\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 158, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/158\hfil Positive periodic solutions] {Positive periodic solutions for an impulsive ratio-dependent predator-prey system with delays} \author[Y. Liu, Q. Wang\hfil EJDE-2008/158\hfilneg] {Yan Liu, Quanyi Wang} % in alphabetical order \address{Yan Liu \newline School of mathematical sciences, Huaqiao University, Quanzhou, Fujian 362021, China} \email{liuyanlxly@yahoo.com.cn} \address{Quanyi Wang \newline School of mathematical sciences, Huaqiao University, Quanzhou, Fujian 362021, China} \email{qywang@hqu.edu.cn} \thanks{Submitted May 28, 2008. Published December 3, 2008.} \thanks{Supported by grant Z0511026 from the Natural Science Foundation of \hfill\break\indent Fujian Province of China} \subjclass[2000]{34K45, 34K13, 92D25} \keywords{Positive periodic solution; ratio-dependent; time delay; \hfill\break\indent predator-prey system; impulse; coincidence degree theory} \begin{abstract} In this paper, we study a periodic ratio-dependent predator-prey system of two species with impulse and multiple time delays. By means of analysis techniques and the continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive periodic solutions of the system. Our results extend previous results obtained in \cite{l2}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} The existence of positive periodic solutions of predator-prey models has been extensively studied by many mathematicians and biologists in recent years. Some authors have already obtained many good conclusions, see \cite{c1,f2,w1,w2}. However in many cases, especially when predators have to search, share or compete for food, a more suitable general predator-prey model should be based on the ratio-dependent theory. This roughly states that the per capita predator growth rate should be a function of the ratio of prey to predator abundance, see \cite{c2,f1}. In addition, there are numerous examples of evolutionary systems which at certain instants in time are subjected to rapid changes (for example, those due to seasonal effects of weather, food supply, hunting or harvesting seasons, etc). Those short-time perturbations are often assumed to be in the form of impulses in the modelling process. Consequently, impulsive differential equations provide a natural description of such systems. Because equations of this kind are found in many fields such as chemotherapy, population dynamics, optimal control, ecology, biotechnology and physics, they have attracted the interest of many researchers, see \cite{b1,l1,l2} and the references cited therein. For the above reasons, Liu and Li \cite{l2} considered the following ratio-dependent predator-prey system with only one time delay and impulsive effects \begin{equation} \begin{gathered} x'=x(t)(b_1(t)-a_1(t)x(t)-\frac{c(t)y(t)}{m_1(t)y(t)+x(t)}),\quad t\neq{t_k},\\ y'=y(t)(-b_2(t)+\frac{a_2(t)x(t-\tau)}{m_2(t)y(t-\tau)+x(t-\tau)}),\quad t\neq{t_k},\\ x(t^+_k)-x(t^-_k)=c_kx(t_k),\\ y(t^+_k)-y(t^-_k)=d_ky(t_k),\quad