\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 28, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/28\hfil Existence results] {Existence results for impulsive evolution differential equations with state-dependent delay} \author[E. Hern\'{a}ndez, R. Sakthivel, S. Tanaka,\hfil EJDE-2008/28\hfilneg] {Eduardo Hern\'{a}ndez, Rathinasamy Sakthivel, Sueli Tanaka Aki} % in alphabetical order \address{Eduardo Hern\'{a}ndez, Sueli Tanaka Aki \newline Departamento de Matem\'atica, I.C.M.C. Universidade de S\~ao Paulo, Caixa Postal 668, 13560-970, S\~ao Carlos SP, Brazil} \email{lalohm@icmc.sc.usp.br} \address{Rathinasamy Sakthivel \newline Department of Mechanical Engineering\\ Pohang University of Science and Technology\\ Pohang- 790-784, South Korea} \email{krsakthivel@yahoo.com} \address{Sueli Tanaka Aki \newline Departamento de Matem\'atica, I.C.M.C. Universidade de S\~ao Paulo, Caixa Postal 668, 13560-970, S\~ao Carlos SP, Brazil} \email{smtanaka@icmc.sc.usp.br} \thanks{Submitted November 26, 2007. Published February 28, 2008.} \subjclass[2000]{35R10, 34K05} \keywords{State-dependent delay; abstract Cauchy problem; \hfill\break\indent partial functional-differential equations; evolution operators} \begin{abstract} We study the existence of mild solution for impulsive evolution abstract differential equations with state-dependent delay. A concrete application to partial delayed differential equations is considered. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} In this work we discuss the existence of mild solutions for impulsive functional differential equations, with state-dependent delay, of the form \begin{gather}\label{1} x' (t)= A(t)x(t)+f(t,x_{\rho (t,x_{t})}), \quad t\in I=[0,a],\\ \label{2} x_0 = \varphi \in \mathcal{B},\\ \Delta x(t_i) = I_i(x_{t_i}), \quad i=1,2,\dots,n, \label{3} \end{gather} where $A(t): \mathcal{D}\subset X\to X$, $t\in I$, is a family of closed linear operators defined on a common domain $\mathcal{D}$ which is dense in a Banach space $(X,\|\cdot\|)$; the function $x_{s}:(-\infty,0]\to X$, $x_{s}(\theta)=x(s+\theta)$, belongs to some abstract phase space $\mathcal{B}$ described axiomatically; $f:I\times \mathcal{B}\to X$, $\rho:I\times \mathcal{B}\to (-\infty,a]$, $ I_i:\mathcal{B} \to X$, $ i=1,2,\dots,n$, are appropriate functions; $0s$. We refer the reader to \cite{PA} for additional details on evolution operator families. To consider the impulsive condition (1.3), it is convenient to introduce some additional concepts and notations. We say that a function $u:[\sigma, \tau] \to X$ is a normalized piecewise continuous function on $[\sigma, \tau]$ if $u$ is piecewise continuous and left continuous on $(\sigma, \tau]$. We denote by ${\mathcal{P}\mathcal{C}}([\sigma, \tau];X)$ the space formed by the normalized piecewise continuous functions from $[\sigma, \tau]$ into $X$. In particular, we introduce the space ${\mathcal{P}\mathcal{C}}$ formed by all functions $u :[0, a] \to X$ such that $u$ is continuous at $t \neq t_{i}, u(t_{i}^{-})= u(t_{i}) $ and $u(t_{i}^{+}) $ exists, for all $i = 1, \dots, n$. In this paper we always assume that ${\mathcal{P}\mathcal{C}}$ is endowed with the norm $\|u\|_{{\mathcal{P}\mathcal{C}}} =\sup_{s \in I} \|u(s)\|$. It is clear that $({\mathcal{P}\mathcal{C}},\|\cdot \|_{{\mathcal{P}\mathcal{C}}} ) $ is a Banach space. To simplify the notations, we put $t_{0} = 0,\; t_{n + 1} = a$ and for $u\in {\mathcal{P} \mathcal{C}} $ we denote by $\tilde{u}_{i} \in C([t_{i},t_{i+1}];X),\,i=0, 1, \dots, n$, the function given by \begin{equation} \label{ext1} \widetilde{u}_{i}(t)= \begin{cases} u(t), & \hbox{for } t\in (t_{i},t_{i+1}], \\u(t_{i}^{+}),& \hbox{for } t=t_{i}. \end{cases} \end{equation} Moreover, for $B\subseteq {\mathcal{P}\mathcal{C}} $ we denote by $\widetilde{B}_{i}$, $i=0, 1,\dots,n$, the set $ \widetilde{B}_{i}=\{ \tilde{u}_{i}: u\in B\}$. \begin{lemma}\label{prop1} A set $B\subseteq {\mathcal{P}\mathcal{C}}$ is relatively compact in ${\mathcal{P}\mathcal{C}}$ if, and only if, the set $\widetilde{B}_{i}$ is relatively compact in $C([t_{i},t_{i+1}];X)$, for every $i=0, 1,\dots,n$. \end{lemma} In this work we will employ an axiomatic definition for the phase space $\mathcal{B}$ which is similar to those introduced in \cite{Hino}. Specifically, $\mathcal{B}$ will be a linear space of functions mapping $(-\infty,0]$ into $X$ endowed with a seminorm $\| \cdot \|_{\mathcal{B}}$, and satisfies the following conditions: \begin{itemize} \item[(A)] If $x:(-\infty, \sigma + b]\to X$, $b>0$, is such that $x|_{[\sigma, \sigma + b]} \in\mathcal{PC}([\sigma, \sigma + b]:X) $ and $x_{\sigma}\in \mathcal{B}$, then for every $t\in [\sigma, \sigma + b]$ the following conditions hold: \begin{itemize} \item[(i)]$x_{t}$ is in $\mathcal{B}$, \item[(ii)]$\| x(t)\| \leq H \| x_{t}\|_{\mathcal{B}}$, \item[(iii)] $\| x_{t}\|_{\mathcal{B}} \leq K(t-\sigma) \sup\{\| x(s)\|:\sigma\leq s\leq t\}+ M(t-\sigma)\| x_{\sigma}\|_{\mathcal{B}}$, \end{itemize} where $H>0$ is a constant; $ K,M:[0,\infty) \to [1,\infty)$, $K$ is continuous, $M$ is locally bounded, and $H,K,M$ are independent of $x(\cdot)$. \item[(B)] The space $\mathcal{B}$ is complete. \end{itemize} \begin{example}\rm {\bf Phase spaces $ \mathcal{P}{C_{h}}(X),\, \mathcal{P}\mathcal{C}_{g}^{0}(X)$.} As usual, we say that $ \psi:(-\infty,0] \to X$ is normalized piecewise continuous, if $ \psi$ is left continuous and the restriction of $ \psi$ to any interval $ [-r,0]$ is piecewise continuous. Let $g:(-\infty,0]\to [1,\infty)$ be a continuous, nondecreasing function with $g(0)=1$, which satisfies the conditions (g-1), (g-2) of \cite{Hino}. This means that $\lim_{\theta \to -\infty} g(\theta) =\infty$ and that the function ${ \Lambda(t) := {\sup_{-\infty < \theta \leq -t} \frac{g(t +\theta)}{g( \theta)}}}$ is locally bounded for $t \geq 0$. Next, we modify slightly the definition of the spaces $ C_{g}, C_{g}^{0} $ in \cite{Hino}. We denote by $ \mathcal{P}\mathcal{C}_{g}(X)$ the space formed by the normalized piecewise continuous functions $ \psi$ such that $\frac{ \psi}{g} $\, is bounded on $(-\infty,0]$ and by $ \mathcal{P}\mathcal{C}_{g}^{0}(X)$ the subspace of $ \mathcal{P}\mathcal{C}_{g}(X)$ formed by the functions $ \psi$ such that $\frac{ \psi (\theta)}{g(\theta)}\to 0$ as $\theta \to -\infty$. It is easy to see that $ \mathcal{P}\mathcal{C}_{g}(X)$ and $ \mathcal{P}\mathcal{C}_{g}^{0}(X)$ endowed with the norm $\| \psi \|_{\mathcal{B}} : = \sup_{\theta \leq 0 }\frac{\| \psi (\theta )\|}{g(\theta )}, $ are phase spaces in the sense considered in this work. Moreover, in these cases $K\equiv 1$. \end{example} \begin{example}\rm {\bf Phase space $\mathcal{P}\mathcal{C}_{r} \times L^{2}(g\,,X)$. }\label{example1} Let $1\leq p<\infty$, $0\leq r<\infty$ and $ g(\cdot) $ be a Borel nonnegative measurable function on $(-\infty ,r)$ which satisfies the conditions (g-5)-(g-6) in the terminology of \cite{Hino}. Briefly, this means that $g(\cdot)$ is locally integrable on $(- \infty, -r)$ and that there exists a nonnegative and locally bounded function $ \Lambda$ on $(- \infty, 0]$ such that $ g(\xi +\theta) \leq \Lambda(\xi) g(\theta) $ for all $ \xi \leq 0 $ and $ \theta \in (- \infty , -r) \setminus N_{\xi }$, where $ N_{\xi} \subseteq (- \infty, -r)$ is a set with Lebesgue measure $0$. Let $\mathcal{B}:=\mathcal{P}\mathcal{C}_{r} \times L^{p}(g;X)$, $ r\geq 0,p>1$, be the space formed of all classes of functions $ \psi : (- \infty , 0]\to X $ such that $ \psi|_{[-r,0]}\,\in {\mathcal{P}\mathcal{C}}([-r,0],X) $,\, $ \psi(\cdot)$ is Lebesgue-measurable on $(-\infty,-r]$ and $ g| \psi|^{p}$ is Lebesgue integrable on $ (- \infty ,-r]$. The semi-norm in $ \|\cdot\|_{\mathcal{B}} $ is defined by $$ \| \psi \|_{\mathcal{B}} : = \sup_{\theta\in [-r,0]}\| \psi (\theta )\| +\Big( \int_{- \infty }^{-r} g(\theta ) \| \psi (\theta ) \|^{p} d \theta \Big)^{1/p}. $$ Proceeding as in the proof of \cite[Theorem 1.3.8]{Hino} it follows that $ \mathcal{B} $ is a phase space which satisfies the axioms $\mathbf{A}$ and $\mathbf{B}$. Moreover, for $r=0$ and $p=2$ this space coincides with $C_{0} \times L^{2}(g,\,X)$, $H=1$; $M(t) = \Lambda (-t)^{1/2}$ and $K(t)=1+ \big(\int_{-t}^{0} g(\tau)d\tau \big)^{1/2}$ for $t\geq 0$. \end{example} \begin{remark} \label{rmk1.5}\rm In retarded functional differential equations without impulses, the axioms of the abstract phase space $\mathcal{B}$ include the continuity of the function $t\to x_{t} $, see for instance \cite{Hino}. Due to the impulsive effect, this property is not satisfied in impulsive delay systems and, for this reason, has been eliminated in our abstract description of $\mathcal{B}$. \end{remark} The terminology and notations are those generally used in functional analysis. In particular, for Banach a space $(Z,\|\cdot\|_{Z} )$, the notation $ B_{r}(x,Z)$ stands for the closed ball with center at $x$ and radius $r>0$ in $Z$. To prove some of our results, we use a fixed point Theorem which is referred in the Literature as Leray Schauder Alternative Theorem, see \cite[Theorem 6.5.4]{GD}. \begin{theorem} \label{teo1} Let $D$ be a convex subset of a Banach space $X$ and assume that $0\in D$. Let $G:D\to D$ be a completely continuous map. Then the map $G$ has a fixed point in $D$ or the set $\{x\in D:x = \lambda G(x),\;0<\lambda<1\}$ is unbounded. \end{theorem} In the next section we study the existence of mild solutions for the abstract system \eqref{1}--\eqref{2}. In the last section an application is discussed. \section{Existence Results} \label{existence} To prove our results on the existence of mild solutions for the abstract Cauchy problem \eqref{1}--\eqref{2}, we always assume that $\rho:I\times\mathcal{B}\to (-\infty,a] $ is continuous. In addition, we introduce the following