\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 24, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/24\hfil Dirichlet problems] {Growth rate and existence of solutions to Dirichlet problems for prescribed mean curvature equations on unbounded domains} \author[Z. Jin\hfil EJDE-2008/24\hfilneg] {Zhiren Jin} \address{Zhiren Jin \newline Department of Mathematics and Statistics \\ Wichita State University \\ Wichita, Kansas 67260-0033, USA} \email{zhiren@math.wichita.edu} \thanks{Submitted February 9, 2008. Published February 22, 2008.} \subjclass[2000]{35J25, 35J60, 35J65} \keywords{Elliptic boundary-value problem; quasilinear elliptic equation; \hfill\break\indent prescribed mean curvature equation; unbounded domain; Perron's method} \begin{abstract} We prove growth rate estimates and existence of solutions to Dirichlet problems for prescribed mean curvature equation on unbounded domains inside the complement of a cone or a parabola like region in $\mathbb{R}^n$ ($n\geq 2$). The existence results are proved using a modified Perron's method by which a subsolution is a solution to the minimal surface equation, while the role played by a supersolution is replaced by estimates on the uniform $C^{0}$ bounds on the liftings of subfunctions on compact sets. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction and main results} Let $\Omega$ be an unbounded domain with $C^{2,\gamma }$ ($0<\gamma <1$) boundary in $\mathbb{R}^n$ ($n\geq 2$), $\phi $ be a $C^{0}$ function on $\partial \Omega$, and $\Lambda $ be a $C^{1}$ function on $\overline{\Omega}$, we consider the Dirichlet problem for the prescribed mean curvature equation on $\Omega$ (here the summation convention is used): \begin{gather} ((1+|Du|^{2}) \delta_{ij} - D_{i}u D_{j}u )D_{ij} u = n \Lambda (1+|Du|^{2})^{3/2} \quad\text{on } \Omega; \label{eq:problem11} \\ u=\phi \quad\text{on } \partial\Omega . \label{eq:problem12} \end{gather} In this paper, we investigate the conditions from which we can derive growth estimates and existence of solutions $u$ for \eqref{eq:problem11}-\eqref{eq:problem12}. When $\Omega$ is a bounded domain, Serrin proved in \cite{Serrin} that \eqref{eq:problem11}-\eqref{eq:problem12} has a solution in $C^{0}(\overline{\Omega})\cap C^{2}(\Omega )$ as long as one can get $C^{0}$ estimates and the mean curvature $H'$ on the boundary $\partial \Omega$ with respect to the inner normal satisfying $H'\geq \frac{n}{n-1} |\Lambda |$ on $\partial \Omega$. Furthermore, a counterexample is given \cite[page 480]{Serrin} to show that for some functions $\Lambda $, \eqref{eq:problem11}-\eqref{eq:problem12} do not have a $C^{2}$ solution (the only thing that did not work out in the example is the $C^{0}$ estimate). When $n=2$, $\Omega$ is a strip and $\Lambda $ is a constant $H$, there have been a lot of interest in investigating the solutions of \eqref{eq:problem11}-\eqref{eq:problem12}. Finn \cite{Finn1} showed that the solvability of \eqref{eq:problem11} in $\Omega$ implies that the width of $\Omega$ will be less than $\frac{1}{|H|}$. When the width of a strip $\Omega$ is $1/|H|$, the half cylinder of radius $1/(2|H|)$ is a graph with constant mean curvature $H$ in the strip. Collin \cite{Collin} and Wang \cite{Wang} showed independently that there are graphs with constant mean curvature $H$ on the strip $\Omega$ with width $1/|H|$ other than the half cylinder. When $\Lambda =H$ and $\Omega $ is an unbounded convex domain on a plane, Lopez \cite{Lopez2} proved that the necessary and sufficient condition for \eqref{eq:problem11} to have solutions with zero boundary value is that $\Omega$ is inside a strip of width $1/|H|$. When $\Omega$ is a strip on the plane, the existence of constant mean curvature graphs with prescribed boundary was considered by Lopez in \cite{Lopez4}. The approach used in \cite{Lopez4} is a modified version of the classical Perron's method of super- sub- solutions. The subsolution used in \cite{Lopez4} is a solution to the minimal surface equation (i.e. a solution to \eqref{eq:problem11}-\eqref{eq:problem12} with $\Lambda =0$), while the role played by a supersolution is replaced by a family of turned to side nodoids (the use of turned to side nodiods was adopted from an idea used by Finn \cite{Finn}) that were used to prove that liftings from subfunctions will be bounded uniformly on any compact subset of $\Omega$. When $\Omega$ is an unbounded domain inside a cone or cylinder, we proved in \cite{Jin3} the existence of solutions to \eqref{eq:problem11}-\eqref{eq:problem12} for certain class of functions $\Lambda$. The approach