\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 38, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/38\hfil Positive periodic solutions] {Positive periodic solutions of neutral functional differential equations with a parameter and impulse} \author[X. Fan, Y. Li\hfil EJDE-2008/38\hfilneg] {Xuanlong Fan, Yongkun Li} \address{Xuanlong Fan \newline Department of Mathematics\\ Yunnan University\\ Kunming, Yunnan 650091, China} \email{fanxuanlong@126.com} \address{Yongkun Li \newline Department of Mathematics\\ Yunnan University\\ Kunming, Yunnan 650091, China} \email{yklie@ynu.edu.cn} \thanks{Submitted December 16, 2007. Published March 14, 2008.} \thanks{Supported by grants 10361006 and 2003A0001M from the National Natural Sciences \hfill\break\indent Foundation of China, and of Yunnan Province} \subjclass[2000]{34K13, 34K40} \keywords{Periodic solution; functional differential equation; fixed point; cone} \begin{abstract} In this paper, we consider first-order neutral differential equations with a parameter and impulse in the form of \begin{gather*} \frac{d}{dt}[x(t)-c x(t-\gamma)]=-a(t)g(x(h_1(t)))x(t)+\lambda b(t) f\big(x(h_2(t))\big),\quad t\neq t_j;\\ \Delta \big[x(t)-c x(t-\gamma)\big]=I_j\big(x(t)\big),\quad t=t_j,\; j\in\mathbb{Z}^+. \end{gather*} Leggett-Williams fixed point theorem, we prove the existence of three positive periodic solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} The existence of periodic solutions of delay differential equations with or without impulses has been a focus of theoretical and practical importance because time-delay occurs areas such as mechanics, physics, biology, economy, population dynamic models, large-scale systems, automatic control systems, neural networks, chaotic systems, and so on. The existence of periodic solutions of time-delay systems with or without impulses has been extensively studied by Many researchers have studied this problem; se for example \cite{b1,d1,d2,k1,l1, l2,l3,l4,l5,l6,l7,l8, m1, s1,w1,w2,z1,z2} and references therein. However, relatively few papers have been published on the existence of periodic solutions for neutral functional differential equations. In this paper, we are concerned with the neutral differential equation \begin{equation} \label{e1.1} \begin{gathered} \frac{d}{dt}\big[x(t)-c x(t-\gamma)\big] =-a(t)g\big(x(h_1(t))\big)x(t)+\lambda b(t) f\big(x(h_2(t))\big),\quad t\neq t_j,\\ \Delta \big[x(t)-c x(t-\gamma)\big]=I_j\big(x(t)\big),\quad t=t_j,\; j\in\mathbb{Z}^+, \end{gathered} \end{equation} where $\lambda>0$ is a positive parameter and there exists a positive constant $q$ such that $t_{j+q}=t_j+\omega$, $I_{j+q}(x(t_{j+q}))=I_j(x(t_j))$, $j\in \mathbb{Z}^+$. Without loss of generality, we assume that $[0,\omega]\cap\{t_j, j\in \mathbb{Z}^+\}=\{t_1,t_2,\cdots,t_q\}$. In this paper, we will use the following assumptions: \begin{itemize} \item [(H1)] $a\in C(\mathbb{R},[0,+\infty))$ is $\omega$-periodic and there exists $t_1^*\in (0,\omega)$ such that $a(t_1^*)> 0$; \item [(H2)] $b\in C(\mathbb{R},[0,+\infty))$ is $\omega$-periodic and there exists $t_2^*\in(0,\omega)$ such that $b(t_2^*)>0$; \item [(H3)] $h_1(t),\,h_2(t)\in C(\mathbb{R},\mathbb{R})$ are $\omega$-periodic; \item [(H4)] $g\in C([0,\infty),[0,\infty))$, $I_j\in C([0,\infty),[0,\infty))$ and $f\in C([0,\infty),[0,\infty))$ are continuous, $00$, $l,L$ are two positive constants. \end{itemize} Using Leggett-Williams fixed point theorem \cite{l1} to show the existence of at least three positive periodic solutions of \eqref{e1.1}. To the best of the authors' knowledge, few authors discuss at least three positive periodic solutions for neutral functional differential equations with impulses and parameters. \section{Preliminaries} To obtain the existence of periodic solutions of system \eqref{e1.1}, we first make the following preparations. Let $\beta=\int_0^\omega a(s)\,ds$, where $a$ is a continuous $\omega$-periodic function. In what follows, we set $$ \mathbb{X}=\big\{x\in C(\mathbb{R},\mathbb{R}): x(t+\omega)=x(t)\big\} $$ and define $\|x\|=\max\{|x(t)|:\, t\in[0,\omega]\}$. Then $(\mathbb{X},\|\cdot\|)$ is a Banach space. Let $A: \mathbb{X}\to \mathbb{X}$ be defined by $$ (Ax)(t)= x(t)-c x(t-\gamma). $$ \begin{lemma}[\cite{l9}] \label{lem2.1} If $|c|\neq 1$, then $A$ has continuous bounded inverse $A^{-1}$ and for all $x\in \mathbb{X}$, \begin{equation} \label{e2.1} (A^{-1}x)(t)=\begin{cases} \sum_{j\geq 0}c^jx(t-j\gamma), &\text{if }|c|<1, \\ -\sum_{j\geq 1}c^{-j}x(t+j\gamma), &\text{if } |c|>1\,. \end{cases} \end{equation} Then \[ \|A^{-1}x\|\leq \frac{\|x\|}{|1-|c||}. \] \end{lemma} To establish the existence of periodic solutions of \eqref{e1.1}, we first consider the system \begin{equation} \label{e2.2} \begin{gathered} \frac{d}{dt}u(t)=-a(t)g\big((A^{-1}u)(h_1(t))\big)(A^{-1}u)(t) +\lambda b(t) f\big((A^{-1}u)(h_2(t))\big),\quad t\neq t_j,\\ \Delta u(t)=I_j\big((A^{-1}u)(t)\big),\quad t=t_j,\, j\in\mathbb{Z}^+, \end{gathered} \end{equation} where $A^{-1}$ is defined by \eqref{e2.1}. By Lemma \ref{lem2.1}, we conclude the following result. \begin{lemma} \label{lem2.2} $u(t)$ is an $\omega$-periodic solution of \eqref{e2.2} if and only if $(A^{-1}u)(t)$ is an $\omega$-periodic solution of \eqref{e1.1}. \end{lemma} Let $\mathbb{X}$ be a Banach space and $K$ is a closed, nonempty subset of $\mathbb{X}$. $K$ is a cone provided that \begin{itemize} \item [(i)] $\alpha_1 u+\beta_1 y\in K$ for all $u,v\in K$ and $\alpha_1,\beta_1\geq 0;$ \item [(ii)] $u,-u\in K$ imply $u=0$. \end{itemize} Define $K_r=\{x\in K:\|x\|\leq r\}$. Let $\alpha(x)$ denote the positive continuous concave functional on $K$, that is $\alpha: K\to [0,\infty)$ is continuous and satisfies \[ \alpha(\lambda x+(1-\lambda)y)\geq \lambda\alpha(x)+(1-\lambda)\alpha(y)\quad\text{for all } x,y\in K, 0\leq \lambda\leq 1, \] and we denote the set $K(\alpha,a_1,b_1)=\{x\in K: a_1\leq \alpha(x), \|x\|\leq b_1\}$. \begin{lemma}[\cite{l1}] \label{lem2.3} Let $K$ be a cone of the real Banach space $\mathbb{X}$ and $\Phi: K_{c_3} \to K_{c_3}$ be a completely continuous operator, and suppose that there exists a concave positive functional $\alpha$ with that $\alpha(x)\leq \|x\|$ for $x\in K$ and numbers $c_1,c_2,c_3,c_4$ with $0c_1\}\neq \emptyset$ and $\alpha(\Phi x)>c_1$ if $x\in K(\alpha,c_1,c_2)$; \item [(2)] $\|\Phi x\|c_1$ for all $x\in K(\alpha,c_1,c_2)$ with $\|\Phi x\|>c_2$. \end{itemize} Then $\Phi$ has at least three fixed points in $K_{c_3}$. \end{lemma} Aiming to apply Lemma \ref{lem2.2} to \eqref{e2.2}, we rewrite \eqref{e2.2} as \begin{equation} \label{e2.3} \begin{gathered} \begin{aligned} \frac{d}{dt}u(t)&=-a(t)g\big((A^{-1}u)(h_1(t))\big)u (t)+\big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big)\\ &\quad +\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\big],\quad t\neq t_j, \end{aligned}\\ \Delta u(t)=I_j\big((A^{-1}u)(t)\big),\quad t=t_j,\, j\in\mathbb{Z}^+, \end{gathered} \end{equation} where \begin{align*} \widehat{G}(u(t),u(h_1(t))) &= g\big((A^{-1}u)(h_1(t))\big)\big[u(t)-(A^{-1}u)(t)\big]\\ &= -c g\big((A^{-1}u)(h_1(t))\big)(A^{-1}u)(t-\gamma). \end{align*} The following lemma is fundamental in our discussion. Since the method is similar to that in the literature \cite{n1}, we omit the proof. \begin{lemma} $x(t)$ is an $\omega$-periodic solution of \eqref{e1.1} is equivalent to $u(t)$ is an $\omega$-periodic solution of \begin{equation} \label{e2.4} \begin{aligned} u(t)&=\int_t^{t+\omega}G(t,s)\Big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big) +\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds \\ &\quad +\sum_{j:t_j\in[0,\omega]}G(t,t_j)I_j\big((A^{-1}u)(t_j)\big), \end{aligned} \end{equation} where \[ G(t,s)=\frac{e^{\int_{t}^{s}a(\theta)g((A^{-1}x)(h_1(\theta))\,d\theta}} {e^{\int_{0}^{\omega}a(\theta)g((A^{-1}x)(h_1(\theta))\,d\theta}-1},\quad s\in [t,t+\omega]. \] \end{lemma} For $u\in \mathbb{X}$ and $t\in \mathbb{R}$, let the map $\Phi $ be defined by \begin{equation} \label{e2.5} \begin{aligned} (\Phi u)(t)&=\int_t^{t+\omega}G(t,s)\Big[a(t)\widehat{G} \big(u(t),u(h_1(t))\big)+\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds \\ &\quad +\sum_{j:t_j\in[0,\omega]} G(t,t_j)I_j\big((A^{-1}u)(t_j)\big) \end{aligned} \end{equation} It is easy to see that $G(t+\omega,s+\omega)=G(t,s)$ and \begin{equation} \label{e2.6} \frac{1}{\sigma^L-1} \leq G(t,s) \leq \frac{\sigma^l}{\sigma^l-1},\quad s\in [t,t+\omega], \end{equation} where $\sigma=\exp\big(-\int_{0}^{\omega}a(\theta)\,d\theta\big)$. Define the cone $K$ in $\mathbb{X}$ by \begin{align*} K=\Big\{ u\in \mathbb{X}: u(t)\geq \delta\|u\|,\ t\in [0,\omega]\Big\}, \end{align*} where $0<\delta=\frac{(\sigma^l-1)}{\sigma^l(\sigma^L-1)}<1$. The following lemma is useful in the proofs of our main results. Since the method is similar to