t={t_k},\\ (x(0+),y(0+))=(x_0,y_0),\\ (x(t),y(t))=(\varphi_1(t),\varphi_2(t))>0,\quad {-\tau}\leq{t}<0, \end{gathered}\tag{e1.1}\label{e1.1} \end{equation} where $x(t), y(t)$ represent the densities of prey and predator at time $t$, respectively; $\tau$ is a positive constant time delay, ${b_1(t)}$, ${a_1(t)}$, ${m_1(t)}$, ${b_2(t)}$, ${c(t)}$, ${a_2(t)}$, ${m_2(t)}>0$ are continuous T-periodic functions, $Z_+=\{1,2,\dots\}$. The initial functions are $\varphi(t)=(\varphi_1(t),\varphi_2(t))$, where $00$ such that $c_{k+q}=c_k$, $d_{k+q}=d_k$, $t_{k+q}=t_k+T$, $0\overline{({\frac{c}{m_1}})}T,\\ \overline{b_2}T-\ln(\prod_{k=1}^{q}(1+d_k))>0, \quad \overline{a_2}>\overline{b_2},\quad T>\tau, \\ {a_2}^{l}(T-\tau)-\overline{b_2}T+\ln(\prod_{k=1}^{q}(1+d_k))>0,\\ {c}^{l}-{m_1}^{u}[\overline{b_1}+{\frac{1}{T}}\ln(\prod_{k=1}^{q}(1+c_k))]>0\,. \end{gather*} Then system ({e1.1}) has at least one positive T-periodic solution.} However, this theorem is not valid because the condition \[ {c}^{l}-{m_1}^{u}[\overline{b_1}+{\frac{1}{T}}\ln(\prod_{k=1}^{q}(1+c_k))]>0 \] contradicts the condition \[ \overline{b_1}T+\ln(\prod_{k=1}^{q}(1+c_k))>\overline{({\frac{c}{m_1}})}T \] because \[ \frac{{c}^{l}}{{m_1}^{u}}\leq\overline{({\frac{c}{m_1}})}. \] Thus, the existence of a solution to ({e1.1}) has not been proved. Moreover, there are also some mistakes in the course of the proof of {thmA}, such as the computations of $K_P(I-Q)N\begin{pmatrix}u(t)\\v(t)\end{pmatrix}$ (see \cite[p. 719]{l2}) and $QNX$ (see \cite[p. 722]{l2}). In the actual environment, scientific researches suggest that time delays often occur in the course of the interaction of species in many ecological systems. So, in the present paper, we study the following two-species ratio-dependent predator-prey system with multiple time delays and impulsive effects \[ \begin{gathered} {x'(t)}=x(t) \big[ b_1(t)-a_1(t)x(t-\tau_1(t))-\frac{c(t)y(t-\sigma_1(t))} {m_1(t)y(t-\sigma_1(t))+x(t-\tau_2(t))} \big],\quad t\neq{t_k},\\ {y'(t)}=y(t)\big[-b_2(t)+\frac{a_2(t) x(t-\tau_3(t))} {m_2(t)y(t-\sigma_2(t))+x(t-\tau_3(t))}\big], \quad t\neq{t_k},\\ x(t^+_k)-x(t^-_k)=c_{1k}x(t_k),\\ y(t^+_k)-y(t^-_k)=c_{2k}y(t_k),\quad t={t_k},\quad k=1,2,\dots,\\ (x(0+),y(0+))=(x_0,y_0),\\ (x(t),y(t))=(\varphi_1(t),\varphi_2(t))>0,\quad {-\tau}\leq{t}\leq0, \end{gathered}\tag{e1.2} \] where $x(t),y(t)$ represent the densities of prey and predator at time $t$, respectively; $a_1(t), a_2(t), b_1(t),b_2(t),c(t),m_1(t)$ and $ m_2(t)$ are all positive continuous $\omega$-periodic functions; $\sigma_1(t),\sigma_2(t),\tau_1(t),\tau_2(t)$ and $\tau_3(t)$ are all nonnegative continuous $\omega$-periodic functions, $\tau=\max_{0\leq t\leq\omega}\{\sigma_1(t),\sigma_2(t),\tau_1(t), \tau_2(t),\tau_3(t)\}$. For the study of ({e1.2}), we always assume that \begin{itemize} \item[(H1)] $\{{c_{ik}}\}$ is a real sequence and $1+c_{ik}>0$, $i=1,2$, $k=1,2,\dots$; \item[(H2)] There exists an integer $q>0$ such that $c_{i(k+q)}=c_{ik}$, $i=1,2$, $k=1,2,\dots$; \item[(H3)] $00$ there exists $\delta>0$ such that if $x\in F$, $k\in Z_+$, $t_1, t_2\in(t_{k-1}, t_k)\cap[0, \omega]$, $|t_1-t_2|<\delta$, then $|x(t_1)-x(t_2)|<\varepsilon$.