used in \cite{Jin3} is also a modified version of the classical Perron's method. There are new difficulties in carrying out the Perron's method when $\Lambda $ is not a constant and $\Omega$ is not a slab. The main difficulty is that the family of turned to side nodiods cannot be used anymore. The difficulty was overcome in \cite{Jin3} by constructing a family of auxiliary functions that were used to prove that liftings from subfunctions will be bounded uniformly on any compact subset of $\Omega$. However when $\Omega$ is outside a cone (in the compliment of a cone) or inside a parabola-shaped region, the family of auxiliary functions used in \cite{Jin3} can no longer be used.In this paper, we construct a new family of auxiliary functions so that we can use the Perron's method to prove the existence of solutions to \eqref{eq:problem11}-\eqref{eq:problem12}. As a by product, we can also derive the growth estimates for solutions $u$ to \eqref{eq:problem11}-\eqref{eq:problem12}. For more historical notes and references on prescribed mean curvature equations, we refer readers to \cite{Collin}, \cite{Finn1}, \cite{Finn}, \cite{GT}, \cite{Lopez2}, \cite{Lopez4}, \cite{Wang}. We will consider only those domains that are inside some special regions. The first kind of regions is the compliment of a cone in ${\bf R}^n$ ($n\geq 2$) defined by (we use the notation ${\bf{x}}^{*}=(x_{1}, x_{2}, \cdot \cdot \cdot , x_{n-1})$) $$ P(n) = \{ {\bf{x}} \in {\bf R}^n : |x_{n}|< \frac{1}{240n}|{\bf{x}}^{*}| \}. $$ The second kind of regions is a parabola-shaped region defined by $$ P(n, \alpha ,b) = \{ {\bf{x}} \in {\bf R}^n : |x_{n}|< b|{\bf{x}}^{*}|^{\alpha } \}. $$ for some fixed positive constants $\alpha $, $b$, $0<\alpha <1$. For a general domain $\Omega$ inside $P(n)$, we can estimate the growth rate of a solution. \begin{theorem} \label{theorem:second} Let $\Omega$ be a domain inside $P(n)$, $|\Lambda ({\bf{x}})|$ satisfy \begin{equation} |\Lambda ({\bf{x}})| \leq \frac{15(n-1)}{14(n+1)} \frac{1}{|{\bf{x}}^{*}|} \quad\text{on } \Omega , \label{eq:boundoflambda} \end{equation} then any $C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ solution $u$ to \eqref{eq:problem11}-\eqref{eq:problem12} satisfies that on $\Omega$, \begin{equation} |u({\bf{x}})|\leq \frac{1}{240n}|{\bf{x}}^{*}|+ \sup \{ |\phi ({\bf{p}},q)| : ({\bf{p}},q)\in \partial \Omega, \frac{1}{2}|{\bf{x}}^{*}|\leq |{\bf{p}}|\leq 2 |{\bf{x}}^{*}| \} . \label{eq:boundone} \end{equation} \end{theorem} When $\Omega $ satisfies more geometric conditions, the existence of solutions to \eqref{eq:problem11}-\eqref{eq:problem12} can be proved. First we list a set of conditions that will guarantee a solution to the minimal surface equation with the same boundary data on the same domain: \begin{itemize} \item[(A1)] There is a sequence of subdomains $\Omega_{j}$ such that $\Omega_{j}\subset \Omega_{j+1} \subset \Omega $ for all $j\geq 1$, $\cup \Omega_{j}=\Omega$; \item[(A2)] Each $\Omega_{j}$ is a $C^{2, \gamma }$ bounded domain and has positive mean curvature on $\partial \Omega_{j}$ with respect to the inner normal on $\partial \Omega_{j}$; \item[(A3)] $dist ({\bf{0}}, \Omega \setminus \Omega_{j}) \to \infty $ as $j\to \infty$. \end{itemize} The next condition on $\Omega$ will be used to prove the solution obtained by Perron's method takes boundary data $\phi $ continuously. \noindent{\it{Serrin's condition}}: The mean curvature function $H'$ on $\partial \Omega$ with respect to the inner normal satisfies \begin{equation} H'> \frac{n}{n-1} |\Lambda ({\bf{x}})| \quad on\quad \partial \Omega . \label{eq:meancurvature} \end{equation} \begin{remark} \label{rmk1.2} \rm Conditions (A1)-(A3) and Serrin's condition (\ref{eq:meancurvature}) are the same as those used in \cite{Jin3}. \end{remark} Here is the first existence result. \begin{theorem} \label{theorem:first} Assume {\rm (A1)--(A3)}, Serrin's condition \eqref{eq:meancurvature} and $\Omega$ is inside $P(n)$. If $\Lambda ({\bf{x}})$ satisfies \eqref{eq:boundoflambda}, then \eqref{eq:problem11}--\eqref{eq:problem12} has a solution $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$. \end{theorem} When the domains are inside $P(n, \alpha ,b)$, we assume $\Omega$ is not very close to the origin: \begin{equation} |{\bf{x}}^{*}|\geq (120nb(\frac{3}{2})^{\alpha })^{\frac{1}{1-\alpha}} \quad {\text{for}} \ \ {\text{any}} \quad {\bf{x}} \in \Omega . \label{eq:boundaway0} \end{equation} \begin{remark} \label{rmk1.4} \rm Condition \eqref{eq:boundaway0} is not absolutely necessary, we use it here so that we can state results more