conditions. \begin{enumerate} \item[(H0)] Let $\mathcal{BPC}(\varphi)=\{u:(-\infty,a]\to X; u_0=\varphi, u|_{I}\in \mathcal{PC}\}$. The function $t\to \varphi_t$ is continuous from $\mathcal{R}(\rho^{-})=\{\rho(s,x_{s}):\rho(s,x_{s})\leq 0,\, x\in \mathcal{BPC}(\varphi), s\in [0,a]\}$ into $\mathcal{B}$ and there exists a continuous and bounded function $J^{\varphi}:\mathcal{R}(\rho^{-}) \to(0,\infty)$ such that $\|\varphi_t\|_{\mathcal{B}}\leq J^{\varphi}(t)\|\varphi\|_{\mathcal{B}}$ for every $t\in\mathcal{R}(\rho^{-})$. \item[(H1)] The function $f:I \times {\mathcal{B}}\to X$ satisfies the following properties. \begin{enumerate} \item The function $f(\cdot,\psi):I\to X$ is strongly measurable for every $\psi \in \mathcal{B}$. \item The function $f(t,\cdot) : \mathcal{B} \to X $ is continuous for each $t \in I $. \item There exist an integrable function $m : I \to [0, \infty )$ and a continuous nondecreasing function $ W:[0,\infty)\to (0,\infty)$ such that $\| f(t,\psi )\| \leq m(t)W(\| \psi\|_{\mathcal{B}}), $ for every $(t,\psi)\in I\times \mathcal{B}$. \end{enumerate} \item[(H2)] The maps $ I_i$ are completely continuous and there are positive constants $ c_i^j$, $ j=1,2$, such that $ \|I_i(\psi)\|\leq c_i^1\|\psi\|_{\mathcal{B}}+c_i^2$, $ i=1,2,\dots,n$, for every $ \psi\in \mathcal{B}$. \item[(H3)] The function $I_i:\mathcal{B}\to X $ is continuous and there are positive constants $ L_i, $ $i=1,2,\dots,n$, such that $ \|I_i(\psi_1)-I_i(\psi_2)\|\leq L_i\|\psi_1-\psi_2\|_{\mathcal{B}}$, for every $ \psi_j\in\mathcal{B}, $ $j=1,2$, $i=1,2,\dots,n. $ \end{enumerate} \begin{remark}\label{remark1} \rm The condition (H0), is frequently verified by functions continuous and bounded. If, for instance, the space $\mathcal{B}$ verifies axiom $C_{2}$ in the nomenclature of \cite{Hino}, then there exists a constant ${\mathrm{L}}>0$ such that $ \|\varphi \|_{\mathcal{B}} \leq \mathrm{L}\sup_{ \theta \leq 0}\|\varphi ( \theta ) \|$ for every $\varphi\in \mathcal{B}$ continuous and bounded, see \cite[Proposition 7.1.1]{Hino} for details. Consequently, $\|\varphi_{t}\|_{\mathcal{B}}\leq L \frac{\sup_{ \theta \leq 0}\|\varphi ( \theta ) \|}{\|\varphi\|_{\mathcal{B}}}\|\varphi\|_{\mathcal{B}}$ for every continuous and bounded function $\varphi \in \mathcal{B}\setminus \{0 \}$ and every $t\leq 0$. We note that the spaces $ C_{r} \times L^{p}(g;X)$, $ C_{g}^{0}(X) $ verify axiom $C_{2}$, see \cite[p.10]{Hino} and \cite[p.16]{Hino} for details. \end{remark} \begin{remark} \label{rmk2.2} \rm Let $\varphi\in \mathcal{B}$ and $t\leq 0$. The notation $\varphi_{t}$ represents the function defined by $\varphi_{t}(\theta)=\varphi(t+\theta)$. Consequently, if the function $x(\cdot)$ in axiom $\mathbf{A}$ is such that $x_{0}=\varphi$, then $x_{t}=\varphi_{t}$. We also note that, in general, $\varphi_t\notin \mathcal{B}$. Consider for example the characteristic function $\mathcal{X}_{[-r,0]}$, $ r>0 $, in the space ${\bf C_{r} \times L^{p}(g;X)}$. \end{remark} In this paper, we adopt the following concept of mild solution. \begin{definition} \label{def2.3} \rm A function $x:(-\infty,a]\to X$ is called a mild solution of the abstract Cauchy problem \eqref{1}--\eqref{2} if \, $x_{0}=\varphi$, $x_{\rho(s,x_s)}\in\mathcal{B}$ for