} \noindent{\bf lem2.2}(\cite{b1}) \label{lem2.2} {\it The set $F \subset PC([0, \omega],\mathbb{R})$ is relatively compact if and only if \begin{itemize} \item[(1)] $F$ is bounded; that is, $\|\psi\|=\sup\{|\psi|: t\in [0, \omega]\}\leq M$ for each $\psi\in F$ and some $M>0$; \item[(2)] $F$ is quasi-equicontinuous in $[0, \omega]$. \end{itemize}} \section{Existence of positive $\omega$-periodic solutions} In this section, we demonstrate the existence of a positive $\omega$-periodic solution of ({e1.2}). \noindent {\bf thm3.1} \label{thm3.1} {\it Assume that {\rm (H1)--(H3)} hold, and further assume the following conditions: \begin{itemize} \item[(1)] $\overline{b_1}\omega+\sum_{k=1}^{q}{\ln(1+c_{1k})}> \overline{({\frac{c}{m_1}})}\omega$ \item[(2)] $a_2^l\omega+\sum_{k=1}^{q}{\ln(1+c_{2k})}>\overline{b_2}\omega$ \item[(3)] $\overline{b_2}\omega>\sum_{k=1}^{q}{\ln(1+c_{2k})} $ \end{itemize} Then ({e1.2}) has at least one positive $\omega$-periodic solution.} \begin{proof} Let ${x(t)}=e^{u_1(t)}$, ${y(t)}=e^{u_2(t)}$, then system ({e1.2}) can be rewritten as \begin{equation} \begin{gathered} u_1'(t)=b_1(t)-a_1(t)e^{u_1(t-\tau_1(t))} -\frac{c(t)e^{u_2(t-\sigma_1(t))}} {m_1(t)e^{u_2(t-\sigma_1(t))}}+e^{u_1(t-\tau_2(t))},\quad t\neq{t_k},\\ {u_2'(t)}=-b_2(t)+\frac{a_2(t)e^{u_1(t-\tau_3(t))}} {m_2(t)e^{u_2(t-\sigma_2(t))}+e^{u_1(t-\tau_3(t))}},\quad t\neq{t_k},\\ \Delta{u_1(t_k)}={u_1(t^+_k)}-{u_1(t_k)}=\ln(1+c_{1k}),\\ \Delta{u_2(t_k)}={u_2(t^+_k)}-{u_2(t_k)}=\ln(1+c_{2k}), \quad k=1, 2,\dots. \end{gathered}\tag{e3.1} \end{equation} For the sake of simplicity, we denote \begin{gather*} f_1(t,u(t))=b_1(t)-a_1(t)e^{u_1(t-\tau_1(t))}- \frac{c(t)e^{u_2(t-\sigma_1(t))}}{m_1(t)e^{u_2(t-\sigma_1(t))} +e^{u_1(t-\tau_2(t))}}, \\ f_2(t,u(t))=-b_2(t)+ \frac{a_2(t)e^{u_1(t-\tau_3(t))}} {m_2(t)e^{u_2(t-\sigma_2(t))}+e^{u_1(t-\tau_3(t))}}, \\ \Delta{u(t_k)}={u(t^+_k)}-{u(t_k)} =\begin{pmatrix}\Delta{u_1(t_k)}\\ \Delta{u_2(t_k)}\end{pmatrix}, \quad k=1,2,\dots,q, \\ u(t)=(u_1(t), u_2(t))^T,\quad C_{1k}=\ln(1+c_{1k}),\quad C_{2k}=\ln(1+c_{2k}). \end{gather*} It is obvious that if system ({e3.1}) has an $\omega$-periodic solution $u^*(t)=(u^*_1(t), u^*_2(t))^T$, then $(x^*(t),y^*(t))^T=(e^{u^*_1(t)}, e^{u^*_2(t)})^T$ is a positive $\omega$-periodic solution of system ({e1.2}). So, to complete the proof, it suffices to show that the system ({e3.1}) has one $\omega$-periodic solution. To apply {lem2.1} for establishing the existence of $\omega$-periodic solutions of system ({e3.1}), now let \[ \mathop{\rm Dom}L=\{u(t)=(u_1(t), u_2(t))^T \in X: (u_1(t), u_2(t))^T\in PC^1([0, \omega], \mathbb{R})\}, \] and take $L:\mathop{\rm Dom}L$$\subset{X}\to{Z}$ as follows: \[ {u}\to{(u',\triangle{u(t_1)},\dots, \triangle{u(t_q)})}, \] and define $N: X\to{Z}$ by \[ Nu= \Bigg(\begin{pmatrix} f_1(t,u(t))\\ f_2(t,u(t)) \end{pmatrix}, \begin{pmatrix} C_{11}\\ C_{21} \end{pmatrix}, \dots,\begin{pmatrix} C_{1q}\\ C_{2q} \end{pmatrix}\Bigg) \] for $u=(u_1,u_2)^T\in X$. Evidently, we have \begin{gather*} \ker L=\{u:{u}\in{X},u=c\in{\mathbb{R}^2}\}, \\ \mathop{\rm Im}L=\big\{z=(u,r_1,r_2,\dots,r_q)\in{Z}: \frac{1}{\omega}\big(\int_{0}^{\omega}u(t)dt+\sum_{k=1}^{q}{r_k}\big)=0 \big\}. \end{gather*} So, $\mathop{\rm Im}L$ is closed in $Z$, and $\dim\ker L=2=\mathop{\rm codim\;Im}L$. Hence, $L$ is a Fredholm mapping of index zero. Set two projectors $P:{X}\to{X}$ and $Q:{Z}\to{Z}$ as follows: \begin{gather*} Pu=\frac{1}{\omega}\int_{0}^{\omega}u(t)dt, \quad (\forall{u}={(u_1,u_2)^T}\in{X}), \\ Qz=Q(u,r_1,\dots,r_q)=\Big( \frac{1}{\omega} \big(\int_{0}^{\omega}u(t)dt+\sum_{k=1}^{q}{r_k}\big),0,0, \dots,0 \Big),\\ (\forall{z}={(u,r_1,r_2,\dots,r_q)}\in{Z})\,. \end{gather*} It is easy to see that $P$ and $Q$ are continuous projectors, such that \begin{gather*} \mathop{\rm Im}P=\ker L,\quad \ker Q=\mathop{\rm Im}L, \\ X=\ker L \oplus \ker P,\quad Z=\mathop{\rm Im} L\oplus \mathop{\rm Im} Q. \end{gather*} Furthermore, through an easy computation, we find that the inverse $K_P$ of $L_P$ (the restriction of $L$ to ${\mathop{\rm Dom}L}\cap{\ker P}$) has the form $K_P:\mathop{\rm Im}L \to{{\mathop{\rm Dom}L}\cap{\ker P}}$, \[ K_P(z(t))=\int_{0}^{t}u(s)ds+\sum_{00. \end{gather*} Therefore, there exists a unique ${u^{**}_2}\in \mathbb{R}$ such that $g(u^{**}_2)=0$; that is, \begin{equation} -\overline{b_2}+\frac{1}{\omega}\int_{0}^{\omega}\frac{a_2(t)e^{u^{**}_1}} {m_2(t)e^{u^{**}_2}+e^{u^{**}_1}}dt +\frac{1}{\omega}\sum_{k=1}^{q}\ln(1+c_{2k})=0.\tag{e3.28} \label{e3.28} \end{equation} Then by integral mean value theorem, there exists a ${t_0}\in[0,\omega]$ such that \begin{equation} -\overline{b_2}+\frac{a_2(t_0)e^{u^{**}_1}} {m_2(t_0)e^{u^{**}_2}+e^{u^{**}_1}} +\frac{1}{\omega}\sum_{k=1}^{q}\ln(1+c_{2k})=0.\tag{e3.29}\label{e3.29} \end{equation} It follows from ({e3.29}) and conditions (2), (3) that \begin{equation} {u^{**}_2}=\ln\frac{\big[ a_2(t_0)-\overline{b_2} +\frac{1}{\omega}\sum_{k=1}^{q}\ln(1+c_{2k})\big]} {m_2(t_0)\big[\overline{b_2} -\frac{1}{\omega}\sum_{k=1}^{q}\ln(1+c_{2k})\big]} +u^{**}_1. \tag{e3.30}\label{e3.30} \end{equation} Thus, from ({e3.24}) and ({e3.30}), we obtain \[ H_2\leq{u^{**}_1}\leq H_1,\quad {H_2+H_6}\leq{u^{**}_2}\leq {H_1+H_5}, \] which imply \[ \|{u^{**}}\|\leq K<{K_0}; \] i.e., the equation $\phi(u_1,u_2,0)=0$ in ${\Omega}\cap{\ker L}$ has a unique solution $u^{**}=(u^{**}_1,u^{**}_2)^T$. Now define the isomorphism $J:\mathop{\rm Im}Q\to${$\ker L$} by \[ J\Big( \frac{1}{\omega} \Big(\int_{0}^{\omega}u(t)dt +\sum_{k=1}^{q}{r_k}\Big),0,0,\dots,0\Big) =\frac{1}{\omega} \Big(\int_{0}^{\omega}u(t)dt+ \sum_{k=1}^{q}{r_k}\Big), \] then $JQNu=\phi(u_1,u_2,1)$ for each $u=(u_1,u_2)^T\in{\overline\Omega}\cap{\ker L}$. Using the property of topological degree, from ({e3.25}) and ({e3.29}), we have \begin{align*} &\deg\{JQN,\Omega\cap\ker L,0\}\\ &=\deg\{\phi(u_1,u_2,1),\Omega\cap\ker L,0\}\\ &=\deg\{\phi(u_1,u_2,0),\Omega\cap\ker L ,0\}\\ &=\text{sign}\left| \begin{matrix} -\overline{a_{1}}e^{u^{**}_1} & 0 \\ \frac{a_2(t_0)m_2(t_0)e^{u^{**}_1}e^{u^{**}_2}} {(m_2(t_0)e^{u^{**}_2}+e^{u^{**}_1})^2}& -\frac{a_2(t_0)m_2(t_0)e^{u^{**}_1}e^{u^{**}_2}} {(m_2(t_0)e^{u^{**}_2}+e^{u^{**}_1})^2} \\ \end{matrix}\right| \neq 0. \end{align*} Thus, condition (c) of {lem2.1} holds and by now we have proved that all the conditions of {lem2.1} are satisfied. Hence, system ({e3.1}) has at least one $\omega$-periodic solution. Accordingly, system ({e1.2}) has at least one positive $\omega$--periodic solution. This completes the proof. \end{proof} If we set $\sigma_1(t)=\tau_1(t)=\tau_2(t)=0$, $\tau_3(t)=\sigma_2(t)=\tau$, $\omega=T$, then system ({e1.2}) is simplified to system ({e1.1}) which was studied by Liu and Li in \cite{l2}. Obviously, our result in this paper extends and improves greatly the result in \cite{l2}. Finally, let us consider the system without impulse \begin{equation} \begin{gathered} {x'(t)}=x(t)\big[b_1(t)-a_1(t)x(t-\tau_1(t))-\frac{c(t)y(t-\sigma_1(t))} {m_1(t)y(t-\sigma_1(t))+x(t-\tau_2(t))}\big],\\ {y'(t)}=y(t)\big[-b_2(t)+\frac{a_2(t)x(t-\tau_3(t))} {m_2(t)y(t-\sigma_2(t))+x(t-\tau_3(t))}\big], \end{gathered}\tag{e3.31}\label{e3.31} \end{equation} where $ a_1(t)$, $a_2(t)$, $b_1(t)$, $b_2(t)$, $c(t)$, $m_1(t)$ and $ m_2(t)$ are all positive continuous $\omega$-periodic functions; $\sigma_1(t)$, $\sigma_2(t)$, $\tau_1(t)$, $\tau_2(t)$ and $\tau_3(t)$ are all continuous $\omega$-periodic functions. From \ref{thm3.1} and its proof, we immediately get the following result. \noindent {\bf{thm3.2}} \label{thm3.2} {\it If system ({e3.31}) satisfies the conditions \[ \overline{b_1}>\overline{(\frac{c}{m_1})},\quad a^l_2>\overline{b_2}, \] then ({e3.31}) has at least one positive $\omega$-periodic solution.} \section{An example} In this section, we give an example that illustrates the feasibility of our results. Consider the system \begin{equation} \begin{gathered} {x'(t)}=x(t)\big[(\frac{1}{2}+|\cos t|)-x(t-|\sin t|) -\frac{(\frac{1}{2}|\sin t|+\frac{1}{4}) y(t-|\cos{t}|)} {y(t-|\cos{t}|)+x(t-|\sin{2t}|)}\big],\; t\neq{t_k},\\ {y'(t)}=y(t)\big[-(\frac{3}{4}+\frac{1}{2}\sin t) +\frac{\frac{4}{\pi}x(t-|\sin{3t}|)}{2y(t-|\cos2t|) +x(t-|\sin{3t}|)}\big],\quad t\neq{t_k},\\ {x(t^+_k)}-{x(t^-_k)}=c_{1k}{x(t_k)},\\ {y(t^+_k)}-{y(t^-_k)}=c_{2k}{y(t_k)},\quad k=1,2,\dots,\end{gathered} \tag{4.1} \label{e4.1} \end{equation} where \begin{gather*} t_1=\frac{\pi}{2}, \quad t_2=\frac{3\pi}{2}, \quad t_{k+2}=t_k+2\pi, \quad c_{11}=1,\quad c_{12}=-\frac{1}{2}, \\ c_{21}=1,\quad c_{22}=-\frac{3}{4}, \quad c_{i(k+2)}=c_{ik}, \quad i=1,2, \quad k=1,2,\dots. \end{gather*} Corresponding to ({e1.2}), we have \begin{gather*} \omega=2\pi,\quad a_1(t)=1,\quad a_2(t)=\frac{4}{\pi},\quad b_1(t)=\frac{1}{2}+|\cos t|,\quad b_2(t)=\frac{3}{4}+\frac{1}{2}\sin t, \\ c(t)=\frac{1}{2}|\sin t|+\frac{1}{4},\quad m_1(t)=1,\quad m_2(t)=2,\quad \sigma_1(t)=|\cos t|,\\ \sigma_2(t)=|\cos 2t|,\quad \tau_1(t)=|\sin t|,\quad \tau_2(t)=|\sin 2t|,\quad \tau_3(t)=|\sin 3t|. \end{gather*} It is easy