\zeta }) K_{0}\Big(\sqrt{\frac{4t}{3i}(\eta ^{2}-\eta \zeta +\zeta ^{2})}\Big), \\ \widetilde{h}(t,\eta ,\zeta )=-\frac{\sqrt{t}}{\pi \sqrt{3}} (2+t\partial _{t})t\partial _{t}(\partial _{\eta }+\partial _{\zeta })K_{0}\Big(\sqrt{\frac{4t}{3i}(\eta ^{2}-\eta \zeta +\zeta ^{2})}\Big). \end{gather*} \section{\label{S3}Preliminary estimates} Define the weighted Lebesgue norm $\|\phi \|_{\mathbf{L} ^{p,a}}=\|\langle\cdot \rangle ^{a}\phi \|_{\mathbf{ L}^{p}}$ and define the linear operator \begin{equation*} \mathbb{K}\phi =\int_{\mathbb{R}}K(\xi ,\eta )(\phi (\xi -\eta )-\phi (\xi ))d\eta . \end{equation*} \begin{lemma}\label{Lemma3.1} Suppose that \begin{equation*} K(\xi ,\eta )=O(e^{-\langle\eta \rangle }\langle\xi \eta \rangle ^{-\alpha }) \end{equation*} for all $\xi \in \mathbb{R}$, $\eta \in \mathbb{R}\backslash \{ 0\}$, where $\alpha >1$. Then the estimates are true \begin{equation*} \|\mathbb{K}\phi \|_{\mathbf{L}^{p,\theta }}\leq C\| \partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }} \end{equation*} if $\alpha >\frac{3}{2}+\frac{1}{p}$, where $\theta =\frac{3}{2}+\frac{1}{p} +\lambda $, $\lambda \geq 0$, $p=2,\infty $, and \begin{equation*} \|\mathbb{K}\phi \|_{\mathbf{L}^{2,1+\lambda }}\leq C\| \phi \|_{\mathbf{L}^{2,\lambda }}, \end{equation*} if $\alpha >1$, where $\lambda \geq 0$. \end{lemma} \begin{proof} Since \begin{equation*} \|\phi (\cdot -\eta )-\phi (\cdot )\| _{\mathbf{L}^{p,\lambda }} =\big\|\int_{0}^{\eta }\partial _{z}\phi ( \cdot -z)dz\big\|_{\mathbf{L}^{p,\lambda }} \leq C|\eta |^{\frac{1}{2}+\frac{1}{p}}\langle\eta \rangle ^{\lambda }\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}, \end{equation*} for $p=2,\infty $, we find \begin{equation*} \|\mathbb{K}\phi \|_{\mathbf{L}^{p,\theta }}\leq C\| \partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\|\int_{ \mathbb{R}}e^{-\langle\eta \rangle }\langle\eta \rangle ^{\lambda }\langle\xi \eta \rangle ^{-\alpha }|\eta |^{\frac{1}{2}+\frac{1}{p}}d\eta \|_{\mathbf{L} ^{\infty ,\theta -\lambda }}\leq C\|\partial _{\xi }\phi \|_{ \mathbf{L}^{2,\lambda }} \end{equation*} if $\alpha >\frac{3}{2}+\frac{1}{p}$. We now prove the second estimate. For $|\xi |<1$ we have \begin{equation*} |\mathbb{K}\phi |\leq C\|\phi \|_{\mathbf{L} ^{2}}\Big(\int_{\mathbb{R}}e^{-\langle\eta \rangle }d\eta \Big)^{1/2}\leq C\|\phi \|_{\mathbf{L}^{2}}. \end{equation*} For $|\xi |\geq 1$ we write \begin{align*} ||\xi |^{1+\lambda }\mathbb{K}\phi | &\leq C|\xi |^{\lambda }|\phi (\xi )||\xi |\int_{\mathbb{R}}\langle\xi \eta \rangle ^{-\alpha }e^{-\langle\eta \rangle }d\eta \\ &\quad +C|\xi |\int_{|\eta |>\frac{|\xi |}{ 2}}\langle\xi \eta \rangle ^{-\alpha }\langle\xi -\eta \rangle ^{\lambda }|\phi (\xi -\eta )|d\eta \\ &\quad +C|\xi |\int_{|\eta |<\frac{|\xi |}{ 2}}\langle\xi \eta \rangle ^{-\alpha }\langle\xi -\eta \rangle ^{\lambda }|\phi (\xi -\eta )|d\eta . \end{align*} By the Cauchy-Schwarz inequality we find for the second summand \begin{align*} |\xi |\int_{|\eta |>\frac{|\xi |}{2} }\langle\xi \eta \rangle ^{-\alpha }\langle\xi -\eta \rangle ^{\lambda }|\phi (\xi -\eta )|d\eta &\leq |\xi |\|\phi \|_{\mathbf{L}^{2,\lambda }}\Big(\int_{|\eta |>\frac{|\xi |}{2} }\langle\xi \eta \rangle ^{-2\alpha }d\eta \Big)^{1/2}\\ &\leq C|\xi |^{\frac{3}{2}-2\alpha }\|\phi \|_{ \mathbf{L}^{2,\lambda }} \end{align*} and for the third summand we change $\eta =\frac{x}{|\xi |}$, \begin{align*} &|\xi |\int_{|\eta |<\xi |/2} \langle\xi \eta \rangle ^{-\alpha }\langle\xi -\eta \rangle ^{\lambda }|\phi (\xi -\eta )|d\eta \\ &= C\int_{|x|<\xi ^2/ 2} \langle x\rangle ^{-\alpha }\langle\xi -\frac{x}{|\xi |}\rangle ^{\lambda }|\phi (\xi -\frac{x}{|\xi |}) |dx. \end{align*} Then taking the $\mathbf{L}^{2}$ - norm we have \begin{align*} \|\xi \mathbb{K}\phi \|_{\mathbf{L}^{2}(|\xi|\geq 1)} &\leq C\big\|\phi \|_{\mathbf{L}^{2,\lambda }}+C\|\phi \|_{\mathbf{L}^{2,\lambda }}\||\xi |^{\frac{3}{2}-2\alpha }\big\|_{\mathbf{L}^{2}} \\ &\quad +C\|\int_{|x|<\frac{\xi ^{2}}{2}}\langle x\rangle ^{-\alpha }\langle\xi -\frac{x}{|\xi |} \rangle ^{\lambda }|\phi (\xi -\frac{x}{|\xi | })|dx\|_{\mathbf{L}^{2}(|\xi |\geq 1)} \end{align*} and \begin{align*} &\|\int_{|x|<\frac{\xi ^{2}}{2}}\langle x\rangle ^{-\alpha }\langle\xi -\frac{x}{|\xi |} \rangle ^{\lambda }|\phi (\xi -\frac{x}{|\xi | })|dx\|_{\mathbf{L}^{2}(|\xi |\geq 1)}^{2} \\ &= \int_{|\xi |\geq 1}d\xi \int_{|x|<\frac{\xi ^{2} }{2}}\langle x\rangle ^{-\alpha }\langle\xi -\frac{x}{ |\xi |}\rangle ^{\lambda }|\phi (\xi -\frac{x }{|\xi |})|dx \\ &\quad \times \int_{|y|<\frac{\xi ^{2}}{2}}\langle y\rangle ^{-\alpha }\langle\xi -\frac{y}{|\xi |} \rangle ^{\lambda }|\phi (\xi -\frac{y}{|\xi | })|dy \\ &= \int_{\mathbb{R}}dx\langle x\rangle ^{-\alpha }\int_{\mathbb{R} }dy\langle y\rangle ^{-\alpha }\int_{|\xi |\geq 1,|\xi |\geq 2|x|,|\xi | \geq 2| y|}\langle\xi -\frac{x}{|\xi |}\rangle ^{\lambda }|\phi (\xi -\frac{x}{|\xi |}) |\\ &\quad \times \langle\xi -\frac{y}{|\xi |}\rangle ^{\lambda }|\phi (\xi -\frac{y}{|\xi |}) |d\xi \\ &\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}^{2}\Big(\int_{\mathbb{R}}\langle x\rangle ^{-\alpha }dx\Big)^{2} \leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}^{2}, \end{align*} since changing $z=\xi -\frac{x}{|\xi |}$ in the domain $| \xi |\geq 1,|\xi |\geq 2|x|$ we have \begin{equation*} |\frac{d\xi }{dz}|=\frac{1}{1+\frac{x}{\xi ^{2}}}\leq 2. \end{equation*} Therefore, \begin{equation*} \int_{|\xi |\geq 1,|\xi |\geq 2|x| }\langle\xi -\frac{x}{|\xi |}\rangle ^{2\lambda }\phi ^{2}(\xi -\frac{x}{|\xi |})d\xi \leq 2\int_{ \mathbb{R}}\langle z\rangle ^{2\lambda }\phi ^{2}(z) dz=C\|\phi \|_{\mathbf{L}^{2,\lambda }}^{2}. \end{equation*} The proof is complete. \end{proof} We now estimate the bilinear operator \begin{equation*} \mathcal{A}_{a,b}(\phi ,\psi )=\int_{\mathbb{R}^{2}}e^{-i\xi (a\eta +b\zeta )}A(\eta ,\zeta )(\phi ( \xi -\eta )-\phi (\xi ))(\psi (\xi -\zeta )-\psi (\xi ))d\eta d\zeta . \end{equation*} \begin{lemma}\label{Lemma3.2} Suppose that \begin{equation*} |\partial _{\eta }^{k}\partial _{\zeta }^{l}A(\eta ,\zeta )|\leq C(|\eta |+|\zeta | )^{-s-k-l}e^{-C|\eta |-C|\zeta |} \end{equation*} for all $\eta ,\zeta \in \mathbb{R},$ $k,l=0,1$, where $s\geq 1$. Then the estimates are valid \begin{equation*} \|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{p,\theta }}\leq C\|\partial _{\xi }\phi \|_{\mathbf{L} ^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{equation*} if $s<3$, $a,b\neq 0$, where $\theta =2+\lambda +\delta -\epsilon $, $p=2,\infty $, $\lambda ,\delta \in \mathbb{R}$, and \begin{equation*} \|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{2,\sigma }}\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}\| \partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{equation*} if $s<\frac{5}{2}$, $b\neq 0$, where $\sigma =1+\lambda +\delta -\epsilon $, $\lambda ,\delta \in \mathbb{R}$, $\epsilon >0$ is small. \end{lemma} \begin{proof} We integrate by parts with respect to $\eta $ and $\zeta $ via identities $e^{-ia\xi \eta }=P\partial _{\eta }(\eta e^{-ia\xi \eta })$ and $e^{-ib\xi \zeta }=Q\partial _{\zeta }(\zeta e^{-ib\xi \zeta })$, where \begin{equation*} P=(1-ia\xi \eta )^{-1},Q=(1-ib\xi \zeta )^{-1}, \end{equation*} to get \begin{align*} \mathcal{A}_{a,b}(\phi ,\psi ) &=\int_{\mathbb{R}^{2}}d\eta d\zeta e^{-i\xi (a\eta +b\zeta )}\Big(\eta \zeta PQA\partial _{\eta }\phi (\xi -\eta )\partial _{\zeta }\psi (\xi -\zeta ) \\ &\quad +\zeta \eta \partial _{\eta }(PQA)(\phi (\xi -\eta )-\phi (\xi ))\partial _{\zeta }\psi ( \xi -\zeta )\\ &\quad +\eta \zeta \partial _{\zeta }(PQA)(\psi (\xi -\zeta )-\psi (\xi ))\partial _{\eta }\phi ( \xi -\eta )\\ &\quad +(\phi (\xi -\eta )-\phi (\xi ) )(\psi (\xi -\zeta )-\psi (\xi ) )\eta \partial _{\eta }\zeta \partial _{\zeta }(PQA)\Big). \end{align*} Using the estimates \begin{gather*} |P|\leq C\langle\xi \eta \rangle ^{-1},| Q|\leq C\langle\xi \zeta \rangle ^{-1}, \\ |\phi (\xi -\eta )-\phi (\xi )|\leq C\langle\xi \rangle ^{-\lambda }|\eta |^{\frac{1}{2} }\langle\eta \rangle ^{|\lambda |}\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}, \\ |\psi (\xi -\zeta )-\psi (\xi )|\leq C\langle\xi \rangle ^{-\delta }|\zeta |^{\frac{1}{2} }\langle\zeta \rangle ^{|\delta |}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{gather*} and by the condition of the lemma \begin{align*} &|PQA|+|\eta \partial _{\eta }(PQA)| +|\zeta \partial _{\zeta }(PQA)|+|\eta \partial _{\eta }\zeta \partial _{\zeta }(PQA)|\\ &\leq C\langle\xi \zeta \rangle ^{-1}\langle\xi \eta \rangle ^{-1}(|\eta |+|\zeta |) ^{-s}e^{-C|\eta |-C|\zeta |}, \end{align*} we obtain \begin{align*} &|\mathcal{A}_{a,b}(\phi ,\psi )|\\ &\leq C\int_{ \mathbb{R}^{2}}d\eta d\zeta \langle\xi \eta \rangle ^{-1}\langle\xi \zeta \rangle ^{-1}(|\eta | +|\zeta |)^{-s}e^{-C|\eta |-C|\zeta|} \\ &\quad \times \Big(|\eta \zeta ||\partial _{\eta }\phi (\xi -\eta )||\partial _{\zeta }\psi (\xi -\zeta )|+\langle\xi \rangle ^{-\lambda }\| \partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}|\eta | ^{1/2}|\zeta ||\partial _{\zeta }\psi (\xi -\zeta )| \\ &\quad +\langle\xi \rangle ^{-\delta }\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}|\eta ||\zeta |^{1/2}|\partial _{\eta }\phi (\xi -\eta ) |+\langle\xi \rangle ^{-\lambda -\delta }|\eta \zeta |^{1/2}\|\partial _{\xi }\phi \|_{\mathbf{L }^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}\Big). \end{align*} Hence by the Cauchy-Schwarz inequality \begin{align*} |\mathcal{A}_{a,b}(\phi ,\psi )| &\leq C\langle\xi \rangle ^{-\lambda -\delta }\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \\ &\quad \times \Big(\Big(\int_{\mathbb{R}}|\eta | ^{2-s}\langle\xi \eta \rangle ^{-2}e^{-C|\eta | }d\eta \Big)^{1/2}\Big(\int_{\mathbb{R}}|\zeta | ^{2-s}\langle\xi \zeta \rangle ^{-2}e^{-C|\zeta | }d\zeta \Big)^{1/2} \\ &\quad +\int_{\mathbb{R}}|\eta |^{\frac{1-s}{2}}\langle\xi \eta \rangle ^{-1}e^{-C|\eta |}d\eta \big(\int_{\mathbf{ R}}|\zeta |^{2-s}\langle\xi \zeta \rangle ^{-2}e^{-C|\zeta |}d\zeta \big)^{1/2} \\ &\quad +\int_{\mathbb{R}}|\eta |^{\frac{1-s}{2}}\langle \xi \eta \rangle ^{-1}e^{-C|\eta |}d\eta \int_{\mathbb{R} }|\zeta |^{\frac{1-s}{2}}\langle\xi \zeta \rangle ^{-1}e^{-C|\zeta |}d\zeta \Big)\\ &\leq C\langle\xi \rangle ^{-\theta }\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{align*} with $\theta =2+\lambda +\delta -\epsilon $, $s<3$, $\epsilon >0$. For the case $p=2$ we use the inequality \begin{equation*} \|\phi (\cdot -\eta )-\phi (\cdot )\| _{\mathbf{L}^{2,\lambda }}\leq C|\eta |\langle\eta \rangle ^{|\lambda |}\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }} \end{equation*} to get \begin{align*} &\|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L}^{2,\theta }} \\ &\leq \sup_{\xi \in \mathbb{R}}\int_{\mathbb{R}^{2}}d\eta d\zeta \langle\xi \eta \rangle ^{-1}\langle\xi \zeta \rangle ^{-1}(|\eta |+|\zeta |) ^{-s}e^{-C|\eta |-C|\zeta |} \\ &\quad \times \Big(\|\partial _{\xi }\phi \|_{\mathbf{L} ^{2,\lambda }}\langle\xi \rangle ^{\theta -\lambda }|\eta \zeta ||\partial _{\zeta }\psi (\xi -\zeta ) |+\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}\langle\xi \rangle ^{\theta -\delta }|\eta \zeta | |\partial _{\eta }\phi (\xi -\eta )| \\ &\quad +\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}\langle\xi \rangle ^{\theta -\lambda -\delta }|\eta ||\zeta |^{1/2}\Big). \end{align*} Hence \begin{align*} \|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L}^{2,\theta }} &\leq C\|\partial _{\xi }\phi \|_{\mathbf{L} ^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}\sup_{\xi \in \mathbb{R}}\langle\xi \rangle ^{\theta -\lambda -\delta } \\ &\times \Big(\int_{\mathbb{R}}|\eta |^{1-\frac{2s}{3} }\langle\xi \eta \rangle ^{-1}e^{-C|\eta |}d\eta \Big(\int_{\mathbb{R}}|\zeta |^{2-\frac{2s}{3}}\langle \xi \zeta \rangle ^{-2}e^{-C|\zeta |}d\zeta \Big)^{1/2} \\ &\quad +\int_{\mathbb{R}}|\zeta |^{1-\frac{2s}{3}}\langle\xi \zeta \rangle ^{-1}e^{-C|\zeta |}d\zeta \Big(\int_{ \mathbb{R}}|\eta |^{2-\frac{2s}{3}}\langle\xi \eta \rangle ^{-2}e^{-C|\eta |}d\eta \Big)^{1/2} \\ &\quad +\int_{\mathbb{R}}|\eta |^{1-\frac{2s}{3}}\langle \xi \eta \rangle ^{-1}e^{-C|\eta |}d\eta \int_{\mathbb{R} }|\zeta |^{\frac{1}{2}-\frac{s}{3}}\langle\xi \zeta \rangle ^{-1}e^{-C|\zeta |}d\zeta \Big)\\ &\leq C\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{align*} with $\theta =2+\lambda +\delta -\epsilon $, $s<3$, $\epsilon >0$. To prove the second estimate of the lemma as above we integrate by parts with respect to $\zeta $ \begin{align*} \mathcal{A}_{a,b}(\phi ,\psi ) &= \int_{\mathbb{R}^{2}}d\eta d\zeta e^{-bi\xi \zeta }\Big(\zeta QA(\phi (\xi -\eta ) -\phi (\xi ))\partial _{\zeta }\psi (\xi -\zeta ) \\ &\quad +(\phi (\xi -\eta )-\phi (\xi ) )(\psi (\xi -\zeta )-\psi (\xi ) )\zeta \partial _{\zeta }(QA)\Big). \end{align*} Using the estimates \begin{equation*} |\psi (\xi -\zeta )-\psi (\xi )|\leq C\langle\xi \rangle ^{-\lambda }|\zeta |^{\frac{1}{2 }}\langle\zeta \rangle ^{|\lambda |}\| \partial _{\xi }\psi \|_{\mathbf{L}^{2,\lambda }} \end{equation*} and \begin{equation*} |\zeta \partial _{\zeta }(QA)|+|QA| \leq C\langle\xi \zeta \rangle ^{-1}(|\eta | +|\zeta |)^{-s}e^{-C|\eta |-C|\zeta |}, \end{equation*} we obtain \begin{align*} |\mathcal{A}_{a,b}(\phi ,\psi )| &\leq \int_{\mathbb{R}^{2}}d\eta d\zeta |(\phi (\xi -\eta )-\phi (\xi ))|\langle\xi \zeta \rangle ^{-1}(|\eta |+|\zeta |) ^{-s}e^{-C|\eta |-C|\zeta |} \\ &\quad \times \big(|\zeta ||\partial _{\zeta }\psi ( \xi -\zeta )|+\|\partial _{\xi }\psi \|_{\mathbf{L }^{2,\delta }}\langle\xi \rangle ^{-\delta }|\zeta | ^{1/2}\big). \end{align*} Hence \begin{align*} \|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{2,\sigma }} &\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}\sup_{\xi \in \mathbb{R} }\langle\xi \rangle ^{\sigma -\lambda -\delta }\int_{\mathbb{R} }e^{-C|\eta |}d\eta \\ &\times \Big(\Big(\int_{\mathbb{R}}|\zeta | ^{2}\langle\xi \zeta \rangle ^{-2}(|\eta | +|\zeta |)^{-2s}e^{-C|\zeta |}d\zeta \Big)^{1/2} \\ &\quad +\int_{\mathbb{R}}|\zeta |^{1/2}\langle \xi \zeta \rangle ^{-1}(|\eta |+|\zeta |)^{-s}e^{-C|\zeta |}d\zeta \Big)\\ &\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{align*} if $\sigma =1+\lambda +\delta -\epsilon $, $s<\frac{5}{2}$, $\epsilon >0$. The proof is complete. \end{proof} We next estimate the operator \begin{equation*} \mathbb{A}(\phi ,\psi )\equiv \int_{\mathbb{R}^{2}}e^{-i\xi (a\eta +b\zeta )}A(\eta ,\zeta )\phi (\xi -\eta )\psi (\xi -\zeta )d\eta d\zeta , \end{equation*} where $a,b\in \mathbb{R}\backslash \{0\}$. Denote \begin{equation*} \Lambda (\xi )=\int_{\mathbb{R}^{2}}e^{-i\xi (a\eta +b\zeta )}A(\eta ,\zeta )d\eta d\zeta . \end{equation*} \begin{lemma}\label{Lemma3.3} Suppose that \begin{equation} \big|\partial _{\eta }^{k}\partial _{\zeta }^{l} \Big(A(\eta ,\zeta )-\frac{a_{1}\eta +b_{1}\zeta }{\eta ^{2}-\zeta \eta +\zeta ^{2}} e^{-\langle\eta \rangle -\langle\zeta \rangle }\Big)\big| \leq C(|\eta |+|\zeta |)^{-k-l}e^{-\langle\eta \rangle -\langle\zeta \rangle } \label{3.1} \end{equation} for all $\eta ,\zeta \in \mathbb{R},$ $k,l=0,1,2,3$, where $a_{1},b_{1}\in \mathbf{R.}$ Then \begin{align*} &\|\mathbb{A}(\phi ,\psi )-\Lambda \phi \psi \|_{ \mathbf{L}^{p,\theta }} \\ &\leq C\|\phi \|_{\mathbf{L}^{p,\alpha }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}+C\|\psi \|_{ \mathbf{L}^{p,\beta }}\|\partial _{\xi }\phi \|_{\mathbf{L} ^{2,\lambda }} +C\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\| \partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}, \end{align*} with \begin{equation*} \theta =\min (\frac{3}{2}+\frac{1}{p}+\alpha +\delta ,\frac{3}{2}+ \frac{1}{p}+\beta +\lambda ,2+\lambda +\delta -\epsilon ),\quad p=2,\infty \end{equation*} and \begin{equation*} \|\mathbb{A}(\phi ,\psi )\|_{\mathbf{L}^{2,\sigma }}\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}(\|\psi \|_{\mathbf{L}^{\infty ,\beta }}+\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}) \end{equation*} with $\sigma =\min (1+\lambda +\beta ,1+\lambda +\delta -\epsilon ) ,\alpha ,\beta ,\lambda ,\delta \in \mathbb{R}$ $\epsilon >0$ is small. \end{lemma} \begin{proof} We represent \begin{equation*} \mathbb{A}(\phi ,\psi )=\Lambda \phi \psi +\phi \mathbb{K} _{1}\psi +\psi \mathbb{K}_{2}\phi +\mathcal{A}_{a,b}(\phi ,\psi ), \end{equation*} where the kernels of the operators $\mathbb{K}_{1}$ and $\mathbb{K}_{2}$ are \begin{equation*} K_{1}(\xi ,\zeta )=\int_{\mathbb{R}}e^{-i\xi (a\eta +b\zeta )}A(\eta ,\zeta )d\eta ,\quad K_{2}(\xi ,\eta )=\int_{\mathbb{R}}e^{-i\xi (a\eta +b\zeta ) }A(\eta ,\zeta )d\zeta . \end{equation*} For $|\xi \zeta |<1$, $\zeta \neq 0$ changing $\eta -\frac{ \zeta }{2}=z$ we get \begin{align*} K_{1}(\xi ,\zeta ) &=e^{-\langle\zeta \rangle }\int_{\mathbb{R}}e^{-ia\xi \eta -\langle\eta -\frac{\zeta }{2} \rangle }\frac{a_{1}\eta +b_{1}\zeta }{\eta ^{2}-\zeta \eta +\zeta ^{2} }d\eta \\ &\quad+O\Big(e^{-\langle\zeta \rangle }\int_{\mathbb{R}}( (|\eta |+|\zeta |)^{-1}| e^{-\langle\eta \rangle }-e^{-\langle\eta -\frac{\zeta }{2} \rangle }|+e^{-\langle\eta \rangle })d\eta \Big)\\ &= e^{-\frac{i}{2}a\xi \zeta -\langle\zeta \rangle }\int_{ \mathbb{R}}e^{-\langle z\rangle }(C_{1}iz\sin (a\xi z)+C_{2}\zeta \cos (a\xi z))\frac{dz}{z^{2}+\frac{3}{4}\zeta ^{2}} +O(e^{-\langle\zeta \rangle })\\ &=O( e^{-\langle\zeta \rangle }). \end{align*} For $|\xi \zeta |\geq 1$ integrating three times by parts we obtain \begin{align*} |K_{1}(\xi ,\zeta )| &= |(a\xi )^{-3}\int_{\mathbb{R}}e^{-ia\xi \eta } \partial _{\eta }^{3}A(\eta ,\zeta )d\eta |\\ &\leq C|\xi |^{-3}e^{-\langle\zeta \rangle }\int_{ \mathbb{R}}\frac{d\eta }{(|\eta |+|\zeta |)^{4}}\\ &\leq C|\xi \zeta |^{-3}e^{-\langle\zeta \rangle }. \end{align*} Hence the estimates are true for all $\xi \in \mathbb{R}$, $\zeta ,\eta \in \mathbb{R}\backslash \{0\}$ \begin{equation*} |K_{1}(\xi ,\zeta )|\leq Ce^{-\langle\zeta \rangle }\langle\xi \zeta \rangle ^{-3},\quad |K_{2}(\xi ,\eta )|\leq Ce^{-\langle\eta \rangle }\langle\xi \eta \rangle ^{-3}. \end{equation*} Then by Lemma \ref{Lemma3.1}, we find \begin{gather*} \|\psi \mathbb{K}_{2}\phi \|_{\mathbf{L}^{p,\frac{3}{2}+\frac{1 }{p}+\beta +\lambda }}\leq C\|\psi \|_{\mathbf{L}^{p,\beta }}\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}, \\ \|\phi \mathbb{K}_{1}\psi \|_{\mathbf{L}^{p,\frac{3}{2}+\frac{1 }{p}+\alpha +\delta }}\leq C\|\phi \|_{\mathbf{L}^{p,\alpha }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}. \end{gather*} Applying Lemma \ref{Lemma3.2} with $s=1$ we have \begin{equation*} \|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{p,2+\lambda +\delta -\epsilon }}\leq C\|\partial _{\xi }\phi \|_{\mathbf{L}^{2,\lambda }}\|\partial _{\xi }\psi \|_{ \mathbf{L}^{2,\delta }} \end{equation*} with $\epsilon >0$, $p=2,\infty $. Hence the first estimate of the lemma follows. To prove the second estimate of the lemma we note that by \eqref{3.1}, \begin{align*} \Lambda (\xi )&=\int_{\mathbb{R}^{2}}e^{-i\xi (a\eta +b\zeta )}A(\eta ,\zeta )d\eta d\zeta \\ &= \int_{\mathbb{R}}d\eta e^{-ia\xi \eta -\langle\eta \rangle }\int_{\mathbb{R}}e^{-ib\xi \zeta }\frac{a_{1}\eta +b_{1}\zeta }{\eta ^{2}-\eta \zeta +\zeta ^{2}}d\zeta +O(\langle\xi \rangle ^{-2})\\ &= \pi \int_{\mathbb{R}}(C_{1}+C_{2}\text{sign}\eta ) e^{-i(a+\frac{b}{2})\xi \eta -\frac{\sqrt{3}}{2}|\eta ||b\xi |-\langle\eta \rangle }d\eta +O( \langle\xi \rangle ^{-2})\\ &= O(\langle\xi \rangle ^{-1}). \end{align*} Hence \begin{equation*} \|\Lambda \phi \psi \|_{\mathbf{L}^{2,1+\lambda +\beta }}\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}\|\psi \|_{ \mathbf{L}^{\infty ,\beta }}. \end{equation*} By virtue of estimates in Lemma \ref{Lemma3.1}, we get \begin{gather*} \|\phi \mathbb{K}_{1}\psi \|_{\mathbf{L}^{2,\frac{3}{2}+\lambda +\delta }}\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}\| \partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }}, \\ \|\psi \mathbb{K}_{2}\phi \|_{\mathbf{L}^{2,1+\lambda +\beta }}\leq C\|\phi \|_{\mathbf{L}^{2,\lambda }}\|\psi \|_{\mathbf{L}^{\infty ,\beta }}. \end{gather*} Then applying the second estimate of Lemma \ref{Lemma3.2} with $s=1$, we have \begin{equation*} \|\mathcal{A}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{2,1+\lambda +\delta -\epsilon }}\leq C\|\phi \|_{\mathbf{L} ^{2,\lambda }}\|\partial _{\xi }\psi \|_{\mathbf{L}^{2,\delta }} \end{equation*} with $\epsilon >0$. The proof is complete. \end{proof} Next we consider the $\mathbf{L}^{2}$-estimates of the operator \begin{equation*} \mathbb{H}(\phi ,\psi )=\int_{\mathbb{R}^{2}}A(\eta ,\zeta )e^{\frac{i}{2}a(\xi -\eta )^{2}}\phi (\xi -\eta )\partial _{\zeta }\big(e^{\frac{i}{2}b(\xi -\zeta )^{2}}\psi (\xi -\zeta )\big)d\eta \,d\zeta . \end{equation*} \begin{lemma}\label{Lemma3.4} Suppose that condition \eqref{3.1} is fulfilled. Then the estimates \begin{gather*} \|\mathbb{H}(\phi ,\psi )\|_{\mathbf{L}^{2}}\leq C\|\phi \|_{\mathbf{L}^{2}}(\|\psi \|_{ \mathbf{L}^{\infty }}+\|\partial _{\xi }\psi \|_{\mathbf{L} ^{2,\lambda }}+\|\partial _{\xi }^{2}\psi \|_{\mathbf{L} ^{2}}) , \\ \|\mathbb{H}(\phi ,\psi )\|_{\mathbf{L}^{2}}\leq C\|\psi \|_{\mathbf{L}^{2}}(\|\phi \|_{ \mathbf{L}^{\infty }}+\|\partial _{\xi }\phi \|_{\mathbf{L} ^{2}}) \end{gather*} are true provided that the right-hand sides are finite, $\lambda >0$. \end{lemma} \begin{proof} To prove the first estimate of the lemma we write \begin{equation*} \mathbb{H}(\phi ,\psi )=e^{\frac{i}{2}(a+b)\xi ^{2}}(\xi \mathbb{A}_{1}(\phi ,\psi )+\mathbb{A} _{2}(\phi ,\psi )+\mathbb{A}_{3}(\phi ,\partial _{\xi }\psi )) \end{equation*} where the kernels are \begin{gather*} A_{1}(\eta ,\zeta )= -ibe^{\frac{i}{2}(a\eta ^{2}+b\zeta ^{2})}A(\eta ,\zeta ),\\ A_{2}(\eta ,\zeta )= \frac{ib}{2}e^{\frac{i}{2}(a\eta ^{2}+b\zeta ^{2})}\zeta A(\eta ,\zeta ), \\ A_{3}(\eta ,\zeta )= -e^{\frac{i}{2}(a\eta ^{2}+b\zeta ^{2})}A(\eta ,\zeta ) \end{gather*} respectively. Then by the second estimate of Lemma \ref{Lemma3.3} we obtain \begin{align*} \|\mathbb{H}(\phi ,\psi )\|_{\mathbf{L}^{2}} &\leq \|\xi \mathbb{A}_{1}(\phi ,\psi )\|_{ \mathbf{L}^{2}}+\|\mathbb{A}_{2}(\phi ,\psi )\|_{ \mathbf{L}^{2}}+\|\mathbb{A}_{3}(\phi ,\partial _{\xi }\psi )\|_{\mathbf{L}^{2}} \\ &\leq C\|\phi \|_{\mathbf{L}^{2}}\big(\|\psi \| _{\mathbf{L}^{\infty }}+\|\partial _{\xi }\psi \|_{\mathbf{L} ^{2,\lambda }}+\|\partial _{\xi }\psi \|_{\mathbf{L}^{\infty }}+\|\partial _{\xi }^{2}\psi \|_{\mathbf{L}^{2}}\big). \end{align*} Thus the first estimate of the lemma is true. To prove the second estimate we denote $e^{\frac{i}{2}b\xi ^{2}}\psi (\xi )=\widetilde{\psi } (\xi )$ and represent \begin{equation*} e^{\frac{i}{2}a(\xi -\eta )^{2}}\phi (\xi -\eta ) =\phi (\xi )e^{\frac{i}{2}a(\xi -\eta )^{2}}+e^{ \frac{i}{2}a(\xi -\eta )^{2}}(\phi (\xi -\eta )-\phi (\xi )). \end{equation*} Then we integrate by parts with respect to $\zeta $, \begin{align*} \mathbb{H}(\phi ,\psi ) &= -\int_{\mathbb{R}^{2}}e^{\frac{i}{2} a(\xi -\eta )^{2}}\partial _{\zeta }A(\eta ,\zeta ) \phi (\xi -\eta )(\widetilde{\psi }(\xi -\zeta )-\widetilde{\psi }(\xi ))d\eta d\zeta \\ &= -\phi \mathbb{K}_{1}\widetilde{\psi }-e^{\frac{i}{2}a\xi ^{2}}\widetilde{ \mathcal{A}}_{a,0}(\phi ,\widetilde{\psi }), \end{align*} where the kernels are respectively \begin{gather*} K_{1}(\xi ,\zeta )=\int_{\mathbb{R}}e^{\frac{i}{2}a(\xi -\eta )^{2}}\partial _{\zeta }A(\eta ,\zeta )d\eta, \\ \widetilde{A}(\eta ,\zeta )=e^{\frac{i}{2}a\eta ^{2}}\partial _{\zeta }A(\eta ,\zeta ). \end{gather*} As above we have the estimate \begin{equation*} |K_{1}(\xi ,\zeta )|\leq C\langle\xi \rangle e^{-\langle\zeta \rangle }\langle\xi \zeta \rangle ^{-3}. \end{equation*} Thus by Lemma \ref{Lemma3.1} we find \begin{equation*} \|\phi \mathbb{K}_{1}\widetilde{\psi }\|_{\mathbf{L}^{2}}\leq C\|\phi \|_{\mathbf{L}^{\infty }}\|\psi \|_{ \mathbf{L}^{2}}. \end{equation*} Finally by the second estimate of Lemma \ref{Lemma3.2} with $s=2$, $\lambda =0$ we estimate \begin{equation*} \|e^{\frac{i}{2}a\xi ^{2}}\widetilde{\mathcal{A}}_{a,0}(\phi , \widetilde{\psi })\|_{\mathbf{L}^{2}}\leq C\|\partial _{\xi }\phi \|_{\mathbf{L}^{2}}\|\psi \|_{\mathbf{L}^{2}} \end{equation*} Thus the second estimate of the lemma is true. The lemma is proved. \end{proof} As a consequence of Lemmas \ref{Lemma3.3}--\ref{Lemma3.4} we obtain the estimates of the operators \begin{equation*} \mathcal{G}_{a,b}(\phi ,\psi )=\overline{E}^{a+b}\int_{\mathbf{R }^{2}}h(t,\eta ,\zeta )e^{\frac{a}{2}it(\xi -\eta ) ^{2}}\phi (t,\xi -\eta )e^{\frac{b}{2}it(\xi -\zeta )^{2}}\psi (t,\xi -\zeta )d\eta d\zeta \end{equation*} and \begin{align*} \mathcal{H}_{a,b}(\phi ,\psi ) &= t^{-1/2}\overline{E}^{a+b}\int_{\mathbb{R}^{2}}h(t,\eta ,\zeta ) e^{\frac{a}{2} it(\xi -\eta )^{2}}\phi (t,\xi -\eta )\\ &\quad \times \partial _{\zeta }(e^{\frac{b}{2}it(\xi -\zeta ) ^{2}}\psi (t,\xi -\zeta ))d\eta d\zeta . \end{align*} Denote $B_{\lambda }=\langle\xi \sqrt{t}\rangle ^{\lambda }$ and \begin{equation*} Q_{a,b}(t,\xi )=\int_{\mathbb{R}^{2}}e^{-it\xi (a\eta +b\zeta )}h(t,\eta ,\zeta )d\eta d\zeta . \end{equation*} \begin{lemma}\label{Lemma3.5} Suppose that \begin{equation} |\partial _{\eta }^{k}\partial _{\zeta }^{l}(h(t,\eta ,\zeta )-\frac{\sqrt{t}(a_{1}\eta +b_{1}\zeta )}{\eta ^{2}-\zeta \eta +\zeta ^{2}}e^{-\langle\sqrt{t}\eta \rangle -\langle\sqrt{t}\zeta \rangle })| \leq C(|\eta |+|\zeta |) ^{-k-l}e^{-C\langle\sqrt{t}\eta \rangle -C\langle\sqrt{t} \zeta \rangle } \label{3.2} \end{equation} for all $t\geq 1$, $\eta ,\zeta \in \mathbb{R},$ $k,l=0,1,2,3$. Then the following estimates are true for all $t\geq 1$: \begin{align*} &\|B_{\theta }(\mathcal{G}_{a,b}(\phi ,\psi ) -Q_{a,b}\phi \psi )\|_{\mathbf{L}^{p}} \\ &\leq Ct^{-\frac{1}{4}}\|B_{\alpha }\phi \|_{\mathbf{L} ^{p}}\|B_{\delta }\partial _{\xi }\psi \|_{\mathbf{L}^{2}}+Ct^{- \frac{1}{4}}\|B_{\beta }\psi \|_{\mathbf{L}^{p}}\| B_{\lambda }\partial _{\xi }\phi \|_{\mathbf{L}^{2}} \\ &\quad +Ct^{-1/2}\|B_{\lambda }\partial _{\xi }\phi \|_{ \mathbf{L}^{2}}\|B_{\delta }\partial _{\xi }\psi \|_{\mathbf{L} ^{2}}, \end{align*} where \begin{equation*} \theta =\min (\frac{3}{2}+\frac{1}{p}+\alpha +\delta ,\frac{3}{2}+ \frac{1}{p}+\beta +\lambda ,2+\lambda +\delta -\epsilon ),\quad p=2,\infty \end{equation*} and \begin{equation*} \|B_{\sigma }\mathcal{G}_{a,b}(\phi ,\psi )\|_{ \mathbf{L}^{2}}\leq C\|B_{\lambda }\phi \|_{\mathbf{L} ^{2}}(\|B_{\beta }\psi \|_{\mathbf{L}^{\infty }}+t^{- \frac{1}{4}}\|B_{\delta }\partial _{\xi }\psi \|_{\mathbf{L} ^{2}}) \end{equation*} for $\sigma =\min (1+\lambda +\beta ,1+\lambda +\delta -\epsilon ) ,\alpha ,\beta ,\lambda ,\delta \in \mathbb{R}$, $\epsilon >0$ is small. Also for all $t\geq 1$, \begin{equation*} \|\mathcal{H}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{2}}\leq C\|\phi \|_{\mathbf{L}^{2}}\big(\|\psi \|_{\mathbf{L}^{\infty }}+t^{-\frac{1}{4}}\|B_{\lambda }\partial _{\xi }\psi \|_{\mathbf{L}^{2,\lambda }}+t^{-\frac{3}{4} }\|\partial _{\xi }^{2}\psi \|_{\mathbf{L}^{2}}\big) \end{equation*} and \begin{equation*} \|\mathcal{H}_{a,b}(\phi ,\psi )\|_{\mathbf{L} ^{2}}\leq C\|\psi \|_{\mathbf{L}^{2}}\big(\|\phi \|_{\mathbf{L}^{\infty }}+t^{-\frac{1}{4}}\|\partial _{\xi }\phi \|_{\mathbf{L}^{2}}\big), \end{equation*} where $\lambda >0$. \end{lemma} \begin{proof} We make a change $\sqrt{t}\xi =\xi '$, $\sqrt{t}\eta =\eta '$ and $\sqrt{t}\zeta =\zeta '$, \begin{align*} \mathcal{G}_{a,b}(\phi ,\psi ) &= \overline{E}^{a+b}\int_{ \mathbb{R}^{2}}h(t,\eta ,\zeta )e^{\frac{a}{2}it(\xi -\eta )^{2}}\phi (t,\xi -\eta )e^{\frac{b}{2}it( \xi -\zeta )^{2}}\psi (t,\xi -\zeta )d\eta d\zeta \\ &= \int_{\mathbb{R}^{2}}e^{-i\xi '(a\eta '+b\zeta ')}\widetilde{A}(\eta ',\zeta ')\widetilde{\psi }(t,\xi '-\eta ') \widetilde{\phi }(t,\xi '-\zeta ')d\eta 'd\zeta ', \end{align*} where \begin{gather*} \widetilde{A}(\eta ',\zeta ')= t^{-1}e^{ \frac{a}{2}i(\eta ')^{2}+\frac{b}{2}i(\zeta ')^{2}}h(t,\frac{\eta '}{\sqrt{t}},\frac{ \zeta '}{\sqrt{t}}), \\ \widetilde{\phi }(t,\xi ')= \phi (t,\frac{\xi '}{\sqrt{t}}),\quad \ \widetilde{\psi }(t,\xi ')=\psi (t,\frac{\xi '}{\sqrt{t}}), \end{gather*} Also we denote \begin{equation*} \widetilde{Q}(\xi )=\int_{\mathbb{R}^{2}}e^{-i\xi (a\eta '+b\zeta ')}\widetilde{A}(\eta ',\zeta ')d\eta 'd\zeta '. \end{equation*} Now application of Lemma \ref{Lemma3.3} yields the first two estimates of the lemma. As above we make a change $\sqrt{t}\xi =\xi '$, $\sqrt{t} \eta =\eta '$ and $\sqrt{t}\zeta =\zeta '$ \begin{align*} \mathcal{H}_{a,b}(\phi ,\psi ) &= e^{\frac{i}{2}( a+b)(\xi ')^{2}}\int_{\mathbb{R}^{2}}\widetilde{ A}(\eta ',\zeta ')e^{\frac{i}{2}a(\xi '-\eta ')^{2}}\widetilde{\phi }(t,\xi '-\eta ')\\ &\quad \times \partial _{\zeta '}(e^{\frac{i}{2}b(\xi '-\zeta ')^{2}}\widetilde{\psi }(t,\xi '-\eta '))d\eta 'd\zeta ', \end{align*} then applying Lemma \ref{Lemma3.4} we find the estimates of the lemma. The proof is complete. \end{proof} \section{\label{S4}Inverse transformation} We consider the transformation \begin{equation*} \mathcal{I}(v)=v-\overline{E}^{3}\mathcal{G}_{-1,-1}( \overline{v},\overline{v}), \end{equation*} where $E(t)=e^{\frac{it}{2}\xi ^{2}}$ and \begin{equation*} \mathcal{G}_{a,b}(\phi ,\psi )=\overline{E}^{a+b}\int_{\mathbf{R }^{2}}h(t,\eta ,\zeta )e^{\frac{a}{2}it(\xi -\eta ) ^{2}}\phi (t,\xi -\eta )e^{\frac{b}{2}it(\xi -\zeta )^{2}}\psi (t,\xi -\zeta )d\eta d\zeta . \end{equation*} We first give estimates of the operator $\mathcal{G}_{a,b}$ in the norm \begin{equation*} \|\phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\equiv \sup_{1\leq t\leq T}(\|B_{\alpha }\phi (t)\|_{\mathbf{L} ^{\infty }}+t^{-\frac{1}{4}}\|B_{\lambda }\partial _{\xi }\phi ( t)\|_{\mathbf{L}^{2}}+t^{-\frac{3}{4}}\|\partial _{\xi }^{2}\phi (t)\|_{\mathbf{L}^{2}}). \end{equation*} \begin{lemma}\label{Lemma4.1} Let condition \eqref{3.2} be fulfilled. Then the estimate \begin{equation*} \|E^{q}(\mathcal{G}_{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi )\|_{\mathbf{X}_{T}^{\theta ,\sigma }}\leq C\|\phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\|\psi \|_{\mathbf{ X}_{T}^{\beta ,\delta }} \end{equation*} is true, where $\theta =\min (\frac{3}{2}+\alpha +\delta ,\frac{3}{2}+\beta +\lambda ,2+\lambda +\delta -\epsilon )$, $\alpha ,\beta ,\lambda ,\delta \in \mathbb{R}$, $\epsilon >0$ is small, \begin{equation*} \sigma <\min (2+\alpha ,2+\beta ,2+\lambda ,2+\delta ,1+\alpha +\delta ,1+\beta +\lambda ,\frac{3}{2}+\lambda +\delta ) \end{equation*} with an additional condition in the case of $q\neq 0$ that $\alpha ,\beta ,\lambda ,\delta $ are such that \begin{gather*} \sigma <\min (\alpha +\delta ,\beta +\lambda ,\frac{1}{2}+\lambda +\delta ), \\ \min (\alpha +\delta ,\beta +\lambda ,\frac{1}{2}+\lambda +\delta )>1. \end{gather*} \end{lemma} \begin{proof} By the first estimate of Lemma \ref{Lemma3.5} with $p=\infty $ we have \begin{equation*} \|B_{\theta }(\mathcal{G}_{a,b}(\phi ,\psi ) -Q_{a,b}\phi \psi )\|_{\mathbf{L}^{\infty }}\leq C\|\phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\|\psi \|_{\mathbf{ X}_{T}^{\beta ,\delta }}. \end{equation*} We now estimate the derivative \begin{align*} &\partial _{\xi }(E^{q}(\mathcal{G}_{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi ))\\ &= E^{q}(\mathcal{G}_{a,b}(\partial _{\xi }\phi ,\psi ) -Q_{a,b}\psi \partial _{\xi }\phi )+E^{q}(\mathcal{G} _{a,b}(\phi ,\partial _{\xi }\psi )-Q_{a,b}\phi \partial _{\xi }\psi )\\ &\quad +\sqrt{t}E^{q}(\widetilde{\mathcal{G}_{a,b}}(\phi ,\psi )-\widetilde{Q}_{a,b}\phi \psi )+itq\xi E^{q}(\mathcal{G} _{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi ), \end{align*} where $\widetilde{\mathcal{G}_{a,b}}$ and $\widetilde{Q}_{a,b}$ are defined by the kernel $\widetilde{h}(t,\eta ,\zeta )=-i\sqrt{t}( a\eta +b\zeta )h(t,\eta ,\zeta )$. Then by the first estimate of Lemma \ref{Lemma3.5} with $p=2$ we find the estimate \begin{align*} &\|B_{\sigma }\partial _{\xi }(E^{q}(\mathcal{G} _{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi ))\|_{ \mathbf{L}^{2}}\\ &\leq C\|B_{\sigma }(\mathcal{G}_{a,b}(\partial _{\xi }\phi ,\psi )-Q_{a,b}\psi \partial _{\xi }\phi )\|_{ \mathbf{L}^{2}} \\ &\quad +C\|B_{\sigma }(\mathcal{G}_{a,b}(\phi ,\partial _{\xi }\psi )-Q_{a,b}\phi \partial _{\xi }\psi )\|_{\mathbf{L} ^{2}} \\ &\quad +C\sqrt{t}\|B_{-\frac{1}{2}-\epsilon }\|_{\mathbf{L} ^{2}}\|B_{\sigma +\frac{1}{2}+\epsilon }(\widetilde{\mathcal{G} _{a,b}}(\phi ,\psi )-\widetilde{Q}_{a,b}\phi \psi ) \|_{\mathbf{L}^{\infty }} \\ &\quad +Cq\sqrt{t}\|B_{-\frac{1}{2}-\epsilon }\|_{\mathbf{L} ^{2}}\|B_{\sigma +\frac{3}{2}+\epsilon }(\mathcal{G}_{a,b}( \phi ,\psi )-Q_{a,b}\phi \psi )\|_{\mathbf{L}^{\infty }} \\ &\leq Ct^{1/4}\|\phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\|\psi \|_{\mathbf{X}_{T}^{\beta ,\delta }} \end{align*} with the additional condition \begin{equation*} \sigma <\min \big(2+\alpha ,2+\beta ,2+\lambda ,2+\delta , \alpha +\delta ,\beta +\lambda ,\frac{1}{2}+\lambda +\delta \big) \end{equation*} for the case of $q\neq 0$. Finally we estimate the second derivative \begin{align*} &\partial _{\xi }^{2}(E^{q}(\mathcal{G}_{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi ))\\ &=E^{q}(\mathcal{G} _{a,b}(\partial _{\xi }^{2}\phi ,\psi )-Q_{a,b}\psi \partial _{\xi }^{2}\phi )\\ &+2E^{q}(\mathcal{G}_{a,b}(\partial _{\xi }\phi ,\partial _{\xi }\psi )-Q_{a,b}\partial _{\xi }\phi \partial _{\xi }\psi ) +E^{q}(\mathcal{G}_{a,b}(\phi ,\partial _{\xi }^{2}\psi ) -Q_{a,b}\phi \partial _{\xi }^{2}\psi )\\ &+\sqrt{t}E^{q}(\widetilde{\mathcal{G}_{a,b}}(\partial _{\xi }\phi ,\psi )-\widetilde{Q}_{a,b}\partial _{\xi }\phi \psi )+ \sqrt{t}E^{q}(\widetilde{\mathcal{G}_{a,b}}(\phi ,\partial _{\xi }\psi )-\widetilde{Q}_{a,b}\phi \partial _{\xi }\psi )\\ &+tE^{q}(\widetilde{\widetilde{\mathcal{G}_{a,b}}}(\phi ,\psi )-\widetilde{\widetilde{Q}}_{a,b}\phi \psi )+iqt( 1+iqt\xi ^{2})E^{q}(\mathcal{G}_{a,b}(\phi ,\psi ) -Q_{a,b}\phi \psi )\\ &+itq\xi E^{q}(\mathcal{G}_{a,b}(\partial _{\xi }\phi ,\psi )-Q_{a,b}\psi \partial _{\xi }\phi )+itq\xi E^{q}( \mathcal{G}_{a,b}(\phi ,\partial _{\xi }\psi )-Q_{a,b}\phi \partial _{\xi }\psi )\\ &+2iqt^{\frac{3}{2}}\xi E^{q}(\widetilde{\mathcal{G}_{a,b}}( \phi ,\psi )-\widetilde{Q}_{a,b}\phi \psi ), \end{align*} where $\widetilde{\widetilde{\mathcal{G}_{a,b}}}$ and $\widetilde{ \widetilde{Q}}_{a,b}$ are defined by the kernel \begin{equation*} \widetilde{\widetilde{h}}(t,\eta ,\zeta )=-i\sqrt{t}( a\eta +b\zeta )\widetilde{h}(t,\eta ,\zeta ). \end{equation*} Then by Lemma \ref{Lemma3.5} we find the estimates \begin{align*} &\|\partial _{\xi }^{2}(E^{q}(\mathcal{G}_{a,b}( \phi ,\psi )-Q_{a,b}\phi \psi ))\|_{\mathbf{L}^{2}}\\ &\leq C\|\mathcal{G}_{a,b}(\partial _{\xi }^{2}\phi ,\psi )-Q_{a,b}\psi \partial _{\xi }^{2}\phi \|_{\mathbf{L}^{2}} \\ &\quad +C\|\mathcal{G}_{a,b}(\partial _{\xi }\phi ,\partial _{\xi }\psi )-Q_{a,b}\partial _{\xi }\phi \partial _{\xi }\psi \|_{ \mathbf{L}^{2}}+C\|\mathcal{G}_{a,b}(\phi ,\partial _{\xi }^{2}\psi )-Q_{a,b}\phi \partial _{\xi }^{2}\psi \|_{\mathbf{L} ^{2}} \\ &\quad +C\sqrt{t}\|\widetilde{\mathcal{G}_{a,b}}(\partial _{\xi }\phi ,\psi )-\widetilde{Q}_{a,b}\psi \partial _{\xi }\phi \|_{ \mathbf{L}^{2}}+C\sqrt{t}\|\widetilde{\mathcal{G}_{a,b}}(\phi ,\partial _{\xi }\psi )-\widetilde{Q}_{a,b}\phi \partial _{\xi }\psi \|_{\mathbf{L}^{2}} \\ &\quad +Ct\|B_{-\frac{1}{2}-\epsilon }\|_{\mathbf{L}^{2}}\|B_{ \frac{1}{2}+\epsilon }(\widetilde{\widetilde{\mathcal{G}_{a,b}}}( \phi ,\psi )-\widetilde{\widetilde{Q}}_{a,b}\phi \psi ) \|_{\mathbf{L}^{\infty }} \\ &\quad +Cq\sqrt{t}\|B_{1}(\mathcal{G}_{a,b}(\partial _{\xi }\phi ,\psi )-Q_{a,b}\psi \partial _{\xi }\phi )\|_{ \mathbf{L}^{2}} \\ &\quad +Cq\sqrt{t}\|B_{1}(\mathcal{G}_{a,b}(\phi ,\partial _{\xi }\psi )-Q_{a,b}\phi \partial _{\xi }\psi )\|_{ \mathbf{L}^{2}} \\ &\quad +Cqt\|B_{-\frac{1}{2}-\epsilon }\|_{\mathbf{L}^{2}}\|B_{ \frac{3}{2}+\epsilon }(\widetilde{\mathcal{G}_{a,b}}(\phi ,\psi )-\widetilde{Q}_{a,b}\phi \psi )\|_{\mathbf{L}^{\infty }} \\ &\quad +Cqt\|B_{-\frac{1}{2}-\epsilon }\|_{\mathbf{L}^{2}}\|B_{ \frac{5}{2}+\epsilon }(\mathcal{G}_{a,b}(\phi ,\psi ) -Q_{a,b}\phi \psi )\|_{\mathbf{L}^{\infty }} \\ &\leq Ct^{3/4}\|\phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\|\psi \|_{\mathbf{X}_{T}^{\beta ,\delta }} \end{align*} with the additional condition \begin{equation*} \min \big(\alpha +\delta ,\beta +\lambda ,\frac{1}{2}+\lambda +\delta \big)>1 \end{equation*} for the case of $q\neq 0$. Lemma \ref{Lemma4.1} is proved. \end{proof} Now let us find the inverse transformation $\mathcal{I}^{-1}$. We consider the equation \begin{equation} \phi =\mathcal{I}(v). \label{4.1} \end{equation} We look for the solution of (\ref{4.1}) in the form $v=\phi +\psi _{1}+ \overline{E}^{3}\psi _{2}$ and substitute it into (\ref{4.1}), then we find \begin{equation} \psi _{1}+\overline{E}^{3}\psi _{2}=\overline{E}^{3}\mathcal{G} _{-1,-1}(\overline{\phi }+\overline{\psi _{1}},\overline{\phi }+ \overline{\psi _{1}}) +2\mathcal{G}_{-1,2}(\overline{\phi }+\overline{\psi _{1}},\overline{ \psi _{2}})+E^{3}\mathcal{G}_{2,2}(\overline{\psi _{2}}, \overline{\psi _{2}}). \label{4.2} \end{equation} Comparing in (\ref{4.2}) the terms with the same oscillating exponents like $\overline{E}^{3}$ we find a system of equations \begin{equation} \begin{gathered} \psi _{1}=\mathcal{G}_{-1,2}(\overline{\phi }+\overline{\psi _{1}}, \overline{\psi _{2}})+E^{3}\mathcal{G}_{2,2}(\overline{\psi _{2} },\overline{\psi _{2}}), \\ \psi _{2}=\mathcal{G}_{-1,-1}(\overline{\phi }+\overline{\psi _{1}}, \overline{\phi }+\overline{\psi _{1}}). \end{gathered} \label{4.3} \end{equation} In the next lemma we solve this system in the space \begin{equation*} \mathbf{Z}_{\varepsilon }=\big\{(\psi _{1},\psi _{2}) \in (\mathbf{C}([1,T] ;\mathbf{C}^{2}(\mathbf{R })))^{2}:\|(\psi _{1},\psi _{2}) \|_{\mathbf{Z}}\leq C\varepsilon ^{2}\big\} \end{equation*} with the norm \begin{equation*} \|(\psi _{1},\psi _{2})\|_{\mathbf{Z}}\equiv \|\psi _{1}\|_{\mathbf{X}_{T}^{2,1+\frac{\gamma }{3}}}+\| \psi _{2}\|_{\mathbf{X}_{T}^{1,1+\frac{\gamma }{2}}}, \end{equation*} where $\gamma \in (0,\frac{1}{2})$. \begin{lemma}\label{Lemma4.2} Suppose that $\phi \in \mathbf{C}([1,T] ; \mathbf{C}^{2}(\mathbb{R}))$ and the estimate is true \begin{equation*} \|\phi \|_{\mathbf{X}_{T}^{0,\gamma }}\leq \varepsilon , \end{equation*} where $\varepsilon >0$ is sufficiently small. Then there exists unique solutions $\psi _{1},\psi _{2}\in \mathbf{C}([1,T] ; \mathbf{C}^{2}(\mathbb{R}))$ of a system (\ref{4.3}) such that $\|(\psi _{1},\psi _{2})\|_{\mathbf{Z} }\leq C\varepsilon ^{2}$. \end{lemma} \begin{proof} We solve equations (\ref{4.3}) by the contraction mapping principle in the set $\mathbf{Z}_{\varepsilon }$. Define the transformation $\mathcal{M}(\psi _{1},\psi _{2})=(\mathcal{M}_{1},\mathcal{M}_{2})$, where \begin{equation} \begin{gathered} \mathcal{M}_{1}=\mathcal{G}_{-1,2}(\overline{\phi }+\overline{\psi _{1} },\overline{\psi _{2}})+E^{3}\mathcal{G}_{2,2}(\overline{\psi _{2}},\overline{\psi _{2}}), \\ \mathcal{M}_{2}=\mathcal{G}_{-1,-1}(\overline{\phi }+\overline{\psi _{1}},\overline{\phi }+\overline{\psi _{1}}) \end{gathered} \label{2.9} \end{equation} for $(\psi _{1},\psi _{2})\in \mathbf{Z}_{\varepsilon }$. Applying Lemma \ref{Lemma4.1}, in view of the fact that $\| \phi \|_{\mathbf{X}_{T}^{0,\gamma }}\leq \varepsilon $ and $\| (\psi _{1},\psi _{2})\|_{\mathbf{Z}}\leq C\varepsilon ^{2}$, we obtain, by (\ref{2.9}), \begin{align*} \| \mathcal{M}_{1}\|_{\mathbf{X}_{T}^{2,1+\frac{\gamma }{ 3}}} &\leq \| \mathcal{G}_{-1,2}(\overline{\phi }+\overline{\psi _{1}},\overline{\psi _{2}})-Q_{-1,2}(\overline{\phi }+\overline{ \psi _{1}})\overline{\psi _{2}}\|_{\mathbf{X}_{T}^{2,1+ \frac{\gamma }{3}}} \\ &\quad +\| E^{3}(\mathcal{G}_{2,2}(\overline{\psi _{2}}, \overline{\psi _{2}})-Q_{2,2}\overline{\psi _{2}}^{2}) \|_{\mathbf{X}_{T}^{2,1+\frac{\gamma }{3}}} \\ &\quad +\| Q_{-1,-1}(\overline{\phi }+\overline{\psi _{1}}) \overline{\psi _{2}}\|_{\mathbf{X}_{T}^{2,1+\frac{\gamma }{3} }}+\| E^{3}Q_{2,2}\overline{\psi _{2}}^{2}\|_{\mathbf{X} _{T}^{2,1+\frac{\gamma }{3}}} \\ &\leq C\| \psi _{2}\|_{\mathbf{X}_{T}^{1,1+\frac{\gamma }{ 2}}}(\| \phi \|_{\mathbf{X}_{T}^{0,\gamma }}+\| \psi _{1}\|_{\mathbf{X}_{T}^{0,\gamma }}+\| \psi _{2}\|_{\mathbf{X}_{T}^{1,1+\frac{\gamma }{2}}})\leq C\varepsilon ^{3}. \end{align*} In the same manner we have \begin{align*} \| \mathcal{M}_{2}\|_{\mathbf{X}_{T}^{1,1+\frac{\gamma }{ 2}}} &\leq \| \mathcal{G}_{-1,-1}(\overline{\phi }+\overline{ \psi _{1}},\overline{\phi }+\overline{\psi _{1}})-Q_{-1,-1}( \overline{\phi }+\overline{\psi _{1}})^{2}\|_{\mathbf{X} _{T}^{1,1+\frac{\gamma }{2}}}\\ &\quad +\| Q_{-1,-1}(\overline{\phi }+\overline{\psi _{1}}) ^{2}\|_{\mathbf{X}_{T}^{1,1+\frac{\gamma }{2}}}\\ &\leq C(\| \phi \|_{\mathbf{X}_{T}^{0,\gamma }}+\| \psi _{1}\|_{\mathbf{X}_{T}^{0,\gamma }})^{2}\leq C\varepsilon^{2}. \end{align*} Thus the mapping $\mathcal{M}(\psi _{1},\psi _{2})$ transforms the set $\mathbf{Z}_{\varepsilon }$ into itself. In the same manner we find \begin{equation*} \| \mathcal{M}(\psi _{1},\psi _{2})-\mathcal{M}( \widetilde{\psi _{1}},\widetilde{\psi _{2}})\|_{\mathbf{Z} }\leq \frac{1}{2}\| (\psi _{1},\psi _{2})-( \widetilde{\psi _{1}},\widetilde{\psi _{2}})\|_{\mathbf{Z}}. \end{equation*} Therefore $(\mathcal{M}_{1},\mathcal{M}_{2})$ is a contraction mapping in $\mathbf{Z}_{\varepsilon }\mathbf{.}$ Hence there exist a unique solution $(\psi _{1},\psi _{2})\in \mathbf{Z}_{\varepsilon }$ of a system of integral equations (\ref{4.3}). The proof is complete. \end{proof} \section{\label{S5}Estimates for derivatives} We now make a change $\phi =\mathcal{I}(v)$ in equation (\ref{2.5}) \begin{equation} \begin{gathered} \mathcal{L}\phi =t^{-1}\mathcal{P}, \\ \phi (1,\xi )=\phi _{0}(\xi ), \end{gathered} \label{5.1} \end{equation} where $\mathcal{L}=i\partial _{t}+\frac{1}{2t^{2}}\partial _{\xi }^{2}$, $E=e^{\frac{i}{2}t\xi ^{2}}$, \begin{equation*} \mathcal{P}=\overline{E}^{3}\widetilde{\mathcal{G}}_{-1,-1}(\overline{v },\overline{v})-\mathcal{H}_{-1,2}(\overline{v},v^{2}) \end{equation*} with $v=\mathcal{I}^{-1}(\phi )$ and the operator \begin{align*} \mathcal{H}_{a,b}(\phi ,\psi )&= t^{-1/2}\overline{E} ^{a+b}\int_{\mathbb{R}^{2}}h(t,\eta ,\zeta )e^{\frac{a}{2} it(\xi -\eta )^{2}}\phi (t,\xi -\eta )\\ &\quad\times \partial _{\zeta }\big(e^{\frac{b}{2}it(\xi -\zeta ) ^{2}}\psi (t,\xi -\zeta )\big)d\eta d\zeta . \end{align*} Define the norms \begin{gather*} \|\phi \|_{\mathbf{V}_{T}^{\alpha }}\equiv \sup_{1\leq t\leq T}\|B_{\alpha }\phi (t)\|_{\mathbf{L}^{\infty }}, \\ \|\phi \|_{\mathbf{W}_{T}^{\gamma }}\equiv \sup_{1\leq t\leq T}(t^{-\frac{1}{4}}\|B_{\gamma }\phi (t)\|_{ \mathbf{L}^{2}}+t^{-\frac{3}{4}}\|\partial _{\xi }\phi (t) \|_{\mathbf{L}^{2}}). \end{gather*} First we state the local existence result for equation \eqref{5.1}. Denote $\mathbf{Y}=\{\phi \in \mathbf{L}^{\infty },\phi '\in \mathbf{H}^{1,1}\}$. \begin{theorem}\label{T5.1} Assume that the initial data $\phi _{0}\in \mathbf{Y}$. Then for some time $T>1$ there exists a unique solution $\phi \in \mathbf{C}( [1,T] ;\mathbf{Y})$ of the Cauchy problem \eqref{5.1}. \end{theorem} In the next lemma we give a representation for the derivatives of the operator $\mathcal{H}_{a,b}$. \begin{lemma}\label{Lemma5.1} Let condition \eqref{3.2} be fulfilled. Then the estimate is true \begin{equation*} \|\partial _{\xi }(E^{q}\mathcal{H}_{a,b}(\phi ,\psi ))-iqbt^{\frac{3}{2}}\xi ^{2}E^{q}Q_{a,b}\phi \psi \|_{ \mathbf{W}_{T}^{\rho }}\leq C\|\phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\|\psi \|_{\mathbf{X}_{T}^{\beta ,\delta }}, \end{equation*} where \begin{equation*} \rho =\min \big(\alpha +\delta ,\beta +\lambda ,1+\alpha ,1+\beta ,\frac{1 }{2}+\alpha +\beta -\epsilon ,\lambda +\delta -\epsilon ,1+\delta -\epsilon ,1+\lambda -\epsilon \big) \end{equation*} $\alpha ,\beta ,\lambda ,\delta \in \mathbb{R}$, $\epsilon >0$ is small. Also in the case of $q\neq 0$ we assume that $\alpha ,\beta \in \mathbb{R}$, $\lambda ,\delta >0$ are such that $\rho \geq 1$. \end{lemma} \begin{proof} We note that \begin{equation*} \mathcal{H}_{a,b}(\phi ,\psi )=ib\sqrt{t}\xi \mathcal{G} _{a,b}(\phi ,\psi )+t^{-1/2}\mathcal{G}_{a,b}( \phi ,\partial _{\xi }\psi )+\mathcal{G}_{a,b}^{(1) }(\phi ,\psi ), \end{equation*} where $\mathcal{G}_{a,b}^{(1)}$ \ and $Q^{(1)}$ are defined by the kernel $h^{(1)}(t,\eta ,\zeta )= \sqrt{t}b\zeta h(t,\eta ,\zeta )$. Then we obtain by Lemma \ref{Lemma3.5} \begin{align*} &\| B_{\rho }\xi tE^{q}(\mathcal{H}_{a,b}(\phi ,\psi )-ib\sqrt{t}\xi Q_{a,b}\phi \psi )\|_{\mathbf{L}^{2}} \\ &\leq \sqrt{t}\| B_{\rho +1}(\mathcal{H}_{a,b}(\phi ,\psi )-ib\sqrt{t}\xi Q_{a,b}\phi \psi )\|_{\mathbf{L }^{2}} \\ &\leq C\sqrt{t}\| B_{2+\rho }(\mathcal{G}_{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi )\|_{\mathbf{L}^{2}} \\ &\quad +C\| B_{\rho +1}\mathcal{G}_{a,b}(\phi ,\partial _{\xi }\psi )\|_{\mathbf{L}^{2}}+C\sqrt{t}\| B_{\rho +1} \mathcal{G}_{a,b}^{(1)}(\phi ,\psi )\|_{ \mathbf{L}^{2}} \\ &\leq Ct^{1/4}\| \phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\| \psi \|_{\mathbf{X}_{T}^{\beta ,\delta }}. \end{align*} We now estimate by Lemma \ref{Lemma3.5} the derivative, \begin{align*} &\| B_{\rho }\partial _{\xi }(\mathcal{H}_{a,b}(\phi ,\psi )-ib\sqrt{t}\xi Q_{a,b}\phi \psi )\|_{\mathbf{L }^{2}} \\ &\leq C\sqrt{t}\| B_{\rho }\partial _{\xi }\xi (\mathcal{G} _{a,b}(\phi ,\psi )-Q_{a,b}\phi \psi )\|_{ \mathbf{L}^{2}} \\ &\quad +Ct^{-1/2}\| B_{\rho }\partial _{\xi }\mathcal{G} _{a,b}(\phi ,\partial _{\xi }\psi )\|_{\mathbf{L} ^{2}}+C\| B_{\sigma }\partial _{\xi }\mathcal{G}_{a,b}^{( 1)}(\phi ,\psi )\|_{\mathbf{L}^{2}} \\ &\leq Ct^{1/4}\| \phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\| \psi \|_{\mathbf{X}_{T}^{\beta ,\delta }}. \end{align*} Hence \begin{align*} &\| \partial _{\xi }\xi tE^{q}(\mathcal{H}_{a,b}(\phi ,\psi )-ib\sqrt{t}\xi Q_{a,b}\phi \psi )\|_{\mathbf{L}^{2}}\\ &\leq Ct\| \mathcal{H}_{a,b}(\phi ,\psi )-ib\sqrt{t} \xi Q_{a,b}\phi \psi \|_{\mathbf{L}^{2}} \\ &\quad+Cqt\| B_{2}(\mathcal{H}_{a,b}(\phi ,\psi )-ib \sqrt{t}\xi Q_{a,b}\phi \psi )\|_{\mathbf{L}^{2}} \\ &\quad +C\sqrt{t}\| B_{1}\partial _{\xi }(\mathcal{H}_{a,b}( \phi ,\psi )-ib\sqrt{t}\xi Q_{a,b}\phi \psi )\|_{ \mathbf{L}^{2}} \\ &\leq Ct^{\frac{3}{4}}\| \phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\| \psi \|_{\mathbf{X}_{T}^{\beta ,\delta }} \end{align*} if $\rho \geq 1$ for the case $q\neq 0$. Also by Lemma \ref{Lemma3.5} we have \begin{align*} &\| B_{\rho }E^{q}\partial _{\xi }\mathcal{H}_{a,b}(\phi ,\psi )\|_{\mathbf{L}^{2}}\\ &\leq C\| B_{\rho}\partial _{\xi }(\mathcal{H}_{a,b}(\phi ,\psi ) -ib\sqrt{t}\xi Q_{a,b}\phi \psi )\|_{\mathbf{L}^{2}} +C\sqrt{t}\| B_{\rho }\partial _{\xi }(\xi Q_{a,b}\phi \psi )\|_{\mathbf{L}^{2}}\\ &\leq Ct^{1/4}\| \phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\| \psi \| _{\mathbf{X}_{T}^{\beta ,\delta }} \end{align*} and \begin{align*} &\| \partial _{\xi }E^{q}\partial _{\xi }\mathcal{H}_{a,b}( \phi ,\psi )\|_{\mathbf{L}^{2}}\\ &\leq \| \partial _{\xi }^{2}\mathcal{H}_{a,b}(\phi ,\psi )\|_{\mathbf{L }^{2}}+Cq\sqrt{t}\| B_{1}E^{q}\partial _{\xi }\mathcal{H}_{a,b}( \phi ,\psi )\|_{\mathbf{L}^{2}}\\ &\leq Ct^{3/4}\| \phi \|_{\mathbf{X}_{T}^{\alpha ,\lambda }}\| \psi \|_{\mathbf{X}_{T}^{\beta ,\delta }} \end{align*} if $\rho \geq 1$ in the case of $q\neq 0$. The lemma is proved. \end{proof} We now substitute the inverse transformation $v=\mathcal{I}^{-1}(\phi )=\phi _{1}+\overline{E}^{3}\psi _{2}$ with $\phi _{1}=\phi +\psi _{1} $ into the operator $\mathcal{P}$ to get \begin{align*} \mathcal{P} &= \overline{E}^{3}\mathcal{H}_{2,2}(\overline{\psi _{2}} ,\phi _{1}^{2})+2E^{3}\mathcal{H}_{-1,-1}(\overline{\phi _{1}} ,\phi _{1}\psi _{2})+E^{6}\mathcal{H}_{-1,-4}(\overline{\phi _{1}},\psi _{2}^{2})\\ &\quad +\overline{E}^{3}\widetilde{\mathcal{G}}_{-1,-1}(\overline{\phi _{1}} ,\overline{\phi _{1}})+\mathcal{H}_{-1,2}(\overline{\phi _{1}} ,\phi _{1}^{2})+2\widetilde{\mathcal{G}}_{-1,2}(\overline{\phi _{1}},\overline{\psi _{2}})\\ &\quad +E^{3}\widetilde{\mathcal{G}}_{2,2}(\overline{\psi _{2}},\overline{ \psi _{2}})+2\mathcal{H}_{2,-1}(\overline{\psi _{2}},\phi _{1}\psi _{2})+E^{3}\mathcal{H}_{2,-4}(\overline{\psi _{2}} ,\psi _{2}^{2}). \end{align*} Denote $\varepsilon =\|\phi \|_{\mathbf{X}_{T}^{0,\gamma }}$. Since $\psi _{2}=\mathcal{G}_{-1,-1}(\overline{\phi }+\overline{\psi _{1}},\overline{\phi }+\overline{\psi _{1}})$ then by Lemma \ref{Lemma3.5} we have \begin{equation*} \|t\xi (\psi _{2}-Q_{-1,-1}\overline{\phi }^{2})\| _{\mathbf{W}_{T}^{1+\gamma }}\leq C\varepsilon ^{2} \end{equation*} Then by virtue of Lemma \ref{Lemma5.1} with $\rho =1$ we have \begin{align*} &\|\partial _{\xi }\overline{E}^{3}\mathcal{H}_{2,2}(\overline{ \psi _{2}},\phi _{1}^{2})+6it^{\frac{3}{2}}\xi ^{2}\overline{E} ^{3}Q_{2,2}\overline{Q_{-1,-1}}\phi ^{4}\|_{\mathbf{W}_{T}^{1}} \\ &\leq \|\partial _{\xi }(\overline{E}^{3}\mathcal{H} _{2,2}(\overline{\psi _{2}},\phi _{1}^{2}))+6it^{\frac{3 }{2}}\xi ^{2}\overline{E}^{3}Q_{2,2}\overline{\psi _{2}}\phi _{1}^{2}\|_{\mathbf{W}_{T}^{1}} \\ &\quad +C\|t^{\frac{3}{2}}\xi ^{2}\overline{E}^{3}Q_{2,2}\overline{\psi _{2} }\phi _{1}^{2}-t^{\frac{3}{2}}\xi ^{2}\overline{E}^{3}Q_{2,2}\overline{ Q_{-1,-1}}\phi ^{4}\|_{\mathbf{W}_{T}^{1}} \\ &\leq C\|\psi _{2}\|_{\mathbf{X}_{T}^{1,1+\frac{\gamma }{2} }}\|\phi _{1}^{2}\|_{\mathbf{X}_{T}^{0,\gamma }}\leq C\varepsilon ^{2}. \end{align*} In the same manner \begin{gather*} \|\partial _{\xi }E^{3}\mathcal{H}_{-1,-1}(\overline{\phi _{1}} ,\phi _{1}\psi _{2})+3it^{\frac{3}{2}}\xi ^{2}E^{3}Q_{-1,-1}^{2}\phi \overline{\phi }^{3}\|_{\mathbf{W}_{T}^{1}}\leq C\varepsilon ^{2}, \\ \|\partial _{\xi }E^{6}\mathcal{H}_{-1,-4}(\overline{\phi _{1}} ,\psi _{2}^{2})+24it^{\frac{3}{2}}\xi ^{2}E^{6}Q_{-1,-1}^{2}Q_{-1,-4} \overline{\phi }^{5}\|_{\mathbf{W}_{T}^{1}}\leq C\varepsilon ^{2}. \end{gather*} All the other terms in the derivative $\partial _{\xi }\mathcal{P}$ can be estimated in the norm $\mathbf{W}_{T}^{1}$, the worst term is $\mathcal{H} _{-1,2}(\overline{\phi _{1}},\phi _{1}^{2})$ which yields the restriction \ $\gamma <\frac{1}{2}-\epsilon $. Therefore we can represent $\partial _{\xi }\mathcal{P}$ in the form \begin{equation} \partial _{\xi }\mathcal{P}=t^{1/2}\sum_{j=1}^{3}E^{\omega _{j}}\Omega _{j}\mathcal{N}_{j}+\mathcal{R}, \label{5.2} \end{equation} where $\mathcal{N}_{1}=\phi ^{4}$, $\mathcal{N}_{2}=\phi \overline{\phi }^{3}$, $\mathcal{N}_{3}=\overline{\phi }^{5}$, $\omega _{1}=-3$, $\omega _{2}=3$, $\omega _{3}=6$, \begin{equation*} \Omega _{1}=-6it\xi ^{2}\overline{Q_{-1,-1}}Q_{2,2},\quad \Omega _{2}=-3it\xi ^{2}Q_{-1,-1}^{2},\quad \Omega _{3}=-24it\xi ^{2}Q_{-1,-1}^{2}Q_{-1,-4} \end{equation*} with the estimate of the remainder $\|\mathcal{R}\|_{\mathbf{W}_{T}^{\gamma }}\leq C\varepsilon ^{2}$ and \begin{equation*} t^{-\frac{k}{2}+l}|\partial _{\xi }^{k}\partial _{t}^{l}\Omega _{j}(t,\xi )|\leq C\langle\xi \sqrt{t} \rangle ^{-l-k} \end{equation*} for all $t\geq 1$, $\xi \in \mathbb{R}$, $j=1,2,3$, $k,l=0,1,2$. \begin{lemma}\label{Lemma5.2} Let the initial data $\phi _{0}\in \mathbf{Y}$ and $\| \phi _{0}\|_{\mathbf{Y}}\leq \varepsilon $, where $\varepsilon >0$ is sufficiently small. Assume that representation (\ref{5.2}) is valid with the estimate of the remainder \begin{equation*} \|\mathcal{R}\|_{\mathbf{W}_{T}^{\gamma }}\leq C\varepsilon ^{2}. \end{equation*} Suppose that \begin{equation} \|\phi \|_{\mathbf{V}_{T}^{0}}\leq \varepsilon . \label{5.3} \end{equation} Then the solutions $\phi \in \mathbf{C}([1,T];\mathbf{Y} )$ of \eqref{5.1} satisfy the estimate \begin{equation} \|\partial _{\xi }\phi \|_{\mathbf{W}_{T}^{\gamma }}<10\varepsilon . \label{5.4} \end{equation} \end{lemma} \begin{proof} We prove estimate (\ref{5.4}) by contradiction. By the continuity of $\phi $ we can find a maximal time $\widetilde{T}\in (1,T] $ such that \begin{equation} \|\partial _{\xi }\phi \|_{\mathbf{W}_{\widetilde{T}}^{\gamma }}\leq 10\varepsilon . \label{5.5} \end{equation} Thus we have $\|\phi \|_{\mathbf{X}_{\widetilde{T}}^{0,\gamma }}\leq 10\varepsilon $. By a direct calculation we have \begin{equation} \mathcal{L}(E^{\omega _{j}}\chi _{j})=t^{-1}E^{\omega _{j}}\big(\frac{i\omega _{j}}{2A_{j}}\chi _{j}+i\omega _{j}\xi \partial _{\xi }\chi _{j}+t\mathcal{L}\chi _{j}\big)\label{5.6} \end{equation} with $A_{j}=(1+(1+\omega _{j})it\xi ^{2})^{-1}$. This identity is useful in the case of $\omega \neq -1$. Then we get, from (\ref{5.1}) and (\ref{5.2}), \begin{equation} \begin{aligned} &\mathcal{L}\big(\phi _{\xi }+\sum_{j=1}^{3}E^{\omega _{j}}\chi_{j}\big)\\ &=t^{-1}\sum_{j=1}^{3}E^{\omega _{j}}\big(t^{1/2}\Omega _{j}\mathcal{N}_{j}+\frac{i\omega _{j}}{2A_{j}}\chi _{j}\big) +t^{-1}\sum_{j=1}^{3}E^{\omega _{j}}(i\omega _{j}\xi \partial _{\xi }\chi _{j}+t\mathcal{L}\chi _{j})+t^{-1}\mathcal{R}. \end{aligned} \label{5.7} \end{equation} To eliminate the first summand in the right-hand side of (\ref{5.7}) we choose $\chi _{j}=\frac{2i}{\omega _{j}}t^{1/2}\Omega _{j}A_{j} \mathcal{N}_{j}$ and denote $\Phi =\phi _{\xi }+\sum_{j=1}^{3}E^{\omega _{j}}\chi _{j}$. By the identities \begin{gather*} \mathcal{L}(uv)=v\mathcal{L}u+\frac{1}{t^{2}}u_{\xi }v_{\xi }+u \mathcal{L}v, \\ \mathcal{L}\overline{\phi }=-\overline{\mathcal{L}\phi }+\frac{1}{t^{2}} \overline{\phi }_{\xi \xi }, \\ \mathcal{L}\mathcal{N}_{j} =\mathcal{N}_{j\phi }\mathcal{L}\phi -\mathcal{N} _{j\overline{\phi }}\overline{\mathcal{L}\phi } +\frac{1}{2t^{2}}(\mathcal{N}_{j\phi \phi }\phi _{\xi }^{2}+2 \mathcal{N}_{j\phi \overline{\phi }}|\phi _{\xi }|^{2}+\mathcal{ N}_{j\overline{\phi }\overline{\phi }}(\overline{\phi _{\xi }}) ^{2})+\frac{1}{t^{2}}\mathcal{N}_{j\overline{\phi }}\overline{\phi _{\xi \xi }}, \end{gather*} in view of \eqref{5.1}, we obtain \begin{align*} t\mathcal{L}\chi _{j}&=\frac{2i}{\omega _{j}}\mathcal{N}_{j}t\mathcal{L} (t^{1/2}\Omega _{j}A_{j})+t^{-1/2}\partial _{\xi }(\Omega _{j}A_{j})\partial _{\xi }\mathcal{N}_{j} \\ &\quad +\frac{i}{\omega _{j}}t^{-1/2}\Omega _{j}A_{j}(\mathcal{N} _{j\phi \phi }\phi _{\xi }^{2}+2\mathcal{N}_{j\phi \overline{\phi }}| \phi _{\xi }|^{2}+\mathcal{N}_{j\overline{\phi }\overline{\phi } }(\overline{\phi _{\xi }})^{2})\\ &\quad +\frac{2i}{\omega _{j}}t^{1/2}\Omega _{j}A_{j}(\mathcal{N} _{j\phi }\mathcal{P}-\mathcal{N}_{j\overline{\phi }}\overline{\mathcal{P}} )\\ &\quad +\frac{2i}{\omega _{j}}t^{-1/2}\Omega _{j}A_{j}\mathcal{N}_{j \overline{\phi }}\Big(\overline{\Phi }_{\xi }+2it^{\frac{1}{2} }\sum_{j=1}^{3}\frac{1}{\omega _{j}}\partial _{\xi }(\overline{E} ^{\omega _{j}}\overline{\Omega _{j}}\overline{A_{j}}\overline{\mathcal{N}_{j} })\Big) \end{align*} Therefore, from (\ref{5.7}), \begin{equation} \mathcal{L}\Phi =2it^{-3/2}\sum_{j=1}^{3}\frac{1}{\omega _{j}} E^{\omega _{j}}\Omega _{j}A_{j}\mathcal{N}_{j\overline{\phi }}\overline{\Phi _{\xi }}+t^{-1}\mathcal{R}_{1}, \label{5.8} \end{equation} where in view of \eqref{5.1} we have \begin{align*} \mathcal{R}_{1}&=\mathcal{R}-2\sum_{j=1}^{3}E^{\omega _{j}} \big(\xi \partial _{\xi }(\Omega _{j}A_{j}\mathcal{N}_{j})-\frac{i}{ \omega _{j}}\mathcal{N}_{j}t\mathcal{L}(t^{1/2}\Omega _{j}A_{j})\big)\\ &\quad +\sum_{j=1}^{3}E^{\omega _{j}}t^{-1/2}\partial _{\xi }( \Omega _{j}A_{j})\partial _{\xi }\mathcal{N}_{j} \\ &\quad +\sum_{j=1}^{3}E^{\omega _{j}}\frac{i}{\omega _{j}}t^{-1/2}\Omega _{j}A_{j}(\mathcal{N}_{j\phi \phi }\phi _{\xi }^{2}+2\mathcal{N} _{j\phi \overline{\phi }}|\phi _{\xi }|^{2}+\mathcal{N}_{j \overline{\phi }\overline{\phi }}\overline{\phi _{\xi }}^{2})\\ &\quad +\sum_{j=1}^{3}E^{\omega _{j}}\frac{2i}{\omega _{j}}t^{1/2}\Omega _{j}A_{j}\mathcal{N}_{j}(\mathcal{N}_{j\phi }\mathcal{P}-\mathcal{N}_{j \overline{\phi }}\overline{\mathcal{P}})\\ &\quad -\sum_{j,l=1}^{3}E^{\omega _{j}}\frac{4}{\omega _{j}\omega _{l}}\Omega _{j}A_{j}\mathcal{N}_{j\overline{\phi }}\partial _{\xi }(\overline{E} ^{\omega _{l}}\overline{\Omega _{l}}\overline{A_{l}}\overline{\mathcal{N}_{l} }). \end{align*} Since \begin{equation*} |\Omega _{j}A_{j}|+|\xi \partial _{\xi }(\Omega _{j}A_{j})|+|t\mathcal{L}(\Omega _{j}A_{j}) |\leq CB_{-2},t^{-1/2}|\partial _{\xi }(\Omega _{j}A_{j})|\leq CB_{-3}, \end{equation*} it follows that $\mathcal{R}_{1}$ satisfies \begin{equation*} \|\mathcal{R}_{1}\|_{\mathbf{W}_{\widetilde{T}}^{\gamma }}\leq C\varepsilon ^{2}. \end{equation*} We multiply (\ref{5.8}) by $(M+t\xi ^{2})^{\gamma /2}$ and use the commutator \[ \mathcal{L}((M+t\xi ^{2})^{\gamma /2}\Phi ) = (M+t\xi ^{2})^{\gamma /2}\mathcal{L}\Phi +\Phi \mathcal{L}(M+t\xi ^{2})^{\gamma /2} +2\gamma t^{-1}\xi (M+t\xi ^{2})^{\frac{\gamma }{2} -1}\partial _{\xi }\Phi \] then we get $\mathcal{L}((M+t\xi ^{2})^{\gamma /2}\Phi )=\mathcal{R}_{2}$, where \begin{align*} \mathcal{R}_{2} &= \Phi \mathcal{L}(M+t\xi ^{2})^{\gamma /2}+2\gamma t^{-1}\xi (M+t\xi ^{2})^{\frac{\gamma }{2}-1}\Phi _{\xi } \\ &\quad +2it^{-3/2}\sum_{j=1}^{3}\frac{1}{\omega _{j}}E^{\omega _{j}}B_{\gamma }\Omega _{j}A_{j}\mathcal{N}_{j\overline{\phi }}\overline{ \Phi _{\xi }}+t^{-1}(M+t\xi ^{2})^{\gamma /2}\mathcal{R} _{1}. \end{align*} Since \begin{equation*} |\mathcal{L}(M+t\xi ^{2})^{\gamma /2}|\leq \frac{\gamma }{2t}\big(1+\frac{1}{M}\big)(M+t\xi ^{2})^{\gamma /2}, \end{equation*} by (\ref{5.5}) choosing $M$ sufficiently large we have \begin{equation*} \|\mathcal{R}_{2}\|_{\mathbf{L}^{2}}\leq \frac{\gamma }{2t} \|(M+t\xi ^{2})^{\gamma /2}\Phi \|_{ \mathbf{L}^{2}}+C\varepsilon ^{\frac{5}{4}}t^{-\frac{3}{4}}. \end{equation*} Then we apply the energy method to estimate the $\mathbf{L}^{2}$-norm of $B_{\gamma }\Phi $, \begin{equation*} \frac{d}{dt}\|(M+t\xi ^{2})^{\gamma /2}\Phi \|_{\mathbf{L}^{2}}\leq \frac{\gamma }{2t}\|(M+t\xi ^{2})^{\gamma /2}\Phi \|_{\mathbf{L}^{2}}+C\varepsilon ^{\frac{5}{4}}t^{-\frac{3}{4}}. \end{equation*} Hence integration with respect to time yields \begin{equation*} \|(M+t\xi ^{2})^{\gamma /2}\Phi \|_{ \mathbf{L}^{2}}\leq \varepsilon +C\varepsilon ^{\frac{5}{4}}t^{1/4} \end{equation*} for all $t\in [1,\widetilde{T}] $ if $0<\gamma <\frac{1}{2}$. Therefore, $\|B_{\gamma }\phi _{\xi }\|_{\mathbf{L}^{2}}\leq \varepsilon +C\varepsilon ^{\frac{5}{4}}t^{1/4}$ for all $t\in [ 1,\widetilde{T}] $. We now differentiate (\ref{5.8}) with respect to $\xi $ to get \begin{equation} \mathcal{L}\Phi _{\xi }=2it^{-3/2}\sum_{j=1}^{3}\frac{1}{\omega _{j}} E^{\omega _{j}}\Omega _{j}A_{j}\mathcal{N}_{j\overline{\phi }}\overline{\Phi _{\xi \xi }}+\mathcal{R}_{3}, \label{5.9} \end{equation} where \begin{equation*} \mathcal{R}_{3}=2it^{-3/2}\sum_{j=1}^{3}\frac{1}{\omega _{j}} \overline{\Phi _{\xi }}\partial _{\xi }(E^{\omega _{j}}\Omega _{j}A_{j} \mathcal{N}_{j\overline{\phi }})+t^{-1}\partial _{\xi }\mathcal{R} _{1}. \end{equation*} By (\ref{5.5}) we see that $\| \mathcal{R}_{3}\|_{\mathbf{ L}^{2}}\leq C\varepsilon ^{2}t^{-\frac{1}{4}}$. Then to estimate the $\mathbf{L}^{2}$-norm of $\Phi _{\xi }$ we apply the energy method to (\ref{5.9}) \begin{equation*} \frac{d}{dt}\| \Phi _{\xi }\|_{\mathbf{L}^{2}}^{2}\leq Ct^{-3/2}\sum_{j=1}^{3}|\int_{\mathbb{R}}\Omega _{j}A_{j}E^{\omega _{j}}\mathcal{N}_{j\overline{\phi }}\overline{\Phi _{\xi \xi }}\overline{\Phi _{\xi }}d\xi |+C\varepsilon ^{3}t^{\frac{1}{2 }}. \end{equation*} Hence integrating by parts with respect to $\xi $ we avoid the derivative loss and obtain $\| \Phi _{\xi }\|_{\mathbf{L}^{2}}\leq \varepsilon +C\varepsilon ^{\frac{3}{2}}t^{\frac{3}{4}}$ for all $t\in [ 1,\widetilde{T}]$. Therefore \begin{equation*} \| \partial _{\xi }^{2}\phi \|_{\mathbf{L} ^{2}}<\varepsilon +C\varepsilon ^{\frac{3}{2}}t^{\frac{3}{4}} \end{equation*} for all $t\in [1,\widetilde{T}]$. Thus we have $\| \partial _{\xi }\phi \|_{\mathbf{W}_{T}^{\gamma }}<10\varepsilon $. The contradiction proves estimate (\ref{5.4}). Lemma \ref{Lemma5.2} is proved. \end{proof} \section{\label{S6}Estimates in the uniform norm} We now estimate $\phi $ in the norm $\| \phi \|_{\mathbf{V} _{T}^{0}}=\sup_{1\leq t\leq T}\| \phi (t)\|_{ \mathbf{L}^{\infty }}$. \begin{lemma}\label{Lemma6.1} Let the initial data $\phi _{0}\in \mathbf{Y}$ and $\| \phi _{0}\|_{\mathbf{Y}}\leq \varepsilon $, where $\varepsilon >0$ is sufficiently small. Suppose that \begin{equation} \|\partial _{\xi }\phi \|_{\mathbf{W}_{T}^{\gamma }}<10\varepsilon . \label{6.2} \end{equation} Then the solutions $\phi \in \mathbf{C}([1,T];\mathbf{Y})$ of \eqref{5.1} satisfy the estimate \begin{equation} \|\phi \|_{\mathbf{V}_{T}^{0}}<10\varepsilon . \label{6.3} \end{equation} \end{lemma} \begin{proof} We prove estimate (\ref{6.3}) by the contradiction. By the continuity of $\phi $ we can find a maximal time $\widetilde{T}\in (1,T]$ such that \begin{equation} \|\phi \|_{\mathbf{V}_{\widetilde{T}}^{0}}\leq 10\varepsilon . \label{6.4} \end{equation} Now (\ref{6.4}) along with (\ref{6.2}) imply that \begin{equation} \|\phi \|_{\mathbf{X}_{\widetilde{T}}^{0,\gamma }}\leq C\varepsilon . \label{6.5} \end{equation} Denote $w(t)=\mathcal{V}(-t)\phi (t)$, where \begin{equation*} \mathcal{V}(-t)=\mathcal{F}\overline{M}\mathcal{F}^{-1}=\sqrt{t} \int_{\mathbb{R}}d\eta e^{-\frac{it}{2}(\xi -\eta )^{2}}. \end{equation*} Applying operator $\mathcal{V}(-t)$ to equation \eqref{5.1}, we have \begin{equation} \begin{gathered} iw_{t}=t^{-1}\mathcal{V}(-t)\mathcal{P}, \\ w(1)=\mathcal{V}(-1)\phi _{0}, \end{gathered} \label{6.6} \end{equation} where $\mathcal{P}=\overline{E}^{3}\widetilde{\mathcal{G}}_{-1,-1}(\overline{v },\overline{v})-\mathcal{H}_{-1,2}(\overline{v},v^{2})$, and $E=e^{\frac{i}{2}t\xi ^{2}}$. Note that $\mathcal{P}$ has the form \begin{equation*} \mathcal{P}=\overline{E}\partial _{\xi }(\mathbb{G}_{0}( \overline{v},\overline{v})+\mathbb{G}_{1}(\overline{v} ,v^{2})), \end{equation*} where \begin{gather*} \mathbb{G}_{0}(\overline{v},\overline{v}) = \int_{\mathbb{R}^{2}}\widetilde{h}_{1}(t,\eta ,\zeta ) e^{-\frac{1}{2}it(\xi -\eta )^{2}}\overline{v}(\xi -\eta ) e^{-\frac{1}{2}it(\xi -\zeta )^{2}}\overline{v}(\xi -\zeta )d\eta d\zeta \\ \mathbb{G}_{1}(\overline{v},v^{2})= \int_{\mathbb{R} ^{2}}h_{1}(t,\eta ,\zeta )e^{-\frac{1}{2}it(\xi -\eta )^{2}}\overline{v}(\xi -\eta )e^{it(\xi -\zeta )^{2}}v^{2}(\xi -\zeta )d\eta d\zeta \end{gather*} with kernels \begin{gather*} \widetilde{h}_{1}(t,\eta ,\zeta )= -\frac{\sqrt{t}}{\pi \sqrt{3 }}(2+t\partial _{t})t\partial _{t}K_{0}\big(\sqrt{\frac{4t}{3i }(\eta ^{2}-\eta \zeta +\zeta ^{2})}\big), \\ h_{1}(t,\eta ,\zeta )= \frac{\sqrt{t}}{\pi \sqrt{3}}( 1+t\partial _{t})\partial _{\zeta }K_{0}\big(\sqrt{\frac{4t}{3i} (\eta ^{2}-\eta \zeta +\zeta ^{2})}\big). \end{gather*} Then by the identities \begin{align*} \mathcal{V}(-t)\overline{E}\partial _{\xi } &= \mathcal{F}\overline{M}\mathcal{F}^{-1}(\partial _{\xi }+it\xi ) \overline{E}\\ &= \mathcal{F}\overline{M}(-ix+t\partial _{x})\mathcal{F}^{-1} \overline{E}\\ &= t\mathcal{F}\partial _{x}\overline{M}\mathcal{F}^{-1}\overline{E}=it\xi \mathcal{V}(t)\overline{E}, \end{align*} we find \begin{equation*} \mathcal{V}(-t)\mathcal{P}=it\xi \mathcal{V}(-t) \overline{E}(\mathbb{G}_{0}(\overline{v},\overline{v})+ \mathbb{G}_{1}(\overline{v},v^{2})). \end{equation*} Integration by parts yields \begin{align*} &|(B_{\gamma }\mathcal{V}(-t)-\mathcal{V}( -t)B_{\gamma })\phi |\\ &= \sqrt{t}\big|\int_{\mathbb{R}}e^{-\frac{it}{2}(\xi -\eta ) ^{2}}(\langle\xi \sqrt{t}\rangle ^{\gamma }-\langle \eta \sqrt{t}\rangle ^{\gamma })\phi (\eta )d\eta \big|\\ &= t^{-1/2}\big|\int_{\mathbb{R}}e^{-\frac{it}{2}(\xi -\eta )^{2}}(\xi -\eta )\partial _{\eta }(\frac{ \langle\xi \sqrt{t}\rangle ^{\gamma }-\langle\eta \sqrt{t} \rangle ^{\gamma }}{1+it(\xi -\eta )^{2}}\phi (\eta ))d\eta \big|\\ &\leq C\|\phi \|_{\mathbf{L}^{\infty }}+Ct^{-1/4} \|\partial _{\xi }\phi \|_{\mathbf{L}^{2}}\\ &\leq C\|\phi \|_{\mathbf{X}_{\widetilde{T}}^{0,\gamma }}. \end{align*} Hence \begin{align*} \|B_{\gamma }(w-\phi )\|_{\mathbf{L}^{\infty }} &\leq \|(B_{\gamma }\mathcal{V}(-t)-\mathcal{V} (-t)B_{\gamma })\phi \|_{\mathbf{L}^{\infty }}+\|(\mathcal{V}(-t)-1)B_{\gamma }\phi \|_{\mathbf{L}^{\infty }} \\ &\leq C\|\phi \|_{\mathbf{X}_{\widetilde{T}}^{0,\gamma }}+Ct^{- \frac{1}{4}}\|\partial _{\xi }B_{\gamma }\phi \|_{\mathbf{L} ^{2}}\leq C\|\phi \|_{\mathbf{X}_{\widetilde{T}}^{0,\gamma }}. \end{align*} Thus by the estimates of Section \ref{S4} we see that \begin{equation*} v=\phi +O(\varepsilon B_{-1})=w+O(\varepsilon B_{-\gamma}). \end{equation*} Then by Lemma \ref{Lemma3.5} we get the representation for the operator $\mathcal{P}$, \begin{align*} t^{-1}\mathcal{V}(-t)\mathcal{P} &= i\xi \mathcal{V}( -t)\overline{E}(\mathbb{G}_{0}(\overline{v},\overline{v} )+\mathbb{G}_{1}(\overline{v},v^{2}))\\ &= -it^{-1/2}\xi \widetilde{Q}|w|^{2}w+O( \varepsilon ^{2}t^{-1/2}\xi B_{-1-\gamma }), \end{align*} where \begin{align*} \widetilde{Q} &= \int_{\mathbb{R}^{2}}e^{it\xi (\eta -2\zeta ) }h_{1}(t,\eta ,\zeta )d\eta d\zeta \\ &= \frac{\sqrt{t}}{\pi \sqrt{3}}\int_{\mathbb{R}^{2}}e^{it\xi (\eta -2\zeta )}\frac{\zeta -\frac{\eta }{2}}{\eta ^{2}-\eta \zeta +\zeta ^{2}}e^{-\langle\eta \sqrt{t}\rangle }d\eta d\zeta +O( \langle\xi \sqrt{t}\rangle ^{-2})\\ &= \frac{2i}{\sqrt{3}(1+\xi \sqrt{3t})}+O(\langle \xi \sqrt{t}\rangle ^{-2}). \end{align*} Thus we can write (\ref{6.6}) in the form \begin{equation} w_{t}=i\Theta |w|^{2}w+O(\varepsilon ^{2}t^{-\frac{1}{2} }\xi B_{-1-\gamma }). \label{6.7} \end{equation} where \begin{equation*} \Theta (t,\xi )=-\frac{2\xi }{\sqrt{3t}(1+\xi \sqrt{3t} )}. \end{equation*} The first term in the right-hand side of (\ref{6.6}) is divergent, so we eliminate it by the change $w(t,\xi )=\varphi (t,\xi )\mathcal{E}_{w}$, where \begin{equation*} \mathcal{E}_{w}=\exp \Big(i\int_{1}^{t}\Theta (\tau ,\xi ) |w(\tau ,\xi )|^{2}d\tau \Big). \end{equation*} Then we get from (\ref{6.7}) \begin{equation} \varphi _{t}=O(\varepsilon ^{2}t^{-1/2}\xi B_{-1-\gamma}). \label{6.8} \end{equation} Integrating in time \begin{align*} |\varphi |&\leq \varepsilon +C\varepsilon ^{2}\int_{1}^{t} \frac{|\xi |d\tau }{\sqrt{\tau }(1+|\xi | \sqrt{\tau })^{1+\gamma }} \\ &\leq \varepsilon +C\varepsilon ^{2}\int_{|\xi |}^{|\xi |\sqrt{t}}\frac{dz}{(1+z)^{1+\gamma }}\leq \varepsilon +C\varepsilon ^{2}. \end{align*} Hence $\|\phi \|_{\mathbf{V}_{\widetilde{T}}^{0}}<10\varepsilon $. This contradiction proves (\ref{6.3})and completes the proof. \end{proof} \section{\label{S7}Proof of Theorem \protect\ref{T1.1}} By Lemma \ref{Lemma5.2} we see that the a priori estimate of $\| \phi \|_{\mathbf{V}_{T}^{0}}$ implies the a priori estimate of $\| \partial _{\xi }\phi \|_{\mathbf{W}_{T}^{\gamma }}$. Vice versa by Lemma \ref{Lemma6.1} the a priori estimate of $\| \partial _{\xi }\phi \|_{\mathbf{W}_{T}^{\gamma }}$ yields the a priori estimate of $\| \phi \|_{\mathbf{V}_{T}^{0}}$. Therefore the global existence of solution $v=\mathcal{I}^{-1}(\phi )\in \mathbf{C}([1,\infty );\mathbf{Y})$ of the Cauchy problem (\ref{2.5}) satisfying a priori estimate \begin{equation*} \| \phi \|_{\mathbf{X}_{\infty }^{0,\gamma }}\leq C\varepsilon \end{equation*} follows by a standard continuation argument from Lemma \ref{Lemma5.2}, Lemma \ref{Lemma6.1} and the local existence Theorem \ref{T5.1}. This yields the solution of the Cauchy problem \eqref{1.1}. Theorem \ref{T1.1} is proved. \section{\label{S8}Proof of Theorem \protect\ref{T1.2}} Existence of a self-similar solution of (\ref{2.1}) of the form $\frac{1}{\sqrt{t}}MS(\frac{x}{\sqrt{t}})$ follows from Appendix \ref{S10} since \begin{equation*} u(t)=\mathcal{U}(t)\mathcal{F}^{-1}w( t)=\mathcal{D}_{t}E(t)v(t),w(t) =\mathcal{V}(-t)v(t) \end{equation*} and $w(t)$ has the form $w(t,\xi )=MS(\xi \sqrt{t})$. We now prove the stability of solutions in the neighborhood of a self-similar solution of the equation (\ref{2.1}). We consider the difference $r(t,\xi )=\phi _{1}(t,\xi )-\phi _{2}(t,\xi )$ and may assume that $\mathcal{V} (-t)(\phi _{1}(t)-\phi _{2}(t) )=0$ at $\xi =0$. Define the norm \begin{equation*} \| r\|_{\mathbf{W}_{T}^{\mu ,\nu }} =\sup_{1\leq t\leq T}t^{\frac{\mu }{2}} \Big(t^{-\frac{1}{4}}\| B_{\nu }r(t) \|_{\mathbf{L}^{2}}+t^{-\frac{3}{4}}\| \partial _{\xi }r(t)\|_{\mathbf{L}^{2}}\Big). \end{equation*} \begin{lemma}\label{Lemma5.2a} Let the initial data $\phi _{j}\in \mathbf{Y}$ and $\| \phi _{j}\|_{\mathbf{Y}}\leq \varepsilon $, where $\varepsilon >0$ is sufficiently small. Suppose that $\mathcal{V}(-t)(\phi_{1}(t)-\phi _{2}(t))=0$ at $\xi =0$. Assume that representation (\ref{5.2}) is valid. Suppose that \begin{equation*} \|\phi _{j}\|_{\mathbf{X}_{T}^{0,\gamma }}\leq \varepsilon . \end{equation*} Then the solutions $\phi _{j}\in \mathbf{C}([1,T];\mathbf{ Y})$ of \eqref{5.1} satisfy the estimate \begin{equation*} \|\partial _{\xi }(\phi _{1}-\phi _{2})\|_{\mathbf{W}_{T}^{\mu ,\nu }} t_{1}>1$. Therefore the limits exist \begin{equation*} F(\xi )=\lim_{t\to \infty }f(t,\xi )\text{, }\Phi (\xi )=\lim_{t\to \infty }\varphi (t,\xi )\text{ and } G(\xi )=\lim_{t\to \infty }g(t,\xi ) \end{equation*} with the estimates $|F(\xi )|+| \Phi (\xi )|+|G(\xi )|\leq C\varepsilon $. Then using the estimates \begin{gather*} |f(t,\xi )-F(\xi )|\leq \varepsilon ^{2}t^{-\mu/2},\quad |\varphi (t,\xi )-\Phi (\xi )|\leq \frac{C\varepsilon ^{2}}{\langle\xi \sqrt{t}\rangle ^{\gamma }}, \\ |g(t,\xi )-G(\xi )|\leq \frac{C\varepsilon ^{2}}{\langle\xi \sqrt{t}\rangle ^{\gamma }},\quad |1-\mathcal{E}_{g}\overline{\mathcal{E}_{\varphi }}|\leq C\varepsilon ^{2}t^{-\mu/2}\langle\xi \sqrt{t}\rangle ^{\gamma }, \end{gather*} we obtain \begin{align*} \phi &= S+\mathcal{E}_{\varphi }(f+(1-\mathcal{E}_{g}\overline{ \mathcal{E}_{\varphi }})g)+(1-\overline{\mathcal{V}} )r \\ &= S+\mathcal{E}_{\varphi }(F+(1-\mathcal{E}_{g}\overline{ \mathcal{E}_{\varphi }})G)+O(\varepsilon ^{2}t^{-\frac{ \mu }{2}}). \end{align*} Note that \begin{equation*} |\varphi (t,\xi )|^{2}=|\Phi (\xi )|^{2}+O(\varepsilon ^{2}\langle\xi \sqrt{t} \rangle ^{-\gamma }). \end{equation*} We now denote \begin{gather*} \Psi _{1}(t)=-i\int_{1}^{t}(|\varphi (\tau ,\xi ) |^{2}-|\varphi (t,\xi )|^{2})\Theta d\tau, \\ \Psi _{2}(t)=-i\int_{1}^{t}(|g(\tau ,\xi )| ^{2}-|\varphi (\tau ,\xi )|^{2}-|g( t,\xi )|^{2}+|\varphi (t,\xi )| ^{2})\Theta d\tau . \end{gather*} We then get \[ \Psi _{1}(t)-\Psi _{1}(t_{1}) = -i\int_{t_{1}}^{t}(|\varphi (\tau ,\xi )|^{2}-|\varphi (t,\xi )|^{2})\Theta d\tau +i(|\varphi (t,\xi )|^{2}-|\varphi (t_{1},\xi )|^{2})\int_{1}^{t_{1}}\Theta d\tau \] and \begin{align*} \Psi _{2}(t)-\Psi _{2}(t_{1}) &= -i\int_{t_{1}}^{t}(|g(\tau ,\xi )| ^{2}-|\varphi (\tau ,\xi )|^{2}-|g( t,\xi )|^{2}+|\varphi (t,\xi )| ^{2})\Theta d\tau \\ &\quad +i(|g(t,\xi )|^{2}-|\varphi ( t,\xi )|^{2}-|g(t_{1},\xi )| ^{2}+|\varphi (t_{1},\xi )|^{2}) \int_{1}^{t_{1}}\Theta d\tau \end{align*} for all $10$ is sufficiently small and $\gamma \in (0,1)$. Then there exist unique solutions $\psi _{1},\psi _{2}\in \mathbf{C}^{1}(\mathbb{R})$ of a system of integral equations (\ref{c4}) such that \begin{equation} \|\psi _{1}\|_{\mathbf{Z}}+\|\psi _{2}\|_{\mathbf{Z }}\leq C\varepsilon ^{2}. \label{r} \end{equation} \end{lemma} \begin{proof} We solve equations (\ref{c4}) by the contraction mapping principle in the set \begin{equation*} \mathbf{Z}_{\varepsilon } = \big\{(\psi _{1},\psi _{2}) \in (\mathbf{C}^{1}(\mathbb{R}))^{2}:\| \psi _{1}\|_{\mathbf{Z}}+\| \psi _{2}\|_{\mathbf{ Z}}\leq C\varepsilon ^{2}\big\}. \end{equation*} Define the transformation \begin{gather*} \begin{aligned} \mathcal{M}_{1}(\psi _{1},\psi _{2})(\xi ) &=2\int_{\mathbb{R}}e^{\frac{1}{4}i\eta ^{2}}K_{2}(\xi ,\eta )\overline{ \psi _{2}(\eta -2\xi )}\overline{\psi _{3}(\xi -\eta )}d\eta \\ &\quad +e^{-\frac{3}{8}i\xi ^{2}}\int_{\mathbb{R}}e^{-\frac{1}{2}i\eta ^{2}}K_{1}(\xi ,\eta )\overline{\psi _{2}(\eta -\frac{\xi }{2})}\overline{\psi _{2}(-\eta -\frac{\xi }{2})}d\eta \end{aligned}, \\ \mathcal{M}_{2}(\psi _{1},\psi _{2})(\xi )=\int_{ \mathbb{R}}e^{i\eta ^{2}}K_{1}(\xi ,\eta )\overline{\psi _{3}(\eta -\frac{\xi }{2})}\overline{\psi _{3}(-\eta - \frac{\xi }{2})}d\eta \end{gather*} for $(\psi _{1},\psi _{2})\in \mathbf{Z}_{\varepsilon }$. Via ( \ref{s1}) and by the fact that $\| \psi _{1}\|_{\mathbf{Z} }+\| \psi _{2}\|_{\mathbf{Z}}\leq C\varepsilon ^{2}$ we obtain the estimate \begin{align*} &|\mathcal{M}_{1}(\psi _{1},\psi _{2})(\xi)|\\ &\leq C\varepsilon ^{3}\int_{\mathbb{R}}(1+|\xi |+|\eta |) ^{-1}\big(\langle\eta -2\xi \rangle ^{\gamma -1} +\langle\eta -\frac{\xi }{2}\rangle ^{\gamma -1}\langle\eta +\frac{\xi }{2}\rangle ^{\gamma -1}\big)d\eta\\ &\leq C\varepsilon ^{3}\langle\xi \rangle ^{\gamma -1}. \end{align*} Integrating by parts with respect to $\eta $ via the identity $e^{i\eta ^{2}}=A\partial _{\eta }(\eta e^{i\eta ^{2}})$ with $A=( 1+2i\eta ^{2})^{-1}$ we get \begin{align*} |\mathcal{M}_{2}(\psi _{1},\psi _{2})(\xi)| &=\big|\int_{\mathbb{R}}e^{i\eta ^{2}}\overline{ \psi _{3}(\eta -\frac{\xi }{2})}\overline{\psi _{3}(-\eta -\frac{\xi }{2})}\eta \partial _{\eta }(AK_{1})d\eta\\ &\quad +2\int_{\mathbb{R}}e^{i\eta ^{2}}\eta AK_{1}\overline{\psi _{3}(\eta -\frac{\xi }{2})}\overline{\psi _{3}'( -\eta -\frac{\xi }{2})}d\eta \big|\\ &\leq C\varepsilon ^{2}\int_{\mathbb{R}}\Big(\langle\xi \rangle ^{-1}\langle\eta \rangle ^{-2}+(1+| \xi |+|\eta |)^{-2}\langle\eta \rangle ^{-1}\\ &\quad +(1+|\xi |+|\eta | )^{-1}\langle\eta \rangle ^{-1}\langle2\eta +\xi \rangle ^{2\gamma -1}\Big)d\eta\\ &\leq C\varepsilon ^{2}\langle \xi \rangle ^{-1}. \end{align*} We now estimate the derivatives \begin{align*} &\frac{d}{d\xi }\mathcal{M}_{1}(\psi _{1},\psi _{2})(\xi)\\ &=2\int_{\mathbb{R}}e^{\frac{1}{4}i\eta ^{2}}\overline{\psi _{2}(\eta -2\xi )}\overline{\psi _{3}(\xi -\eta )} \partial _{\xi }K_{2}d\eta \\ &\quad +2\int_{\mathbb{R}}e^{\frac{1}{4}i\eta ^{2}}(\overline{\psi _{2}(\eta -2\xi )}\overline{\psi _{3}'(\xi -\eta )}-2\overline{\psi _{2}'(\eta -2\xi )}\overline{ \psi _{3}(\xi -\eta )})K_{2}d\eta \\ &\quad -e^{-\frac{3}{8}i\xi ^{2}}\int_{\mathbb{R}}e^{-\frac{1}{2}i\eta ^{2}}K_{1} \overline{\psi _{2}'(\eta -\frac{\xi }{2})}\overline{ \psi _{2}(-\eta -\frac{\xi }{2})}d\eta \\ &\quad +e^{-\frac{3}{8}i\xi ^{2}}\int_{\mathbb{R}}e^{-\frac{1}{2}i\eta ^{2}} \overline{\psi _{2}(\eta -\frac{\xi }{2})}\overline{\psi _{2}(-\eta -\frac{\xi }{2})}(\partial _{\xi }K_{1} -\frac{3}{4}i\xi K_{1})d\eta . \end{align*} and \begin{align*} \frac{d}{d\xi }\mathcal{M}_{2}(\psi _{1},\psi _{2})(\xi) &=-\int_{\mathbb{R}}e^{i\eta ^{2}}K_{1}\overline{\psi _{3}'(\eta -\frac{\xi }{2})}\overline{\psi _{3}(-\eta -\frac{ \xi }{2})}d\eta \\ &\quad +\int_{\mathbb{R}}e^{i\eta ^{2}}\overline{\psi _{3}(\eta -\frac{\xi }{2})}\overline{\psi _{3}(-\eta -\frac{\xi }{2})} \partial _{\xi }K_{1}d\eta . \end{align*} Then we find the estimates \begin{align*} |\frac{d}{d\xi }\mathcal{M}_{1}(\psi _{1},\psi _{2}) (\xi )| &\leq C\varepsilon ^{3}\int_{\mathbb{R}}(\langle\eta -2\xi \rangle ^{2\gamma -1}+\langle\xi -\eta \rangle ^{2\gamma -1})(1+|\xi |+|\eta | )^{-1}d\eta \\ &\quad +C\varepsilon ^{4}\int_{\mathbb{R}}\langle\eta -\frac{\xi }{2} \rangle ^{\gamma -1}\langle\eta +\frac{\xi }{2}\rangle ^{\gamma -1}d\eta \leq C\varepsilon ^{3}\langle\xi \rangle ^{2\gamma -1} \end{align*} and \begin{align*} |\frac{d}{d\xi }\mathcal{M}_{2}(\psi _{1},\psi _{2})(\xi )| &\leq C\varepsilon ^{2}\int_{\mathbb{R}}( 1+|\xi |+|\eta |) ^{-1}\langle\eta -\frac{\xi }{2}\rangle ^{2\gamma -1}d\eta \\ &\quad +C\varepsilon ^{2}\int_{\mathbb{R}}(1+|\xi | +|\eta |)^{-2}d\eta \leq C\varepsilon ^{2}\langle\xi \rangle ^{2\gamma -1}. \end{align*} Thus the mapping $(\mathcal{M}_{1},\mathcal{M}_{2})$ transforms the set $\mathbf{Z}$ into itself. In the same manner we find \begin{equation*} \| \mathcal{M}_{j}(\psi _{1},\psi _{2})-\mathcal{M} _{j}(\widetilde{\psi _{1}},\widetilde{\psi _{2}})\|_{ \mathbf{Z}}\leq \frac{1}{2}\| \psi _{1}-\widetilde{\psi _{1}} \|_{\mathbf{Z}}+\frac{1}{2}\| \psi _{2}-\widetilde{\psi _{2}}\|_{\mathbf{Z}}. \end{equation*} Therefore, $(\mathcal{M}_{1},\mathcal{M}_{2})$ is a contraction mapping in $\mathbf{Z.}$ Hence there exist unique solutions $\psi _{1},\psi _{2}\in \mathbf{Z}$ of a system of integral equations (\ref{c4}), which satisfy estimate (\ref{r}). Lemma \ref{Lemma A1} is proved. \end{proof} We now evaluate the asymptotic form of the integral \begin{equation*} \mathcal{I}\equiv \int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi ) ^{2}}A(\xi ,\eta )\phi _{1}(\eta -\xi )\Phi d\eta , \end{equation*} where \begin{equation*} \Phi =\int_{\mathbb{R}}e^{\beta iy^{2}}\phi _{2}(a_{1}\eta -b_{1}y)\phi _{3}(a_{2}\eta -b_{2}y)dy, \end{equation*} with $\alpha ,\beta ,\mu ,a_{1},a_{2},b_{1},b_{2}\in \mathbf{R\backslash } \{0\}$. Also we assume that $a_{1}b_{2}-a_{2}b_{1}\neq 0$. \begin{lemma}\label{Lemma A2} Suppose that \begin{gather*} \|\phi _{j}\|_{\mathbf{Y}}\equiv \sup_{\xi \in \mathbb{R} }(|\phi _{j}(\xi )|+\langle\xi \rangle ^{1-2\gamma }|\phi _{j}'(\xi )|)\leq C, \\ |A(\xi ,\eta )|\leq C(1+|\xi | +|\eta |)^{-1}, \\ |\partial _{\eta }A(\xi ,\eta )|\leq C( 1+|\xi |+|\eta |)^{-2}. \end{gather*} Then the asymptotic form is true \begin{equation} \mathcal{I}=\frac{i\pi }{\sqrt{\alpha \beta }}A(\xi ,\mu \xi ) \phi _{1}((\mu -1)\xi )\phi _{2}(a_{1}\mu \xi )\phi _{3}(a_{2}\mu \xi )+O(\langle\xi \rangle ^{\gamma -2}). \label{AA} \end{equation} \end{lemma} \begin{proof} We first integrate by parts with respect to $y$ via identity $e^{\beta iy^{2}}=B\partial _{y}(ye^{\beta iy^{2}})$ with $B=( 1+2i\beta y^{2})^{-1}$ we get $\Phi =\Phi _{1}+\Phi _{2}+\Phi _{3}$, where \begin{gather*} \Phi _{1} = 2\int_{\mathbb{R}}e^{\beta iy^{2}}\phi _{2}(a_{1}\eta -b_{1}y)\phi _{3}(a_{2}\eta -b_{2}y)B(B-1) dy, \\ \Phi _{2} = b_{1}\int_{\mathbb{R}}e^{\beta iy^{2}}\phi _{2}'( a_{1}\eta -b_{1}y)\phi _{3}(a_{2}\eta -b_{2}y)yB\,dy, \\ \Phi _{3} = b_{2}\int_{\mathbb{R}}e^{\beta iy^{2}}\phi _{2}(a_{1}\eta -b_{1}y)\phi _{3}'(a_{2}\eta -b_{2}y)yB\,dy, \end{gather*} Now in the integral \begin{equation*} I=\int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi )^{2}}A(\xi ,\eta )\phi _{1}(\eta -\xi )\Phi _{1}(\eta ) d\eta \end{equation*} we integrate by parts with respect to $\eta $ via identity \begin{equation*} e^{\alpha i(\eta -\mu \xi )^{2}}=H\partial _{\eta }( (\eta -\mu \xi )e^{\alpha i(\eta -\mu \xi ) ^{2}}) \end{equation*} with $H=(1+2i\alpha (\eta -\mu \xi )^{2})^{-1}$ to obtain $I=I_{1}+\cdot \cdot \cdot +I_{5}$, where \begin{align*} I_{1} &= 2\phi _{1}((\mu -1)\xi )\Phi _{1}( \mu \xi )A(\xi ,\mu \xi )\int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi )^{2}}H(H-1)d\eta , \\ I_{2} &= \int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi )^{2}}\phi _{1}(\eta -\xi )\Phi _{1}(\eta )(\eta -\mu \xi )H\partial _{\eta }Ad\eta \\ I_{3} &= \int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi ) ^{2}}\Big(\phi _{1}(\eta -\xi )\Phi _{1}(\eta ) A(\xi ,\eta ) \\ &\quad -\phi _{1}((\mu -1)\xi )\Phi _{1}( \mu \xi )A(\xi ,\mu \xi )\Big)H(H-1)d\eta \\ I_{4} &= \int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi )^{2}}\phi _{1}(\eta -\xi )\Phi _{1}'(\eta )A( \eta -\mu \xi )Hd\eta \\ I_{5} &= \int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi )^{2}}\phi _{1}'(\eta -\xi )\Phi _{1}(\eta )A( \eta -\mu \xi )Hd\eta \end{align*} We prove that the integral $I_{1}$ is the main term. Since \begin{equation*} 2\int_{\mathbb{R}}e^{\beta iy^{2}}B(B-1)dy=\frac{\sqrt{i\pi }}{ \sqrt{\beta }}, \end{equation*} and $\langle y\rangle |\phi _{j}(a_{i}\mu \xi -b_{i}y)-\phi _{j}(a_{i}\mu \xi )|\leq C\langle\xi \rangle ^{\gamma -1}\langle y\rangle ^{-\gamma }$, we have \begin{align*} \Phi _{1}(\mu \xi )&= 2\phi _{2}(a_{1}\mu \xi ) \phi _{3}(a_{2}\mu \xi )\int_{\mathbb{R}}e^{\beta iy^{2}}B(B-1)dy \\ &\quad +2\int_{\mathbb{R}}e^{\beta iy^{2}}\Big(\phi _{2}(a_{1}\mu \xi -b_{1}y)\phi _{3}(a_{2}\mu \xi -b_{2}y) \\ &\quad -\phi _{2}(a_{1}\mu \xi )\phi _{3}(a_{2}\mu \xi )\Big)B(B-1)dy \\ &= \frac{\sqrt{i\pi }}{\sqrt{\beta }}\phi _{2}(a_{1}\mu \xi ) \phi _{3}(a_{2}\mu \xi ) +O\Big(\langle\xi \rangle ^{\gamma -1}\int_{\mathbb{R}}\langle y\rangle ^{-1-\gamma }dy\Big). \end{align*} By a direct calculation, \begin{equation*} 2\int_{\mathbb{R}}e^{\alpha i(\eta -\mu \xi )^{2}}H( H-1)d\eta =\frac{1}{\sqrt{\alpha }}\int_{\mathbb{R}}e^{i\eta ^{2}}d\eta =\frac{\sqrt{i\pi }}{\sqrt{\alpha }}. \end{equation*} Therefore, \begin{equation*} I_{1}=\frac{i\pi }{\sqrt{\alpha \beta }}A(\xi ,\mu \xi )\phi _{1}((\mu -1)\xi )\phi _{2}(a_{1}\mu \xi )\phi _{3}(a_{2}\mu \xi )+O\big(\langle\xi \rangle ^{\gamma -2}\big). \end{equation*} We have \begin{align*} |\Phi _{1}(\eta )| &\leq C\int_{\mathbb{R} }\langle a_{1}\eta -b_{1}y\rangle ^{-\gamma _{1}}\langle a_{2}\eta -b_{2}y\rangle ^{-\gamma _{2}}\langle y\rangle ^{-2}dy\leq C\langle\eta \rangle ^{-\gamma _{1}-\gamma _{2}}, \\ |\Phi _{1}'(\eta )| &\leq C\int_{\mathbb{R}}\langle a_{1}\eta -b_{1}y\rangle ^{\gamma -1}\langle a_{2}\eta -b_{2}y\rangle ^{-\gamma _{2}}\langle y\rangle ^{-2}dy \\ &\quad +C\int_{\mathbb{R}}\langle a_{1}\eta -b_{1}y\rangle ^{-\gamma _{1}}\langle a_{2}\eta -b_{2}y\rangle ^{\gamma -1}\langle y\rangle ^{-2}dy\leq C\langle\eta \rangle ^{\gamma -1} \end{align*} Hence \begin{equation*} |I_{2}|\leq C\langle\xi \rangle ^{\gamma -2}\int_{\mathbb{R}}\langle\eta -\mu \xi \rangle ^{-1}\langle\eta \rangle ^{-\gamma }d\eta \leq C\langle\xi \rangle ^{\gamma -2}. \end{equation*} Since \begin{equation*} \langle\eta -\mu \xi \rangle ^{-1}|\phi (\eta )-\phi (\mu \xi )|\leq C\langle\xi \rangle ^{\gamma -1}\langle\eta \rangle ^{-\gamma } \end{equation*} and \begin{equation*} \langle\eta -\mu \xi \rangle ^{-1}|A(\xi ,\eta )-A(\xi ,\mu \xi )|\leq C\langle\xi \rangle ^{\gamma -2}\langle\eta \rangle ^{-\gamma } \end{equation*} we find \begin{equation*} |I_{3}|\leq C\langle\xi \rangle ^{\gamma -2}\int_{\mathbb{R}}\langle\eta \rangle ^{-\gamma }\langle \eta -\mu \xi \rangle ^{-1}d\eta \leq C\langle\xi \rangle ^{\gamma -2}. \end{equation*} We also have \begin{equation*} |I_{4}|+|I_{5}|\leq C\langle \xi \rangle ^{-1}\int_{\mathbb{R}}(\langle\eta \rangle ^{\gamma -1}+\langle\eta -\xi \rangle ^{\gamma -1})\langle\eta -\mu \xi \rangle ^{-1}d\eta \leq C\langle\xi \rangle ^{\gamma -2}. \end{equation*} In the integral $\Phi _{2}$ we change $a_{1}\eta -b_{1}y=y'$ (the prime we will omit) then with \begin{gather*} \widetilde{a_{2}} = \frac{1}{b_{1}}(a_{2}b_{1}-a_{1}b_{2})\neq 0, \quad \widetilde{b_{2}}=\frac{b_{2}}{b_{1}}, \\ \widetilde{B}_{1} = (1+\frac{2\beta }{b_{1}^{2}}i(a_{1}\eta -y)^{2})^{-1}, \quad \beta _{1}=\frac{\beta }{b_{1}^{2}} \end{gather*} we have \begin{equation*} \Phi _{2}=C\int_{\mathbb{R}}e^{i\beta _{1}(a_{1}\eta -y) ^{2}}\phi _{2}'(y)\phi _{3}(\widetilde{a_{2}} \eta -\widetilde{b_{2}}y)(a_{1}\eta -y)\widetilde{B}dy. \end{equation*} Then with $Q=\beta _{1}(a_{1}\eta -y)^{2}+\alpha (\eta -\mu \xi)^{2}$. we define \begin{equation*} I_{6}=C\int_{\mathbb{R}}dy\phi _{2}'(y)\int_{\mathbb{R} }A(\xi ,\eta )\phi _{1}(\eta -\xi )e^{iQ}\phi _{3}(\widetilde{a_{2}}\eta -\widetilde{b_{2}}y)(a_{1}\eta -y)\widetilde{B}d\eta\,. \end{equation*} Then we integrate by parts with respect to $\eta $ via identity $e^{iQ}=H\partial _{\eta }(\widetilde{\eta }e^{iQ})$ with $H=(1+i\widetilde{\eta }Q_{\eta })^{-1}$, where \begin{equation*} \widetilde{\eta }=\eta -\widetilde{b}y-\widetilde{a}\xi ,\quad \widetilde{b}=\frac{ a_{1}\beta _{1}}{\alpha +\beta _{1}a_{1}^{2}},\quad \widetilde{a}=\frac{\alpha \mu }{\alpha +\beta _{1}a_{1}^{2}}, \end{equation*} if $\alpha +\beta _{1}a_{1}^{2}\neq 0$ and $\widetilde{\eta }=\eta $ if $\alpha +\beta _{1}a_{1}^{2}=0$ we get \begin{equation*} I_{6}=C\int_{\mathbb{R}}dy\phi _{2}'(y)\int_{\mathbb{R} }e^{iQ}\widetilde{\eta }\partial _{\eta }HA(\xi ,\eta )\phi _{1}(\eta -\xi )\phi _{3}(\widetilde{a_{2}}\eta - \widetilde{b_{2}}y)(a_{1}\eta -y)\widetilde{B}d\eta \end{equation*} since $\langle\widetilde{\eta }Q_{\eta }\rangle ^{-1}\leq C\langle\widetilde{\eta }\rangle ^{-2}$ if $\alpha +\beta _{1}a_{1}^{2}\neq 0$ and \begin{equation*} \langle\widetilde{\eta }Q_{\eta }\rangle ^{-1}\leq C| \widetilde{\eta }|^{\gamma -1}|a_{1}\beta _{1}y+\alpha \mu \xi |^{\gamma -1} \end{equation*} if $\alpha +\beta _{1}a_{1}^{2}=0$ we obtain \begin{align*} |I_{6}|&\leq C\langle\xi \rangle ^{-1}\int_{\mathbb{R}}dy\langle y\rangle ^{\gamma -1}\int_{ \mathbb{R}}\langle\eta -\frac{y}{a_{1}}\rangle ^{-1}\langle \eta -\widetilde{b}y-\widetilde{a}\xi \rangle ^{-1}d\eta \\ &\leq C\langle\xi \rangle ^{-1}\int_{\mathbb{R}}dy\langle y\rangle ^{\gamma -1}\langle a_{3}y-\widetilde{a}\xi \rangle ^{\gamma -1}\leq C\langle\xi \rangle ^{2\gamma -2} \end{align*} if $\alpha +\beta _{1}a_{1}^{2}\neq 0$, since $a_{1}$, $\widetilde{a}$, $a_{3}\equiv \frac{1-a_{1}\widetilde{b}}{a_{1}}\neq 0$, and \begin{align*} |I_{6}|&\leq C\langle\xi \rangle ^{\gamma -1}\int_{\mathbb{R}}dy\langle y\rangle ^{\gamma -1}| a_{1}\beta _{1}y+\alpha \mu \xi |^{\gamma -1}\int_{\mathbb{R} }\langle a_{1}\eta -y\rangle ^{-1}\Big(|\eta |^{\gamma -1} \\ &\quad +\langle\eta -\xi \rangle ^{\gamma -1}+\langle \widetilde{a_{2}}\eta -\widetilde{b_{2}}y\rangle ^{\gamma -1}+\langle a_{1}\eta -y\rangle ^{-1}\Big)d\eta \leq C\langle\xi \rangle ^{2\gamma -2} \end{align*} if $\alpha +\beta _{1}a_{1}^{2}=0$. In the same manner we estimate the integral with $\Phi _{3}$. Thus we have the asymptotic form (\ref{AA}). Lemma \ref{Lemma A2} is proved. \end{proof} Now we substitute (\ref{c2}) $w(\xi )=\psi _{3}(\xi )-e^{\frac{3}{4}i\xi ^{2}}\psi _{2}(\xi )$ into the second summand in the right-hand side of (\ref{c5}) as above changing the variables of integration $y=y'+\frac{\eta }{2}$ or $y=2\eta -y'$ we find \begin{align*} \int_{\mathbb{R}}e^{-iQ}w(\eta -y)w(y)dy &=e^{- \frac{3}{4}i\eta ^{2}}\int_{\mathbb{R}}e^{-iy^{2}}\psi _{3}(\frac{\eta }{2}-y)\psi _{3}(\frac{\eta }{2}+y)dy \\ &\quad -2\int_{\mathbb{R}}e^{-\frac{1}{4}iy^{2}}\psi _{3}(y-\eta ) \psi _{2}(2\eta -y)dy \\ &\quad +e^{-\frac{3}{8}i\eta ^{2}}\int_{\mathbb{R}}e^{\frac{1}{2}iy^{2}}\psi _{2}(\frac{\eta }{2}-y)\psi _{2}(\frac{\eta }{2}+y) dy. \end{align*} So we have \begin{align*} &\int_{\mathbb{R}}d\eta e^{iS}K\eta \overline{w(\eta -\xi )} \int_{\mathbb{R}}e^{-iQ}w(\eta -y)w(y)dy\\ &= \int_{\mathbb{R}}e^{\frac{1}{4}i(\eta -2\xi )^{2}}K\eta \overline{\psi _{3}(\eta -\xi )}\Psi _{1}(\eta ) d\eta \\ &\quad +2e^{\frac{3}{4}i\xi ^{2}}\int_{\mathbb{R}}e^{i(\eta -\frac{1}{2}\xi )^{2}}K\eta \overline{\psi _{3}(\eta -\xi )}\Psi _{2}(\eta )d\eta \\ &\quad +e^{\frac{3}{5}i\xi ^{2}}\int_{\mathbb{R}}e^{\frac{5}{8}i(\eta - \frac{4}{5}\xi )^{2}}K\eta \overline{\psi _{3}(\eta -\xi )}\Psi _{3}(\eta )d\eta \\ &\quad +e^{\frac{3}{8}i\xi ^{2}}\int_{\mathbb{R}}e^{-\frac{1}{2}i(\eta - \frac{1}{2}\xi )^{2}}K\eta \overline{\psi _{2}(\eta -\xi )}\Psi _{1}(\eta )d\eta \\ &\quad +2\int_{\mathbb{R}}e^{\frac{1}{4}i(\eta +\xi )^{2}}K\eta \overline{\psi _{2}(\eta -\xi )}\Psi _{2}(\eta ) d\eta \\ &\quad +e^{\frac{3}{4}i\xi ^{2}}\int_{\mathbb{R}}e^{-\frac{1}{8}i(\eta -2\xi )^{2}}K\eta \overline{\psi _{2}(\eta -\xi )}\Psi _{3}(\eta )d\eta \end{align*} where \begin{gather*} \Psi _{1}(\eta )= \int_{\mathbb{R}}e^{-iy^{2}}\psi _{3}( \frac{\eta }{2}-y)\psi _{3}(\frac{\eta }{2}+y)dy, \\ \Psi _{2}(\eta )= \int_{\mathbb{R}}e^{-\frac{1}{4}iy^{2}}\psi _{3}(y-\eta )\psi _{2}(2\eta -y)dy, \\ \Psi _{3}(\eta )= \int_{\mathbb{R}}e^{\frac{1}{2}iy^{2}}\psi _{2}(\frac{\eta }{2}-y)\psi _{2}(\frac{\eta }{2}+y) dy, \end{gather*} Applying Lemma \ref{Lemma A2} we obtain the asymptotic form \begin{align*} &\int_{\mathbb{R}}d\eta e^{iS}K\eta \overline{w(\eta -\xi )} \int_{\mathbb{R}}e^{-iQ}w(\eta -y)w(y)dy \\ &= \int_{\mathbb{R}}e^{\frac{1}{4}i(\eta -2\xi )^{2}}K\eta \overline{\psi _{3}(\eta -\xi )}\int_{\mathbb{R} }e^{-iy^{2}}\psi _{3}(\frac{\eta }{2}-y)\psi _{3}(\frac{ \eta }{2}+y)dyd\eta +O(\langle\xi \rangle ^{\gamma -2})\\ &= -\frac{4i\pi }{3\langle\xi \rangle }\overline{\psi _{3}( \xi )}\psi _{3}(\xi )\psi _{3}(\xi ) +O(\langle\xi \rangle ^{\gamma -2})\\ &= -\frac{4i\pi }{3\langle\xi \rangle }|\phi ( \xi )|^{2}\phi (\xi )+O(\langle \xi \rangle ^{\gamma -2}). \end{align*} Thus we can estimate the right-hand side of (\ref{c8}) \begin{align*} \frac{d}{d\xi }\mathcal{A}(\varphi )(\xi )&= 2 \overline{E}\int_{\mathbb{R}}Fe^{iS}\overline{w(\eta -\xi )} \overline{w(-\eta )}d\eta d\xi -\frac{16i\pi }{3\langle \xi \rangle }|\varphi (\xi )| ^{2}\varphi (\xi )\\ &\quad -4\overline{E}\int_{\mathbb{R}}d\eta e^{iS}K\eta \overline{w(\eta -\xi )}\int_{\mathbb{R}}e^{-iQ}w(\eta -y)w( y)dy \\ &= O(\varepsilon ^{3}\langle\xi \rangle ^{\gamma-2}). \end{align*} We solve equation (\ref{c7}) by the contraction mapping principle in the set \begin{equation*} \mathbf{X}_{\varepsilon } = \{\varphi \in \mathbf{C}^{1}( \mathbb{R}):\| \varphi \|_{\mathbf{X}}\leq C\varepsilon ^{2}\} \end{equation*} where the norm \begin{equation*} \| \varphi \|_{\mathbf{X}}\equiv \sup_{\xi \in \mathbb{R} }\big(|\varphi (\xi )|+\langle\xi \rangle ^{2-2\gamma }|\varphi '(\xi )|\big). \end{equation*} When $\varphi \in \mathbf{X}_{\varepsilon }$, then $\| \phi \|_{\mathbf{Y}}\equiv \sup_{\xi \in \mathbb{R}}(| \phi (\xi )|+\langle\xi \rangle ^{1-2\gamma }|\phi '(\xi )| )\leq C\varepsilon $ and by Lemma \ref{Lemma A1} \begin{equation*} \| \psi _{1}\|_{\mathbf{Z}}+\| \psi _{2}\|_{\mathbf{Z}}+\| \psi _{3}\|_{\mathbf{Z} }\leq C\varepsilon . \end{equation*} Then by Lemma \ref{Lemma A2} \begin{equation*} |\frac{d}{d\xi }\mathcal{A}(\varphi )(\xi )|\leq C\varepsilon \langle\xi \rangle ^{2\gamma -2}. \end{equation*} And integrating we have \begin{equation*} |\mathcal{A}(\varphi )(\xi )| \leq C\varepsilon \int_{0}^{\xi }\langle\xi \rangle ^{2\gamma -2}d\xi +|\varphi (0)|\leq C\varepsilon . \end{equation*} In the same manner we can estimate the difference \begin{equation*} |\mathcal{A}(\varphi _{1})-\mathcal{A}(\varphi _{2})|\leq C\varepsilon \| \varphi _{1}-\varphi _{2}\|_{\mathbf{X}}. \end{equation*} Therefore, $\mathcal{A}$ is a contraction mapping in $\mathbf{X.}$ Hence there exists a unique solution $\varphi \in \mathbf{X}$ of integral equation (\ref{c7}). \begin{thebibliography}{99} \bibitem{TC} Th. Cazenave; Semilinear Schr\"{o}dinger equations. Courant Lecture Notes in Mathematics, \textbf{10}. American Mathematical Society, Providence, RI, 2003, 323 pp. \bibitem{Er} A. Erd\'{e}lyi, W. Magnus, F. Oberhettinger and F.G. Tricomi; \textit{Tables of integral transforms, based, in part, notes left by Harry Bateman}, McGraw-Hill Book Company, Inc., New York-Tronto-London, 1954. \bibitem{c} S. Cohn; \textit{Resonance and long time existence for the quadratic nonlinear Schr\"{o}dinger equation, }Commun. Pure Appl. Math. \textbf{45} (1992), pp. 973-1001. \bibitem{h1} N. Hayashi; \textit{Global existence of small analytic solutions to nonlinear Schr\"{o}dinger equations,} Duke Math. J. \textbf{60} (1990), pp. 717-727. \bibitem{h} N. Hayashi; \textit{The initial value problem for the derivative nonlinear Schr\"{o}dinger equation in the energy space,} J. Nonlinear Anal. T.M.A. \textbf{32} (1993), pp. 823-833. \bibitem{hn17} N. Hayashi and P. I. Naumkin; \textit{A quadratic nonlinear Schr\"{o}dinger equation in one space dimension, }J. Differential Equations{ ,\ }\textbf{186} (2002), no. 1, pp. 165--185. \bibitem{hn19} N. Hayashi and P. I. Naumkin; \textit{Asymptotic behaviour for Schr\"{o}dinger equations with a quadratic nonlinearity in one-space dimension, }Electronic Journal of Differential Equations, \textbf{2001 } (2001), no. 54, pp. 1-18. \bibitem{hn20} N. Hayashi and P. I. Naumkin; \textit{On the asymptotics for cubic nonlinear Schr\"{o}dinger equations}, Complex Var. Theory Appl. \textbf{49} (2004), no. 5, pp. 339--373. \bibitem{hnst1} N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa; \textit{Modified Wave Operators for Nonlinear Schr\"{o}dinger Equations in 1d or 2d,} Electronic Journal of Differential Equations, (2004), no. 62, pp. 1-16. \bibitem{ho} N. Hayashi and T. Ozawa; \textit{Remarks on nonlinear Sch\"{o} dinger equations in one space dimension,} Differential and Integral Equations, \textbf{7} (1994), pp. 453-461. \bibitem{H-O} N. Hayashi and T. Ozawa; \textit{Scattering theory in the weighted }$\mathbf{L}^{2}({\mathbb{R}}^{n})$\textit{\ spaces for some Schr \"{o}dinger equations,} Ann. I.H.P. (Phys. Th\'{e}or.), \textbf{48\ (}1988), pp. 17-37. \bibitem{ho1} N. Hayashi and T. Ozawa; \textit{Modified wave operators for the derivative nonlinear Schr\"{o}dinger equation,} Math. Ann., \textbf{298} (1994), pp. 557-576. \bibitem{kt} S. Katayama and Y. Tsutsumi; \textit{Global existence of solutions for nonlinear Schr\"{o}dinger equations in one space dimension, } Commun. in P.D.E., \textbf{19 }(1994), pp. 1971-1997. \bibitem{ott} T. Ozawa, K. Tsutaya and Y. Tsutsumi; \textit{Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions}, Math. Z., \textbf{222} (1996), no. 3, pp. 341--362. \bibitem{o2} T. Ozawa; \textit{Long range scattering for nonlinear Schr\"{o} dinger equations in one space dimension}, Commun. Math. Phys., \textbf{139 } (1991), pp. 479-493. \bibitem{o} T. Ozawa; \textit{Remarks on quadratic nonlinear Schr\"{o}dinger equations.} {\ Funkcialaj Ekvacioj, \textbf{38} (1995), pp. 217-232.} \bibitem{o1} T. Ozawa; \textit{Finite energy solutions for the Schr\"{o} dinger equations with quadratic nonlinearity in one space dimension.} { Funkcialaj Ekvacioj,} \textbf{41} (1998), no. 3, {pp. }451--468. \bibitem{s} J. Shatah; \textit{Normal forms and quadratic nonlinear Klein-Gordon equations, }Commun. Pure Appl. Math., \textbf{38} (1985), pp. 685-696. \bibitem{Stein} E.M. Stein; \textit{Singular Integrals and Differentiability Properties of Functions}, \textbf{30}, Princeton Univ. Press, Princeton, NJ, 1970. \bibitem{to} S. Tonegawa; \textit{Global existence for a class of cubic nonlinear Schr\"{o}dinger equations in one space dimension, }Hokkaido Math. J., \textbf{30} (2001), pp. 451-473. \end{thebibliography} \end{document}