every $s\in I$ and $$ x(t)=U(t,0)\varphi(0)+ \int_{0}^{t}U(t,s)f(s,x_{\rho(s,x_s)})ds+\sum_{0\,K_a\widetilde{M}\Big( \liminf_{\xi\to\infty^{+}}\frac{W(\xi)}{\xi}\int_{0}^{a}m(s)ds+ \sum_{i=1}^{n}L_{i} \Big) . \end{equation} Then there exists a mild solution of \eqref{1}--\eqref{2}. \end{theorem} \begin{proof} On the space $Y=\{u\in \mathcal{PC}:u(0)=\varphi(0)\}$ endowed with the uniform convergence norm ($\|\cdot\|_{\infty}$), we define the operator $\Gamma:Y\to Y$ defined by $$ \Gamma x(t)=U(t,0)\varphi(0)+\int_{0}^{t}U(t,s) f(s,\bar{x}_{\rho(s,\bar{x}_s)})ds +\sum_{00$ and $x^r\in B_r(\bar{\varphi}|_{I},Y)$ we obtain \begin{align*} &\|\Gamma x^r-\varphi(0)\| \\ &\leq (\widetilde{M}+1)H\|\varphi\|_{\mathcal{B}}+\widetilde{M}\int_{0}^{a}m(s) W(\|\overline{x^r}_{\rho(s,\overline{x^r_s})}\|_{\mathcal{B}}) ds\\ &\quad +\widetilde{M}\sum_{i=1}^{n}\left( L_{i}\|\overline{x}_{t_{i}} \|_{\mathcal{B}}+\|I_{i}(0) \|\right)\\ &\leq (\widetilde{M}+1)H\|\varphi\|_{\mathcal{B}}+\widetilde{M} \int_{0}^{a}m(s)W\Big((M_a+\widetilde{J}^{\varphi})\|\varphi\|_{\mathcal{B}}+K_a \sup_{\theta\in [0,a]}\|\overline{x^r}(\theta)\|\Big)ds\\ &\quad + \widetilde{M}\sum_{i=1}^{n}L_{i}\left(\|\overline{x}_{t_{i}} -\varphi\|_{\mathcal{B}}+\|\varphi\|_{\mathcal{B}} +\|I_{i}(0)\|\right)\\ &\leq (\widetilde{M}+1)H\|\varphi\|_{\mathcal{B}}+\widetilde{M}W \left((M_a+\widetilde{J}^{\varphi})\|\varphi\|_{\mathcal{B}}+K_a (r+\|\varphi(0)\|)\right)\int_{0}^{a}m(s)ds, \\ &\quad +\ \widetilde{M}\sum_{i=1}^{n}L_{i}\left( K_a r+\|\varphi\|_{\mathcal{B}}+\| I_{i}(0) \|\right) \end{align*} which from (\ref{4}) implies that $ \|\Gamma x^r-\varphi(0)\|_{\infty}\leq r $ for $r$ large enough. Let $r>0$ be such that $\Gamma(B_r(\bar{\varphi}|_{I},Y))\subset B_r(\bar{\varphi}|_{I},Y)$. Next, we will prove that $\Gamma(\cdot)$ is completely continuous from $B_r(\bar{\varphi}|_{I},Y)$ into $B_r(\bar{\varphi}|_{I},Y)$. To this end, we introduce the decomposition $\Gamma=\Gamma_{1}+\Gamma_{2}$ where $(\Gamma_{1}x)_{0}=\varphi$, $(\Gamma_{2}x)_{0}=0$, and \begin{gather*} \Gamma_{1} x(t)= U(t,0)\varphi(0)+\int_{0}^{t}U(t,s)f(s,\bar{x}_{\rho(s,\bar{x}_s)})ds , \quad t\in I \\ \Gamma_{2} x(t)= \sum_{00$. Since the set $ \Gamma_{1}(B_r(\bar{\varphi}|_{I},Y))(t)$ is relatively compact compact in $X$, from the properties of the evolution family $U(t,s)$, there exists $0<\delta\leq a-t $ such that $\|U(t+h,t)x-x\| <\varepsilon$, for every $ x\in \Gamma_{1} (B_r(\bar{\varphi}|_{I},Y))(t)$ and all $00$ and $$ K_a\widetilde{M}\int_{0}^{a}m(s)ds<\int_{C}^{\infty}\frac{ds}{W(s)}, $$ where $$ C=(M_a+J^{\varphi}+\widetilde{M}HK_a)\|\varphi\|_{\mathcal{B}} + \frac{\widetilde{M}K_a}{\mu }\sum_{i=1}^{n} \Big[ c_{i}^1(M_a+\widetilde{M}HK_a)\|\varphi\|_{\mathcal{B}}+ c_{i}^2\Big] $$ then there exists a mild solution of \eqref{1}--\eqref{2}. \end{theorem} \begin{proof} On the space $\mathcal{BPC}=\{u:(-\infty,a]\to X; u_0=0, u|_{I}\in \mathcal{PC}\}$ provided with the sup-norm $ \|\cdot\|_{\infty}$, we define the operator $ \Gamma: \mathcal{BPC}\to\mathcal{BPC}$ by $(\Gamma u)_{0}=0 $ and \[ \Gamma x(t)= \int_0^t{U(t,s)f(s,\bar{x}_{\rho(s,\bar{x}_s)})}ds +\sum_{00$, $t\in [t_{i},t_{i+1}]\cap (0,a]$, $i\geq 1$, and $u\in B_r=B_r(0,{\mathcal{B}\mathcal{P}\mathcal{C}})$ we find that \[ \widetilde{\Gamma_{2}u}(t)\in \begin{cases} \sum_{j=1}^{i}U(t,t_{j})I_{j}(B_{ r^{*}}(0, X)),& t\in ( t_{i},t_{i+1} ),\\[3pt] \sum_{j=0}^{i}U(t_{i+1},t_{j})I_{j}( B_{ r^{*}}(0, X)),& t=t_{i+1}, \\[3pt] \sum_{j=1}^{i-1}U(t_{i},t_{j})I_{j}(B_{ r^{*}}(0, X))+ I_{i}( B_{ r^{*}}(0; X)),& t=t_{i},\, \end{cases} \] where $r^*:=(M_a+\widetilde{M}HK_{a})\|\varphi\|_{\mathcal{B}} + K_a r$, which proves that $[\widetilde{\Gamma_{2} (B_r)}]_{i}(t)$ is relatively compact in $X$ for every $t\in [t_{i},t_{i+1}]$, since the maps $I_{j}$ are completely continuous. Moreover, using the compactness of the operators $I_{i}$ and properties of the evolution family $ U(\cdot)$, we can prove that $\widetilde{\,[\Gamma_{2}(B_r)]_{i}}(t)$ is equicontinuous at $t$, for every $t\in [t_{i},t_{i+1}] $ and each $ i=1,2,\dots,n$, which complete the proof that $\Gamma_{2}$ is completely continuous. The existence of a mild solution is now a consequence of Theorem \ref{teo1}. The proof is complete. \end{proof} \section{Applications} In this section we consider an application of our abstract results. Consider the partial differential equation \begin{equation} \label{eq1} \begin{aligned} \frac{\partial u(t,\xi)}{\partial t} &= \frac{\partial^{2}u(t,\xi)} {\partial \xi^{2}} + a_{0}(t, \xi) u(t,\xi)\\ &\quad + \int_{-\infty}^{t} a_{1}(s - t) u(s-\rho_{1} (t)\rho_{2}(\int_{0}^{\pi}a_{2}(\theta )| u(t,\theta)|^{2}d\theta ), \xi) ds \end{aligned} \end{equation} for $t\in I=[0,a]$, $\xi\in [0,\pi]$. The above equation is subject to the conditions \begin{gather} u(t, 0) = u(t, \pi) = 0, \quad t \geq 0, \label{eqq2} \\ u(\tau, \xi) = \varphi(\tau, \xi),\quad \tau \leq 0,\; 0 \leq \xi \leq \pi. \label{eq3}\\ \Delta u(t_j,\xi) = \int_{-\infty}^{t_j}{\gamma_{j}(s-t_j)u(s,\xi)}ds, \quad j=1,2,\dots ,n. \end{gather} To study this system, we consider the space $X = L^{2}([0, \pi])$ and the operator $A:D(A)\subset X\to X$ given by $Ax=x'' $ with $ D(A) := \{x \in X : x'' \in X, \;x(0) = x(\pi) = 0 \}$. It is well known that $A$ is the infinitesimal generator of an analytic semigroup $(T(t))_{t\geq 0}$ on $ X$. Furthermore, $A$ has discrete spectrum with eigenvalues $- n^{2}$, $n \in \mathbb{N}$, and corresponding normalized eigenfunctions given by $z_{n} (\xi) = (\frac{2}{\pi})^{1/2} \sin (n \xi)$. In addition, $\{z_{n} : n \in \mathbb{N} \}$ is an orthonormal basis of $ X$ and $ T(t)x = \sum_{n=1}^{\infty} e^{-n^{2}t} \langle x, z_{n} \rangle z_{n}$ for $x\in X$ and $t\geq 0$. It follows from this representation that $T(t)$ is compact for every $t>0$ and that $\|T(t)\|\leq e^{-t}$ for every $t\geq 0$. On the domain $D(A)$, we define the operators $A(t):D(A)\subset X\to X$ by $ A(t)x(\xi)=Ax(\xi) + a_0(t,\xi)x(\xi) $. By assuming that $a_0(\cdot)$ is continuous and that $a_0(t,\xi) \leq - \delta_0$ ($\delta_0 > 0$) for every $t \in \mathbb{R}, \xi \in [0, \pi]$, it follows that the system \begin{gather*} u'(t)= A(t)u(t) \quad t\geq s, \\ u(s) =x\in X, \end{gather*} has an associated evolution family given by $U(t,s)x(\xi)=[T(t-s)e^{\int_{s}^{t}a_0(\tau,\xi)d\tau}x](\xi)$. From this expression, it follows that $U(t,s)$ is a compact linear operator and that $\|U(t,s)\| \leq e^{-(1 + \delta_0)(t-s)} $ for every $t,s\in I$ with $t>s$. \begin{proposition} \label{prop3.1} Let $\mathcal{B} =\mathcal{P}\mathcal{C}_{0} \times L^{2}(g,X)$ and $\varphi \in \mathcal{B}$. Assume that condition {\rm (H0)} holds, $\rho_i: [0,\infty )\to [0,\infty )$, $i=1,2$, are continuous and that the following conditions are verified. \begin{itemize} \item[(a)] The functions $ a_i: \mathbb{R}\to\mathbb{R}$ are continuous and $ L_{f}=( \int^{0}_{-\infty} \frac{(a_{1} (s))^{2}}{ g(s)}ds)^{1/2}$ is finite. \item[(b)] The functions $\gamma_{i}:\mathbb{R}\to \mathbb{R}$, $i=1,2,\dots,n$, are continuous, bounded and $ L_{i}:=\Big( \int_{-\infty}^{0}\frac{(\gamma_{i}(s))^{2}}{g (s)}ds\Big)^{1/2} <\infty$ for every $i=1,2,\dots,n$. \end{itemize} Then there exists a mild solution of \eqref{eq1}--\eqref{eq3}. \end{proposition} \begin{proof} From the assumptions, we have that \begin{gather*} f(t,\psi)(\xi)= \int^0_{-\infty}a_1(s)\psi(s,\xi) ds,\\ \rho(s,\psi)= s-\rho_1(s)\rho_2 \Big(\int^{\pi}_{0}a_2(\theta)| \psi(0, \xi)|^{2} d\theta\Big),\\ I_{i}(\psi)(\xi)= \int_{-\infty}^{0} \gamma_{i}(s)\psi(s, \xi)ds,\quad i = 1, 2, \dots, n, \end{gather*} are well defined functions, which permit to transform system \eqref{eq1}--\eqref{eq3} into the abstract system \eqref{1}--\eqref{2}. Moreover, the functions $f$, $I_{i}$ are bounded linear operator, $\|f \|\leq L_1$ and $\|I_{i} \|\leq L_i$ for every $i=1,2,\dots n$. Now, the existence of a mild solutions can be deduced from a direct application of Theorem \ref{teo3}. The proof is complete. \end{proof} From Remark \ref{remark1} we have the following result.. \begin{corollary} Let $\varphi\in\mathcal{B}$ be continuous and bounded. Then there exists a mild solution of {\rm \eqref{eq1}--\eqref{eq3}} on $I$. \end{corollary} \subsection*{Acknowledgements} The authors are grateful to the anonymous referees for their comments and suggestions. \begin{thebibliography}{00} \bibitem{Aiello1} Aiello, Walter G.; Freedman, H. I.; Wu, J.; Analysis of a model representing stage-structured population growth with state-dependent time delay. \emph{SIAM J. Appl. Math.} 52 (3) (1992), 855--869. \bibitem{Arino1} Arino, Ovide; Boushaba, Khalid; Boussouar, Ahmed A mathematical model of the dynamics of the phytoplankton-nutrient system. Spatial heterogeneity in ecological models (Alcalá de Henares, 1998). \emph{Nonlinear Analysis RWA.} 1 (1) (2000), 69--87. \bibitem{Cao1} Cao, Yulin; Fan, Jiangping; Gard, Thomas C.; The effects of state-dependent time delay on a stage-structured population growth model. \emph{Nonlinear Analysis TMA.}, 19 (2) (1992), 95--105. \bibitem{Domoshnitsky1} Alexander Domoshnitsky, Michael Drakhlin and Elena Litsyn; On equations with delay depending on solution. { \sl Nonlinear Analysis TMA.}, 49 (5) (2002), 689-701. \bibitem{GD} Granas, A.; Dugundji, J.; \emph{Fixed Point Theory}. Springer-Verlag, New York, 2003. \bibitem{Hartung1} Hartung, Ferenc, Linearized stability in periodic functional differential equations with state-dependent delays. \emph{J. Comput. Appl. Math.}, 174 (2) (2005), 201-211. \bibitem{Hartung6} Hartung, Ferenc; Herdman, Terry L.; Turi, Janos; Parameter identification in classes of neutral differential equations with state-dependent delays. \emph{Nonlinear Analysis TMA. Ser. A: Theory Methods}, 39 (3) (2000), 305--325. \bibitem{Hartung7} Hartung, Ferenc; Turi, Janos; Identification of parameters in delay equations with state-dependent delays. \emph{Nonlinear Analysis TMA.