clearly. Without \eqref{eq:boundaway0}, the following results are still true as long as $\Lambda ({\bf{x}})$ is bounded appropriately where \eqref{eq:boundaway0} does not hold. \end{remark} The growth estimate now is as follows. \begin{theorem} \label{theorem:fourth} Let $\Omega$ be a domain inside $P(n, \alpha ,b)$. If $\Omega $ satisfies \eqref{eq:boundaway0} and \begin{equation} |\Lambda ({\bf{x}})| \leq \frac{(n-1)}{56n(n+1)}(\frac{1}{3})^{\alpha } \frac{1}{b|{\bf{x}}^{*}|^{\alpha }} \quad\text{on } \Omega , \label{eq:boundoflambda20} \end{equation} then any $C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ solution $u$ to \eqref{eq:problem11}-\eqref{eq:problem12} satisfies that on $\Omega$ \begin{equation} |u({\bf{x}})|\leq \frac{1}{2} (\frac{3}{2})^{\alpha} |{\bf{x}}^{*}|^{\alpha} + \sup \{ |\phi ({\bf{p}},q)| : ({\bf{p}},q)\in \partial \Omega, \frac{1}{2}|{\bf{x}}^{*}|\leq|{\bf{p}}|\leq 2 |{\bf{x}}^{*}| \} . \label{eq:boundtwo} \end{equation} \end{theorem} Here is the existence results for domains in $P(n, \alpha, b)$. \begin{theorem} \label{theorem:third} Assume {\rm (A1)--(A3)}, Serrin's condition \eqref{eq:meancurvature} and $\Omega$ is inside $P(n, \alpha ,b)$ satisfying \eqref{eq:boundaway0}. Then if $|\Lambda ({\bf{x}})|$ satisfies \eqref{eq:boundoflambda20}, \eqref{eq:problem11}-\eqref{eq:problem12} has a solution $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$. \end{theorem} \section{A family of auxiliary functions and growth estimates} In this section, we construct a family of auxiliary functions and derive growth estimates for solutions of \eqref{eq:problem11}-\eqref{eq:problem12}. The construction is adapted from that in \cite{JL2} and \cite{JinKirk} to fit our needs here (in turn, the constructions in \cite{JL2} and \cite{JinKirk} were inspired by \cite{Finn} and \cite{Serrin}). Set \begin{equation} Q z \equiv \frac{((1+|Dz|^{2}) \delta_{ij} - D_{i}z D_{j}z )}{n+(n-1)|Dz|^{2}}D_{ij} z \end{equation} We first prove the existence of a family auxiliary functions that will suit our needs later. \begin{lemma} \label{lemma:first} For any numbers $M>0$, $H\geq 2$, and any point ${\bf{x}}^{*}_{0}\in R^{n-1}$, there are positive decreasing functions $\chi (t)$ (depending on $n$ only), $h_{a}(t)$ (with the inverse $h_{a}^{-1}$) and a positive increasing function $A(t)$ (depending on $n$, $H$ and $M$ only) such that for any constant $\gamma$, the function \begin{equation} z=z({\bf{x}})=\gamma +A(H)e^{\chi (H)} -\{ (h_{a}^{-1}(x_{n}+M))^2-|{\bf x}^{*}-{\bf x}^{*}_{0}|^2 \}^{1/2} \label{eq:barrier} \end{equation} satisfies \begin{equation} Qz \leq -\frac{n-1}{28(n+1) MH} \cdot \frac{(1+|Dz|^{2})^{3/2}}{n+(n-1)|Dz|^{2}} \quad in \quad \Omega_{{\bf x}^{*}_{0},H,M} \label{eq:estimates} \end{equation} where \begin{equation} \Omega_{{\bf x}^{*}_{0},H,M} =\{{\bf x}:|x_{n}|< M,|{\bf x}^{*}-{\bf x}^{*}_{0}|< h_{a}^{-1}(x_{n}+M) \} . \label{eq:domain} \end{equation} Furthermore \begin{equation} z({\bf{x}}^{*}_{0},x_{n})\leq \gamma +\frac{M}{H} \quad for \quad -M \leq x_{n} \leq M. \label{eq:boundofz} \end{equation} \end{lemma} \begin{proof} Set $E=\frac{1}{n-1}$, $G=\frac{1}{2n-1}$, $c_{2}=\frac{2+E}{G}=4n+\frac{1}{n-1}$, and $\Phi_{1}(\rho)=\rho^{-2}$ if $0<\rho<1$, $\Phi_{1}(\rho)=c_{2}$ if $\rho \geq 1$. We define a function $\chi$ by $$ \chi(\alpha)=\int_{\alpha}^{\infty} \frac{d\rho}{\rho^{3}\Phi_{1}(\rho)} \quad \mbox{for } \alpha>0. $$ It is clear that $\chi (\alpha )$ is a decreasing function with range $(0,\infty).$ Let $\eta$ be the inverse of $\chi.$ Then $\eta$ is a positive, decreasing function with range $(0,\infty)$. For $\alpha >1$, we have \begin{equation} \chi(\alpha)=\int_{\alpha}^{\infty}\frac{d\rho}{\rho^{3}\Phi_{1}(\rho)} =\int_{\alpha}^{\infty}\frac{d\rho}{c_{2}\rho^{3}} = \frac{1}{2c_{2}} \alpha^{-2} <1. \label{eq:chi2} \end{equation} Thus \begin{equation} \eta (\beta ) = (2c_{2}\beta)^{-1/2}\quad \text{for } 0<\beta <(2c_{2})^{-1}. \label{eq:beta1} \end{equation} For $H\geq 2$, since $\eta (\chi (H)) =H$ and $\eta $ is decreasing, we have $\eta(\beta)> H$ and $\eta (\beta )= (2c_{2}\beta)^{-1/2}$ for $0<\beta< \chi(H)$. We define a function $A(H)=A(H,M)$ by \begin{equation} A(H) = 2M (\int_{1}^{e^{\chi(H)}} \eta (\ln t) dt)^{-1} . \label{eq:ah} \end{equation} For the rest of this article, we set $a=A(H)$ and define \begin{equation} h_{a}(r)=\int_{r}^{ae^{\chi(H)}} \eta (\ln \frac{t}{a} ) dt \quad\text{for } a\le r\le ae^{\chi(H)}. \end{equation} Then \begin{equation} h_{a}(ae^{\chi (H)})=0, \quad h_{a}(a) =h_{A(H)}(A(H))= 2M. \label{eq:chi3} \end{equation} For $aH, \quad h_{a}''(r)=\frac{1}{r}(\eta(\ln \frac{r}{a} ))^{3}\Phi_{1} (\eta(\ln \frac{r}{a} )). \label{eq:derivativelarge} \end{equation} Thus for $a0$, we define a domain $\Omega_{{\bf x}^{*}_{0},H,M}$ in ${\bf{x}}$ space by (\ref{eq:domain}) and define a function $z=z_{{\bf x}^{*}_{0},H,M}({\bf{x}})$ by (\ref{eq:barrier}). It is clear that the function $z$ is well defined on $\Omega_{{\bf x}^{*}_{0},H,M}$. Let \begin{equation} S=((h_{a}^{-1}(x_{n}+M))^2-|{\bf x}^{*}-{\bf x}_{0}^{*}|^2 )^{1/2}. \label{eq:defofs} \end{equation} then for $1\le i\le n-1 $, we have \begin{equation} \frac{\partial z}{\partial x_i}= \frac{1}{S}(x_i-x_{0i}),\quad \frac{\partial z}{\partial x_{n}}= - \frac{1}{S}h_{a}^{-1} (h_{a}^{-1})'. \label{eq:derivative} \end{equation} Since $h_{a}^{-1}(r)$ and $\eta $ are decreasing functions, for $H\geq 2$, $|y|\leq M$, we have \begin{equation} \begin{aligned} 0&< -(h_{a}^{-1})' = \frac{-1}{h_{a}'(h_{a}^{-1}(x_{n}+M))} =\frac{1}{ \eta(\ln(\frac{1}{a}h_{a}^{-1}(x_{n}+M))) } \\ &\leq \frac{1}{\eta (\ln e^{\chi (H)})} =\frac{1}{\eta(\chi(H))}= \frac{1}{H} \quad {\rm{for}} |x_{n}|\le -M. \end{aligned} \label{eq:boundofeta} \end{equation} Then (\ref{eq:boundofz}) follows from the facts that $z({\bf{x}}^{*}_{0},-M)=\gamma +A(H)e^{\chi (H)} -h_{a}^{-1}(0) =\gamma$ and $$ \frac{\partial z}{\partial x_{n}} ({\bf{x}}^{*}_{0},x_{n})= - \frac{1}{S}h_{a}^{-1} (h_{a}^{-1})'=- (h_{a}^{-1})'\leq \frac{1}{H}. $$ Now if $|{\bf x}^{*}-{\bf x}^{*}_{0}|\geq \frac{1}{2}h_{a}^{-1}(x_{n}+M))$ and $H\geq 2$, \begin{equation} (\frac{\partial z}{\partial x_{n}})^{2} =\frac{1}{S^{2}} (h_{a}^{-1})^{2} ((h_{a}^{-1})')^{2} \leq \frac{1}{S^{2}} (\frac{1}{2}h_{a}^{-1})^{2} \frac{4}{H^{2}} \leq \sum_{i=1}^{n-1} (\frac{\partial z}{\partial x_{i}})^{2} . \label{eq:derivative2} \end{equation} If $|{\bf x}^{*}-{\bf x}^{*}_{0}|\leq \frac{1}{2}h_{a}^{-1}(x_{n}+M))$ and $H\geq 2$, then $$ S^{2}=(h_{a}^{-1}(x_{n}+M)))^{2} -|{\bf x}^{*}-{\bf x}^{*}_{0}|^{2} \geq \frac{3}{4}(h_{a}^{-1}(x_{n}+M)))^{2}, $$ and \begin{equation} (\frac{\partial z}{\partial x_{n}})^{2} =\frac{1}{S^{2}} (h_{a}^{-1})^{2} ((h_{a}^{-1})')^{2} \leq \frac{1}{S^{2}} (h_{a}^{-1})^{2} \frac{1}{H^{2}} \leq \frac{4}{3H^{2}}\leq 1. \label{eq:derivative3} \end{equation} Therefore, $$ (\frac{\partial z}{\partial x_{n}})^{2}\leq \sum_{i=1}^{n-1} (\frac{\partial z}{\partial x_{i}})^{2} +1. $$ We set the notation $$ a_{ij} =\frac{(1+|p|^{2})\delta_{ij} -p_{i}p_{j}}{n+(n-1)|p|^{2}}, p_{i}=\frac{\partial z}{\partial x_{i}} \quad 1\leq i, j \leq n. $$ Then $|p_{n}|^{2}\leq \sum_{i=1}^{n-1}p_{i}^{2} +1$ and \begin{equation} a_{nn}=\frac{1+\sum_{i=1}^{n-1}p_{i}^{2}}{n+(n-1)|p|^{2}} \geq \frac{1+\sum_{i=1}^{i=n-1}p_{i}^{2}}{2n-1+2(n-1)\sum_{i=1}^{i=n-1}p_{i}^{2}} \geq \frac{1}{2n-1}=G \label{eq:derivative4} \end{equation} and \begin{equation} \sum_{i,j=1}^{n} a_{ij} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} =\frac{|p|^{2}}{n+(n-1)|p|^{2}} \leq \frac{1}{n-1} =E. \label{eq:derivative5} \end{equation} Thus on $\Omega_{{\bf{x}}^{*}_{0}, H,M}$, we have \begin{align*} Qz&=\sum_{i,j=1}^{n} a_{ij}D_{ij}z \\ &= \frac{1}{S}\sum_{i=1}^{n-1} a_{ii} +\frac{1}{S^{3}}\sum_{i,j=1}^{n-1} a_{ij}(x_{i}-x_{i}^{0})(x_{j}-x_{j}^{0}) -\frac{1}{S^{3}}\sum_{i=1}^{n-1} a_{in}(x_{i}-x_{i}^{0})h_{a}^{-1} (h_{a}^{-1})' \\ &\quad - \frac{1}{S}a_{nn}((h_{a}^{-1})^{2} + h_{a}^{-1} (h_{a}^{-1})'') + \frac{1}{S^{3}}a_{nn}(h_{a}^{-1})^{2} ((h_{a}^{-1})')^{2}\\ &= \frac{1}{S} \big\{ 1-a_{nn}+\sum_{i,j=1}^{n} a_{ij} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} -a_{nn} ((h_{a}^{-1})^{2} + h_{a}^{-1} (h_{a}^{-1})'') \big\} \\ & \leq \frac{1}{S}\big\{ 1+\sum_{i,j=1}^{n} a_{ij} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} -a_{nn} h_{a}^{-1} (h_{a}^{-1})'' \big\} \\ &\leq \frac{1}{S}\{ 1+E - Gh_{a}^{-1} (h_{a}^{-1})'' \}= \frac{-1}{S} \end{align*} (by (\ref{eq:equationofinverse})), (\ref{eq:derivative4}), (\ref{eq:derivative5}) and the definition of $\Phi $). Then (\ref{eq:estimates}) follows from the following inequality \begin{equation} \frac{n-1}{28(n+1)MH} \cdot \frac{(1+|Dz|^{2})^{3/2}}{n+(n-1)|Dz|^{2}} \leq \frac{1}{S}. \label{eq:lastone} \end{equation} To prove (\ref{eq:lastone}), since $\chi (H)<1$ for $H\geq 2$, we have \begin{align*} &\frac{(1+|Dz|^{2})^{3/2}}{n+(n-1)|Dz|^{2}}\\ &\leq \frac{1}{n-1}(1+|Dz|^{2})^{1/2} \\ &=\frac{1}{n-1} (1+\frac{1}{S^{2}} (|{\bf{x}}^{*} -{\bf{x}}_{0}^{*}|^{2} + (h_{a}^{-1})^{2} ((h_{a}^{-1})')^{2}))^{1/2} \quad \text{by \eqref{eq:derivative}} \\ &= \frac{1}{(n-1)S} (S^{2}+|{\bf{x}}^{*} -{\bf{x}}^{*}_{0}|^{2} + (h_{a}^{-1})^{2} ((h_{a}^{-1})')^{2})^{1/2} \\ &=\frac{1}{(n-1)S} ((h_{a}^{-1})^{2} + (h_{a}^{-1})^{2} ((h_{a}^{-1})')^{2})^{1/2} \quad \text{by \eqref{eq:defofs}}\\ &=\frac{1}{(n-1)S} (h_{a}^{-1})(1+((h_{a}^{-1})')^{2})^{1/2} \\ &\leq \frac{1}{(n-1)S} (h_{a}^{-1})(1+\frac{1}{H^{2}})^{1/2} \leq \frac{1}{(n-1)S} A(H)e^{\chi (H)}(1+\frac{1}{4})^{1/2} \quad \text{by \eqref{eq:valueofinverseh}, \eqref{eq:boundofeta}}\\ &\leq \frac{1}{(n-1)S} (\frac{5}{4})^{1/2} 2c_{2}e^{\chi (H)}MH \leq \frac{1}{(n-1)S} c_{2}5^{1/2} e MH \quad \text{by \eqref{eq:ah2}}\\ &=\frac{1}{(n-1)S} (4n+\frac{1}{n-1}) 5^{1/2} e MH \leq \frac{28(n+1)}{n-1} MH \frac{1}{S} \quad \text{by the definition of $c_{2}$}. \end{align*} \end{proof} \begin{lemma} \label{lemma:second} Let $\phi $ be a continuous function defined on $\partial \Omega$. For any ${\bf{x}}^{*}_{0} \in R^{n-1}$, we set \begin{equation} \gamma = \gamma({\bf{x}}^{*}_{0}) =\sup \{ |\phi ({\bf{x}})| : {\bf{x}}\in \partial \Omega, \quad \frac{1}{2}|{\bf{x}}^{*}_{0}|\leq |{\bf{x}}^{*}|\leq \frac{3}{2}|{\bf{x}}^{*}_{0}| \} . \label{eq:definitionofgamma} \end{equation} For any ${\bf{x}}^{*}_{0} \in R^{n-1}$ such that $({\bf{x}}^{*}_{0},x_{n})\in \Omega$ for some $x_{n}$, in the function $z=z_{{\bf{x}}^{*}_{0}} $ defined in (\ref{eq:barrier}), we set \begin{equation} \gamma=\gamma ({\bf{x}}^{*}_{0}), \quad H=2, \quad M=\frac{1}{120n}|{\bf{x}}^{*}_{0}|. \label{eq:setofmh} \end{equation} Then $z=z_{{\bf{x}}^{*}_{0}} $ satisfies \begin{equation} Qz\leq -n \Lambda_{0} ({\bf{x}}) \frac{(1+|Dz|^{2})^{3/2}}{n+(n-1)|Dz|^{2}} \quad in \quad \Omega_{{\bf x}_{0},H,M} \cap P(n) \label{eq:supersolution} \end{equation} where \begin{equation} \Lambda_{0} ({\bf{x}}) = \frac{15(n-1)}{14(n+1)|{\bf{x}}^{*}|} . \label{eq:boundoflambda0} \end{equation} Furthermore \begin{itemize} \item[(i)] $z({\bf{x}}^{*}_{0},x_{n})\leq \frac{1}{240n} |{\bf{x}}^{*}_{0}| + \gamma({\bf{x}}^{*}_{0})$ for $|x_{n}|0$ be a continuous function on $\overline{\Omega}$, for each open set $O\in \Pi$, we define a new function $M_{O}(v)$, called the lifting of $v$ over $O$ as follows: $$ M_{O}(v)({\bf{x}})=v({\bf{x}}) \quad\text{if } {\bf{x}}\in \Omega\setminus O, \quad M_{O}(v)({\bf{x}},y)=w({\bf{x}}) \quad\text{if } {\bf{x}}\in O $$ where $w({\bf{x}})$ is the solution of the boundary-value problem \begin{gather} ((1+|Dw|^{2}) \delta_{ij} - D_{i}w D_{j}w )D_{ij} w = n \Lambda ({\bf{x}}) (1+|Dw|^{2})^{3/2} \quad\text{in } O, \label{eq:lift1} \\ w=v \quad\text{on } \partial O \,. \label{eq:lift2} \end{gather} \begin{remark} \rm By (\ref{eq:meancurvatureofo}), Lemma \ref{lemma:growth1} and \cite{Serrin} or \cite[Theorem 16.9]{GT}, there is a unique solution $w\in C^{2}(O)\cap C^{0}(\overline{\Omega})$ to (\ref{eq:lift1})-(\ref{eq:lift2}). Thus $M_{O}(v)$ is well defined. \end{remark} We define a class $\Xi $ of functions $v$, called subfunctions, such that: \begin{enumerate} \item $v\in C^{0}(\overline{\Omega })$ and $v\leq \phi $ on $\partial \Omega$; \item For any $O \in \Pi $, $v\leq M_{O}(v)$; \item $v\leq z_{{\bf{x}}^{*}_{0}} $ on $\Omega \cap \Omega_{{\bf{x}}^{*}_{0}, M, H} $ for any ${\bf{x}}^{*}_{0} \in R^{n-1}$ such that $({\bf{x}}^{*}_{0},x_{n})\in \Omega$ for some $x_{n}$, where $z_{{\bf{x}}^{*}_{0}}$ are those functions defined in Lemma \ref{lemma:second}. \end{enumerate} Now we prove some properties for subfunctions in the class $\Xi$. \begin{lemma}\label{lemma:fourth} If $v_{1}\leq v_{2}$, then $M_{O}(v_{1})\leq M_{O}(v_{2})$ for any $O\in \Pi $. \end{lemma} \begin{proof} Let $w_{1}$, $w_{2}$ be the solutions of the following two problems, respectively: \begin{gather*} ((1+|Dw_{k}|^{2}) \delta_{ij} - D_{i}w_{k} D_{j}w_{k} ) D_{ij} w_{k} = n \Lambda ({\bf{x}}) (1+|Dw_{k}|^{2})^{3/2} {\rm{in}} O, \\ w_{k}=v_{k} \quad \text{on } \partial O, \quad k=1,2. \end{gather*} Since $w_{1}=v_{1}\leq v_{2}=w_{2}$ on $\partial O$, by a comparison principle for quasilinear elliptic equations (e.g. see \cite[Theorem 10.1]{GT}), we have $w_{1}\leq w_{2}$ on $O$. On $\Omega \setminus O$, $M_{O}(v_{1})=v_{1}$, $M_{O}(v_{2})=v_{2}$. Thus $M_{O}(v_{1})\leq M_{O}(v_{2})$. \end{proof} \begin{lemma} \label{lemma:fifth} If $v_{1}\in \Xi$, $v_{2}\in \Xi$, then $\max \{ v_{1}, v_{2} \} \in \Xi$. \end{lemma} \begin{proof} If $v_{1}\in \Xi$, $v_{2}\in \Xi$, then $\max \{ v_{1}, v_{2} \}\in C^{0}(\overline{\Omega })$, and $\max \{ v_{1}, v_{2} \}\leq \phi $ on $\partial \Omega$. It is also clear that $\max \{ v_{1}, v_{2} \}\leq z_{{\bf{x}}^{*}_{0}}$ on $\Omega_{{\bf{x}}^{*}_{0}, M, H } \cap \Omega$. Since $v_{1}\leq \max \{ v_{1}, v_{2} \}$, $v_{2} \leq \max \{ v_{1}, v_{2}\}$, we have (by Lemma \ref{lemma:fourth}) that for any $O\in \Pi $, $$ M_{O}(v_{1}) \leq