to obtain that, \begin{gather*} \overline{b_1}=\frac{1}{2\pi}\int_{0}^{2\pi} (\frac{1}{2}+|\cos t|)dt =\frac{2}{\pi}+\frac{1}{2}, \quad \overline{b_2}=\frac{1}{2\pi}\int_{0}^{2\pi} (\frac{3}{4}+\frac{1}{2}\sin t)dt =\frac{3}{4}, \\ \overline{(\frac{c}{m_1})} =\frac{1}{2\pi}\int_{0}^{2\pi}(\frac{1}{2}|\sin t|+\frac{1}{4}) dt =\frac{1}{4}+\frac{1}{\pi},\\ \sum_{k=1}^{2}\ln(1+c_{1k})=\ln2-\ln2=0,\quad \sum_{k=1}^{2}\ln(1+c_{2k})=\ln2-\ln4=-\ln2, \end{gather*} and then \begin{gather*} \overline{b_1}\omega+\sum_{k=1}^{2}\ln(1+c_{1k}) =\pi+4>2+\frac{\pi}{2} =\overline{(\frac{c}{m_1})}\omega, \\ a^l_2\omega+\sum_{k=1}^{2}\ln(1+c_{2k}) =8-\ln2>\frac{3\pi}{2} =\overline{b_2}\omega, \\ \overline{b_2}\omega=\frac{3\pi}{2}>-\ln2=\sum_{k=1}^{2}\ln(1+c_{2k}). \end{gather*} Thus, all the conditions of {thm3.1} are satisfied. Then system ({e4.1}) has at least one positive $2\pi$-periodic solution. \subsection*{Acknowledgements} The authors are grateful to the anonymous referees for their valuable suggestions. \begin{thebibliography}{00} \bibitem{b1} D. D. Bainov, P. S. Simeonov; \emph{Impulsive Differential Equations: Periodic Solutions and Applications}. Longman Scientific and Technical, NewYork, 1993. \bibitem{c1} Y. Chen; \emph{Multiple periodic solutions of delayed predator-prey systems with type IV functional responses}, Nonlinear Anal. 5(2005), 45-53. \bibitem{c2} S. H. Chen, F. Wang, T. Young; \emph{Positive periodic solution of two-species ratio-dependent predator-prey system with time delay in two-patch environment}, Comput. Math. Appl. 150(2004), 737-748. \bibitem{c3} J. M. Cushing; \emph{Periodic time-dependent predator-prey system}, SIAM. J. Appl. Math. 32(1977), 82-95. \bibitem{f1} Y. H. Fan, W. T. Li; \emph{Permanence in delayed ratio-dependent predator-prey models with monotonic functional responses}, Nonlinear Anal. 8(2007), 424-434. \bibitem{f2} M. Fan, K. Wang; \emph{Global existence of positive periodic solutions for periodic predator-prey system with infinite delay}, J. Math. Anal. Appl. 262(2001), 1-11. \bibitem{g1} R. E. Gains, J. L. Mawhin; \emph{Coincidence degree and nonlinear differential equations}. Spring-Verlag, Berlin, 1977. \bibitem{l1} M. Li, Y. R. Duan, W. P. Zhang, M. S. Wang; \emph{The existence of positive periodic solutions of a class of Lotka-Volterra type impulsive systems with infinitely distributed delay}, Comput. Math. Appl. 49(2005), 1037-1044. \bibitem{l2} X. S. Liu, G. Li, G. Luo; \emph{Positive periodic solution for a two-species ratio-dependent predator-prey system with time delay and impulse}, J. Math. Anal. Appl. 325(2007), 715-723. \bibitem{w1} L. L. Wang, W. T. Li; \emph{Existence and global stability of positive periodic solutions of a predator-prey system with delays}, Applied Mathematics and Computation, 146(2003), 167-185. \bibitem{w2} H. L. Wang, S. M. Zhang, B. D. Tian; \emph{Permanence and existence of periodic solutions of a predator-prey patchy model with dispersal and time delay}, J. Math. Biol. 22(2007), 25-36. \end{thebibliography} \end{document}