}, 29 (11) (1997), 1303-1318. \bibitem{Hino} Hino, Yoshiyuki; Murakami, Satoru; Naito, Toshiki; \emph{Functional-differential equations with infinite delay. Lecture Notes in Mathematics,} 1473. Springer-Verlag, Berlin, 1991. \bibitem{h2} Hern\'{a}ndez, E; Mark A. Mckibben.; On state-dependent delay partial neutral functional differential equations. \emph{Appl. math. Comput.} 186 (1) (2006), 294-301. \bibitem{h3} Hern\'{a}ndez, E; Prokopczyk, A; Ladeira, Luiz; A note on partial functional differential equations with state-dependent delay. \emph{Nonlinear Analysis: Real World Applications}, 7 (2006), 510-519. \bibitem{h4} Hern\'{a}ndez, E; Mallika Arjunan, A. Anguraj; Existence Results for an Impulsive Neutral Functional Differential Equation with State-Dependent Delay. \emph{Appl. Anal.}, 86 (7) (2007), 861-872 \bibitem{h5} Hern\'{a}ndez, E; Existence of Solutions for a Second order Abstract Functional Differential Equation with State-Dependent Delay. \emph{Electronic Journal of Differential Equations}, (2007), No. 21 pp. 1-10. \bibitem{h1} Hern\'{a}ndez, E; M. Pierri and G. Goncalves.; Existence results for an impulsive abstract partial differential equation with state-dependent delay. \emph{Comput. Appl. Math.}, 52 (2006), 411-420. \bibitem{Hernandez1} Hern\'{a}ndez, Eduardo; Henriquez, Hernan R; Impulsive partial neutral differential equations, \emph{Appl. Math. Lett.}, 19 (3) (2006), 215-222. \bibitem{Hernandez2} Hern\'{a}ndez, Eduardo; Henriquez, Hernan R; Marco Rabello; Existence of solutions for a class of impulsive partial neutral functional differential equations, \emph{J. Math. Anal. Appl.}, 331 (2) (2007), 1135-1158. \bibitem{l1} V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov; \emph{Theory of Impulsive Differential Equations}, World Scientific, Singapore, 1989. \bibitem{liu1} Liu, James H.; Nonlinear impulsive evolution equations, \emph{Dynam. Contin. Discrete Impuls. Systems} 6 (1) (1999), 77-85. \bibitem{Ma} Martin, R. H., \emph{Nonlinear Operators and Differential Equations in Banach Spaces,} Robert E. Krieger Publ. Co., Florida, 1987. \bibitem{PA} Pazy, A.; \emph{Semigroups of linear operators and applications to partial differential equations.} Applied Mathematical Sciences, 44. Springer-Verlag, New York-Berlin, 1983. \bibitem{wu1} Rezounenko, Alexander V.; Wu, Jianhong; A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors, \emph{J. Comput. Appl. Math.}, 190 (1-2) (2006), 99-113. \bibitem{Alex1} Alexander V. Rezounenko; Partial differential equations with discrete and distributed state-dependent delays, \emph{J. Math. Anal. Appl.}, 326 (2) (2007), 1031-1045. \bibitem{Rogo1} Rogovchenko, Yuri V.; Impulsive evolution systems: main results and new trends, \emph{Dynam. Contin. Discrete Impuls. Systems}, 3 (1) (1997), 57-88. \bibitem{Rogo2} Rogovchenko, Yuri V.; Nonlinear impulse evolution systems and applications to population models, \emph{J. Math. Anal. Appl.}, 207 (2) (1997), 300-315. \bibitem{s1} A. M. Samoilenko and N.A. Perestyuk; \emph{Impulsive Differential Equations}, World Scientific, Singapore, 1995. \end{thebibliography} \end{document}