M_{O}(\max \{ v_{1}, v_{2}\} ),\quad M_{O}(v_{2}) \leq M_{O}(\max \{ v_{1}, v_{2}\} ). $$ Since $v_{1}\in \Xi $ and $v_{2}\in \Xi $ imply $v_{1} \leq M_{O}(v_{1})$, $v_{2} \leq M_{O}(v_{2})$, we have $\max \{ v_{1}, v_{2} \}\leq M_{O}(\max \{ v_{1}, v_{2}\})$. Thus $\max \{ v_{1}, v_{2} \}\in \Xi$. \end{proof} \begin{lemma} \label{lemma:sixth} If $v\in \Xi $, then $M_{O}(v)\in \Xi$ for any $O\in \Pi$. \end{lemma} \begin{proof} By the definition of $M_{O}( v)$, it is clear that $M_{O}( v)\in C^{0}(\overline{\Omega} )$ and $M_{O}(v) \leq \phi $ on $\partial \Omega $. First we show that for any $O_{1}\in \Pi$, \begin{equation} M_{O}( v)({\bf{x}})\leq M_{O_{1}}(M_{O}(v))({\bf{x}}). \label{eq:mv} \end{equation} We need to prove only that (\ref{eq:mv}) is true for ${\bf{x}}\in O_{1}$. Since $v\leq M_{O}( v)$ on $\Omega$, we have (by Lemma \ref{lemma:fourth}) $M_{O_{1}}( v)\leq M_{O_{1}}(M_{O}( v))$. Combining this with $v\leq M_{O_{1}}( v)$, we have $v\leq M_{O_{1}}(M_{O}(v))$. Thus for ${\bf{x}}\in O_{1} \setminus O$, \begin{equation} M_{O}( v)({\bf{x}})=v({\bf{x}}) \leq M_{O_{1}}(M_{O}(v))({\bf{x}}). \label{eq:boundary1} \end{equation} That is, (\ref{eq:mv}) is true on $O_{1} \setminus O$, Now for $\Omega_{1}=O_{1} \cap O$, if we set $$ M_{O}( v)=w_{1}, \quad M_{O_{1}}(M_{O}(v))=w_{2}, $$ we have that on $\Omega_{1}$, $k=1,2$, $$ ((1+|Dw_{k}|^{2}) \delta_{ij} - D_{i}w_{k} D_{j}w_{k} )D_{ij} w_{k} = n \Lambda ({\bf{x}}) (1+|Dw_{k}|^{2})^{3/2} . $$ On $\partial \Omega_{1}$, $w_{1}\leq w_{2}$ on $O_{1}\cap \partial O$ by (\ref{eq:boundary1}) and $w_{1}\leq w_{2}$ on $\partial O_{1}\cap O$ since (\ref{eq:mv}) is true on $\Omega\setminus O_{1}$. Then a comparison argument implies $w_{1}\leq w_{2}$ on $\Omega_{1}$. Thus (\ref{eq:mv}) is true on $O_{1} \cap O$ and on $O_{1}$. \end{proof} Now we prove that $M_{O}(v)\leq z_{{\bf{x}}^{*}_{0}}$ on $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap \Omega $. Since $v\in \Xi$, $v\leq z_{{\bf{x}}^{*}_{0}}$ on $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap \Omega $. Thus by the definition of $M_{O}(v)$, we only need to show $M_{O}(v)\leq z_{{\bf{x}}^{*}_{0}}$ on $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap O$. If $O$ does not intersect with $\Omega_{{\bf{x}}^{*}_{0},M,H}$, the conclusion is trivial. In the case that $O$ is at least partly covered by $\Omega_{{\bf{x}}^{*}_{0},M,H}$. $M_{O}(v)- z_{{\bf{x}}^{*}_{0}}$ cannot achieve its maximum value in $\overline{\Omega_{{\bf{x}}^{*}_{0},M,H}\cap O}$ on $\partial \Omega_{{\bf{x}}^{*}_{0},M,H} \cap O$ since the directional derivative of $z_{{\bf{x}}^{*}_{0}}$ with respect to outer normal is $+\infty$ on $\partial \Omega_{{\bf{x}}^{*}_{0},M,H}\cap O $ by (iii) in Lemma \ref{lemma:second}. Furthermore since $z_{{\bf{x}}^{*}_{0}}$ satisfies (\ref{eq:supersolution}) and $|\Lambda ({\bf{x}})|\leq \Lambda_{0}({\bf{x}})$ by \eqref{eq:boundoflambda} and (\ref{eq:boundoflambda0}), a comparison argument concludes that $M_{O}(v)- z_{{\bf{x}}^{*}_{0}}$ cannot achieve a local maximum inside $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap O$. Thus $M_{O}(v) -z_{{\bf{x}}^{*}_{0}}$ achieves its maximum value in $\overline{\Omega_{{\bf{x}}^{*}_{0},M,H}\cap O}$ on $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap \partial O$. Then $M_{O}(v) -z_{{\bf{x}}^{*}_{0}}\leq 0$ on $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap O$ follows from $M_{O}(v) -z_{{\bf{x}}^{*}_{0}}=v-z_{{\bf{x}}^{*}_{0}}\leq 0$ on $\Omega_{{\bf{x}}^{*}_{0},M,H}\cap \partial O$. %\end{proof} Now we will show that $\Xi$ is not empty by proving the existence of a solution to the minimal surface equation with the same boundary-value and on the same domain. \begin{lemma} \label{lemma:seventh} If $v\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ is a solution of the problem \begin{equation} ((1+|Dv|^{2}) \delta_{ij} - D_{i}v D_{j}v )D_{ij} v = 0 {\rm{in}} \Omega , v=\phi on \partial \Omega . \label{eq:subsolution221} \end{equation} Then for any $({\bf{x}}^{*}_{0},x_{n})\in \Omega$, \begin{equation} |v| \leq z_{{\bf{x}}^{*}_{0}}\quad\text{on } \Omega_{{\bf{x}}^{*}_{0},M,H} \cap \Omega \label{eq:boundofminimal} \end{equation} \end{lemma} The proof of the above lemma is just a special case of Lemma \ref{lemma:growth1} with $\Lambda ({\bf{x}})=0$. \begin{lemma} \label{lemma:eigth} Assume {\rm (A1)--(A3)}. Then the boundary-value problem \begin{equation} ((1+|Dv|^{2}) \delta_{ij} - D_{i}v D_{j}v )D_{ij} v = 0 \quad\text{in } \Omega ,\quad v=\phi \quad\text{on } \partial \Omega . \label{eq:subsolution1} \end{equation} has a solution $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$. \end{lemma} \begin{proof} This is \cite[Lemma 4.5 ]{Jin3} (Though a slight difference should be noted there. That is, the bound for solutions of the minimal surface equation is given by (\ref{eq:boundofminimal}) which will play the same role as the Lemma 4.4 in \cite{Jin3} (By the way, the Lemma 3.1 quoted in the proof of Lemma 4.5 in \cite{Jin3} should be Lemma 4.4 in \cite{Jin3}). \end{proof} Now we prove the Theorem \ref{theorem:first}. We set $$ u({\bf{x}})=\sup \{ v({\bf{x}}) : v\in \Xi \}, {\bf{x}}\in \overline{\Omega}. $$ We first consider the case that $\Lambda ({\bf{x}})\leq 0$ on $\Omega $. For such a choice of $\Lambda ({\bf{x}})$, we will show that $u$ is in $C^{0}(\overline{\Omega})\cap C^{2}(\Omega)$ satisfying \eqref{eq:problem11}-\eqref{eq:problem12}. It is well known and standard (for example, see \cite{CH}) that by Perron's method, we can prove that $u$ is in $C^{2}(\Omega )$ and satisfies \eqref{eq:problem11}. Indeed, let ${\bf{x}}_{1}\in \Omega $. By the definition of $u({\bf{x}}_{1})$, there is a sequence of functions $v_{i}$ in $\Xi $ such that $$ u({\bf{x}}_{1})=\lim_{i\to \infty } v_{i}({\bf{x}}_{1}). $$ Let $v_{0} $ be a solution of (\ref{eq:subsolution1}). Since $\Lambda ({\bf{x}})\leq 0$ on $\Omega $, by Lemma \ref{lemma:seventh}, it is easy to check that $v_{0}\in \Xi$. By Lemma \ref{lemma:fifth} and replacing $v_{i}$ by $\max \{ v_{i}, v_{0} \}$, we may assume that $v_{i}\geq v_{0} $ on $\Omega$. Let $O$ be an open set in $\Pi$ such that ${\bf{x}}_{1}\in O$. We replace $v_{i}$ by $M_{O}(v_{i})$. Then we have a sequence of functions $z_{i}$ defined on $O$ satisfying \begin{gather*} u({\bf{x}}_{1})=\lim_{i\to \infty } z_{i}({\bf{x}}_{1}) , \\ ((1+|Dz_{i}|^{2}) \delta_{pq} - D_{p}z_{i} D_{q}z_{i}) D_{pq} z_{i} = n \Lambda ({\bf{x}}) (1+|Dz_{i}|^{2})^{3/2} \quad\text{on } O, \\ z_{i}=v_{i} \quad\text{on } \partial O. \end{gather*} Since for all $i$, if $O\cap \Omega_{{\bf{x}}^{*}_{0},M,H}$ is not empty, $$ v_{0} \leq v_{i}\leq z_{i} \leq z_{{\bf{x}}^{*}_{0}} \quad\text{on } O\cap \Omega_{{\bf{x}}^{*}_{0},M,H}, $$ and we can cover $O$ by finitely many such domains $\Omega_{{\bf{x}}^{*}_{0},M,H}$, thus there is a number $K_{3}$ independent of $i$, such that for all $i$, $$ v_{0} \leq z_{i}\leq K_{3} \quad\text{in } O. $$ By \cite[Corollarys 16.6, 16.7]{GT}, there is a subsequence of $z_{i}$, for convenience still denoted by $z_{i}$, converges to a $C^{2}(O)$ function $z(x)$ in $C^{2}(O)$. Thus $z(x)$ satisfies $$ ((1+|Dz|^{2}) \delta_{pq} - D_{p}z D_{q}z )D_{pq} z= n \Lambda ({\bf{x}}) (1+|Dz|^{2})^{3/2} \quad\text{on } O. $$ Note that $u({\bf{x}}_{1})=z({\bf{x}}_{1})$ and $u({\bf{x}})\geq z({\bf{x}})$ on $O$. We claim that $u=z$ on $O$. Indeed, if there is another point ${\bf{x}}_{2} \in O$ such that $u({\bf{x}}_{2})$ is not equal to $z({\bf{x}}_{2})$, we must have $u({\bf{x}}_{2})>z({\bf{x}}_{2})$. Then there is a function $u_{0}\in \Xi $, such that $$ z({\bf{x}}_{2})< u_{0}({\bf{x}}_{2})\leq u({\bf{x}}_{2}). $$ Now the sequence $\max \{ u_{0}, M_{O}(v_{i}) \}$ satisfying $$ v_{i} \leq \max \{ u_{0}, M_{O}(v_{i}) \} \leq u . $$ Then similar to the way we obtain $z$, $M_{O}(\max \{ u_{0}, M_{O}(v_{i}) \})$ will produce a $C^{2}$ function $z_{1}$ satisfying \begin{gather*} ((1+|Dz_{1}|^{2}) \delta_{pq} - D_{p}z_{1} D_{q}z_{1} ) D_{pq} z_{1} = n \Lambda ({\bf{x}}) (1+|Dz_{1}|^{2})^{3/2} \quad\text{on } O,\\ z\leq z_{1} \quad\text{on } O, \quad z({\bf{x}}_{2}) \frac{n}{n-1} |\Lambda ({\bf{x}})| \quad\text{on } \partial \Omega_{1}. \label{eq:boundaryofsmall} \end{equation} Since $\Omega_{1}$ can be covered by finitely many $\Omega_{{\bf{x}}^{*}_{0}, M, H}$, there is a number $K_{4}>0$, such that for all $v\in \Xi$, \begin{equation} v\leq K_{4} \quad\text{on } {\overline{\Omega}}_{1} . \label{eq:boundofsmall} \end{equation} Now on $\partial \Omega_{1}$, we choose a smooth function $\phi^{*}$ as follows. $\phi^{*}=K_{4}$ on $\partial \Omega_{1}\cap \Omega$. $\phi^{*}=\phi $ in a neighborhood of ${\bf{x}}_{1}$ in $\partial \Omega_{1}$ and $\phi^{*}\geq \phi $ on the rest of $\partial \Omega_{1}$ (since (\ref{eq:boundofsmall}) implies $\phi \leq K_{4}$ on $\partial \Omega_{1}\cap \partial \Omega$, this is possible). Now we consider the boundary-value problem \begin{equation} ((1+|Du|^{2}) \delta_{ij} - D_{i}u D_{j}u ) D_{ij} u = n \Lambda ({\bf{x}}) (1+|Du|^{2})^{3/2} \quad\text{on } \Omega_{1}, \label{eq:small} \end{equation} \begin{equation} u=\phi^{*} \quad\text{on } \partial \Omega_{1} . \label{eq:small22} \end{equation} From (\ref{eq:boundaryofsmall}), Lemma \ref{lemma:growth1} and \cite{Serrin} or \cite[Theorem 16.9]{GT}, (\ref{eq:small})-(\ref{eq:small22}) has a solution $u_{1}\in C^{2}(\Omega_{1})\cap C^{0}({\overline{\Omega}}_{1})$. From the definition of $u_{1}$, (\ref{eq:boundofsmall}) and the fact that $v=\phi $ on $\partial \Omega$ for any $v\in \Xi$, a comparison argument shows that for any $v\in \Xi$, $$ M_{\Omega_{1}}(v) \leq u_{1} \quad\text{on } \Omega_{1}\quad {\text{for any}} \quad v\in \Xi. $$ Therefore, \begin{equation} u\leq u_{1} \quad\text{on } \Omega_{1}. \label{eq:upperhalf} \end{equation} Since we always have $$ u\geq v_{0} \quad\text{on } \Omega $$ for the solution $v_{0}$ of (\ref{eq:subsolution1}), we have \begin{equation} v_{0}\leq u\leq u_{1} \quad\text{on } \Omega_{1} . \label{eq:whole} \end{equation} Then the continuity of $u$ at ${\bf{x}}_{1}$ follows from the fact that $v_{0}=u_{1}=\phi $ on a neighborhood of ${\bf{x}}_{1}$ in $\partial \Omega$ and both $v_{0}$ and $u_{1}$ are continuous in a neighborhood of ${\bf{x}}_{1}$ in $\overline{\Omega}$. Since ${\bf{x}}_{1}\in \partial \Omega$ can be arbitrary, we have $u\in C^{0}(\overline{\Omega})$. Thus under the additional assumption that $\Lambda ({\bf{x}})\leq 0$ on $\Omega$, we have proved Theorem \ref{theorem:first}. In the case that $\Lambda ({\bf{x}})\geq 0$ on $\Omega$, repeating above proof, we can find a function $u\in C^{2}(\Omega)\cap C^{0}(\overline{\Omega})$ satisfying \begin{gather*} ((1+|Du|^{2}) \delta_{ij} - D_{i}u D_{j}u ) D_{ij} u = -n\Lambda ({\bf{x}}) (1+|Du|^{2})^{3/2} \quad\text{on } \Omega , \\ u=-\phi \quad\text{on } \partial \Omega . \end{gather*} Then $-u$ will satisfy \eqref{eq:problem11}-\eqref{eq:problem12}. In the general case of $\Lambda ({\bf{x}})$, we first find a function $u_{0}\in C^{1}(\Omega)\cap C^{0}(\overline{\Omega})$ satisfying \begin{gather*} ((1+|Du|^{2}) \delta_{ij} - D_{i}u D_{j}u ) D_{ij} u = n|\Lambda ({\bf{x}})| (1+|Du|^{2})^{3/2} \quad\text{on } \Omega , \\ u=\phi \quad\text{on } \partial \Omega . \end{gather*} In the proof for the case that $\Lambda\leq 0$, we replace $v_{0}$ (the solution of (\ref{eq:subsolution1})) by $u_{0}$, without changing the rest of the proof, now we will obtain a function $u\in C^{1}(\Omega)\cap C^{0}(\overline{\Omega})$ satisfies \eqref{eq:problem11}-\eqref{eq:problem12}. This completes the proof for Theorems \ref{theorem:first}. \subsection*{Acknowledgements} The author would like to thank Professor J. Serrin for his valuable suggestions. \begin{thebibliography}{00} \bibitem{Bernstein} S. Berstein; Sur les surfaces definies au moyen de leur courbure moyenne et totale, {\em Ann. Scuola Norm. Sup. Pisa}, 27 (1910), 233-256. \bibitem{Collin} P. Collin; Duex exemples de graphs de courbure moyenne constante sur une bande de $R^{2}$, {\em C.R. Acad. Sci. Paris Ser. I} 311 (1990), 539-542. \bibitem{CH} R. Courant \& D. Hilbert; Methods of Mathematical Physics, volume I, II, New York, Interscience 1953, 1962. \bibitem{Finn1} R. Finn; Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, {\em J. d'Anal. Math.}, 14 (1965), 139-160. \bibitem{Finn} R. Finn; A limiting geometry for capillary surfaces, {\em Ann. Scuola Norm. Sup. Pisa}, 11(1984), 361-379. \bibitem{GT} D. Gilbarg \& N. Trudinger; {\em Second order elliptic partial differential equations, second edition} (Springer 1983). \bibitem{JL2} Z. Jin \& K. Lancaster; Phragm{\'e}n-Lindel{\"o}f Theorems and the Asymptotic Behavior of solutions of quasilinear elliptic equations in slabs, {\em Proc. Roy. Soc. Edinburgh.} 130A (2000), 335-373. \bibitem{JinKirk} Z. Jin and K. Lancaster; The convergent rate of solutions of Dirichlet problems for quasilinear equations, {\em J. London Math. Soc.} (2)71(2005), 415-437. \bibitem{Jin3} Z. Jin; Existence of solutions of the prescribed mean curvature equation on unbounded domains, Proc. Royal Soc. Edinburgh, 136A (2006), 157-179. \bibitem{Lopez2} R. Lopez; Constant mean curvature graphs on unbounded convex domains, {\em J. Diff. Eq.}, 171 (2001), 54-62. \bibitem{Lopez4} R. Lopez; Constant mean curvature graphs in a strip of $R^{2}$, {\em Pacific J. Math.} 206 (2002), 359-373. \bibitem{Massari} U. Massari \& M. Miranda; Minimal surfaces of codimension one, {\em Math. Studies 91, North Holland, Amsterdam-New York-Oxfor,}, 1984. \bibitem{Serrin} J. Serrin; The problem of Dirichlet for quasilinear equations with many independent variables, {\em Phil. Trans. Royal Soc. Lond. A} 264 (1969), 413-496. \bibitem{Wang} A. N. Wang; Constant mean curvature surfaces on a strip, {\em Pacific J. Math.} 145 (1990), 395-396. \end{thebibliography} \end{document}