that in the literature \cite{l5}, we omit the proof. \begin{lemma} \label{lem2.5} If $c\in(-\delta,0]$ and $u\in K$. Then \[ l|c|\frac{\delta-|c|}{1-c^2}\|u\|\leq \widehat{G}\big(u(t), u(h_1(t))\big)\leq L\frac{|c|}{1-|c|}\|u\|. \] \end{lemma} \begin{lemma} Assume that {\rm (H1)--(H4)} and $c\in(-\delta,0]$ hold, then $\Phi$ maps $K$ into $K$. \end{lemma} \begin{proof} For any $u\in K$, it is clear that $\Phi u\in C(\mathbb{R},\mathbb{R})$, we have \begin{align*} (\Phi u)(t+\omega) &= \int_t^{t+\omega}G(t+\omega,s+\omega) \Big[a(t+\omega)\widehat{G}\big(u(t+\omega),u(h_1(t+\omega))\big)\\ &\quad + \lambda b(t+\omega) f\big((A^{-1}u)(h_2(t+\omega))\big)\Big]\,ds \\ &\quad + \sum_{j:t_j\in[0,\omega]}G(t+\omega,t_j+\omega)I_j \big((A^{-1}u)(t_j+\omega))\big)\\ &= \int_t^{t+\omega}G(t,s)\Big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big) +\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds\\ &\quad + \sum_{j:t_j\in[0,\omega]}G(t,t_j)I_j\big((A^{-1}u)(t_j)\big)\\ &= (\Phi u)(t). \end{align*} Thus, $(\Phi u)(t+\omega)=(\Phi u)(t)$, $t\in \mathbb{R}$. So that $\Phi u \in \mathbb{X}$. Since $c\in(-\delta,0]$, it follows that $G(u(t),u(h_1(t)))\geq 0$ for $t\in\mathbb{R}$. In view of \eqref{e2.5}, \eqref{e2.6}, for $u \in K$, $t\in [0,\omega]$, we have \begin{align*} \|(\Phi u)\| &\leq \frac{\sigma^l} {\sigma^l-1}\Big(\int_t^{t+\omega} \Big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big)+\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds\\ &\quad + \sum_{j:t_j\in[0,\omega]}I_j\big((A^{-1}u)(t_j)\big)\Big) \end{align*} and \begin{align*} |(\Phi u)(t)| &\geq \frac{1}{\sigma^L-1}\Big(\int_t^{t+\omega} \Big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big) +\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds\\ &\quad + \sum_{j:t_j\in[0,\omega]}I_j\big((A^{-1}u)(t_j)\big)\Big)\\ &\geq \delta\|\Phi u\|. \end{align*} Hence, $\Phi x \in K$. The proof is complete. \end{proof} It is easy to see that $\Phi$ is continuous and bounded. From Lemma \ref{lem2.5}, we know that $\Phi$ maps bounded sets into relatively compact sets. Furthermore, by the theorem of Ascoli-Arzela \cite{r1}, it is easy to prove that the function $\Phi$ is completely continuous. For convenience in the following discussion, we introduce the following notation: \begin{gather*} f^0=\limsup_{v\to0}\frac{f(v)}{v},\quad I^0=\limsup_{v\to0}\sum_{j=1}^q\frac{I_j(v)}{v}, \\ f^\infty=\limsup_{v\to\infty}\frac{f(v)}{v}, \quad I^\infty=\limsup_{v\to\infty}\sum_{j=1}^q\frac{I_j(v)}{v} \end{gather*} and for $c_2>0$, \[ I_{(c_2)}=\min_{\delta c_2\leq v\leq c_2}\sum_{j=1}^qI_j(v). \] \section{Main Result} Our main result of this paper is stated as follows. \begin{theorem} \label{thm3.1} Assume that {\rm (H1)-(H4)} and $c\in(-\eta,0 ]$, where \[ \eta:=\min\big\{\delta,\, 1-\frac{l\sigma^l \beta}{(\sigma^l-1)+L\sigma^l\beta}\big\}. \] Then there exists a number $c_2>0$ such that \begin{itemize} \item [(i)] For $\delta c_2\leq u\leq c_2$, $t\in R$, \[ f\big((A^{-1}u)(h_2(s))\big)> \frac{\sigma^l(\sigma^L-1)}{\sigma^l-1}u -\frac{\sigma^l}{\sigma^l-1}I_{(c_2)} - \frac{\sigma^l}{\sigma^l-1}l|c|\frac{\delta-|c|}{1-c^2}\beta u\,; \] \item [(ii)] \[ f^0+I^0<\frac{(1-|c|)(\sigma^l-1)}{L\sigma^l|c|}-\beta, \quad f^\infty+I^\infty<\frac{(1-|c|)(\sigma^l-1)}{L\sigma^l|c|}-\beta\,. \] \end{itemize} Then system \eqref{e1.1} has at least three positive $\omega$-periodic solutions for \[ \frac{\sigma^l-1}{\sigma^l\int_{t}^{t+\omega}b(s)\,\mathrm{d}s} <\lambda<\frac{1}{\int_{t}^{t+\omega}b(s)\,\mathrm{d}s}. \] \end{theorem} \begin{proof} By the condition $f^\infty+I^\infty<\frac{(1-|c|)(\sigma^l-1)}{L\sigma^l|c|}-\beta$ of (ii), one can find that for \[ \frac{\frac{(1-|c|)(\sigma^l-1)}{L\sigma^l|c|} -\beta-(f^\infty+I^\infty)}{2}>\varepsilon>0, \] there exists a $C_0>c_2$ such that \[ \limsup_{v\to\infty}f(v)\leq(f^\infty+\varepsilon)v, \quad \limsup_{v\to\infty}\sum_{j=1}^qI_j(v)\leq (I^\infty+\varepsilon)v, \] where $u> C_0$. Let $C_1=C_0/\delta$, if $u\in K,\, \|u\|> C_1$, thus $u>C_0$ and we have \begin{equation} \label{e3.1} \begin{aligned} (\Phi u)(t) &= \int_t^{t+\omega}G(t,s)\Big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big) +\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds \\ &\quad + \sum_{j:t_j\in[0,\omega]}G(t,t_j)I_j\big((A^{-1}u)(t_j)\big) \\ &\leq \frac{\sigma^l}{\sigma^l-1}\Big\{L\frac{|c|}{1-|c|}\|u\|\int_{t}^{t+\omega}a(t)ds \\ &\quad + (f^\infty+\varepsilon)L\frac{|c|}{1-|c|}\|u\| \int_{t}^{t+\omega}\lambda b(s)\,\mathrm{d}s +(I^\infty+\varepsilon)L\frac{|c|}{1-|c|}\|u\|\Big\} \\ &= \frac{L\sigma^l|c|}{(1-|c|)(\sigma^l-1)}\Big\{\beta +(f^\infty+\varepsilon)\int_{t}^{t+\omega}\lambda b(s)\,\mathrm{d}s+(I^\infty+\varepsilon)\Big\}\|u\| \\ &< \|u\|. \end{aligned} \end{equation} Take $K_{C_1}=\{u\in K:\|u\|\leq C_1\}$, then the set $K_{C_1}$ is a bounded set. Since $\Phi$ is completely continuous, $\Phi$ maps bounded sets into bounded sets and there exists a number $C_2$ such that \[ \|\Phi u\|\leq C_2\quad\text{for all } u\in K_{C_1}. \] If $C_2\leq C_1$, we obtain that $\Phi: K_{C_1}\to K_{C_1}$ is completely continuous. If $C_1< C_2$, then from (3.1), we know that for any $u\in K_{C_2}\backslash K_{C_1}$, $\|u\|>C_1$ and $\|\Phi u\|<\|u\|c_2$ and $\Phi: K_{c_3}\to K_{c_3}$ is completely continuous. Define the positive continuous concave functional $\alpha(u)=\min_{t\in[0,\omega]}\big\{|u(t)|\}$. First, we let $c_1=\delta c_2$ and take $u\equiv\frac{c_1+c_2}{2}$, $u\in K(\alpha,c_1,c_2)$, $\alpha(u)>c_1,$ then the set $\{u\in K(\alpha,c_1,c_2)\}\neq \emptyset$. And by (i), if $u\in K(\alpha,c_1,c_2),$ then $\alpha(u)\geq c_1,$ and we have \begin{align*} &\alpha(\Phi u) \\ &= \min_{t\in[0,\omega]}\Big\{ \int_t^{t+\omega}G(t,s)\Big[a(t)\widehat{G}\big(u(t),u(h_1(t))\big)+\lambda b(t) f\big((A^{-1}u)(h_2(t))\big)\Big]\,ds \\ &\quad + \sum_{j:t_j\in[0,\omega]}G(t,t_j)I_j\big((A^{-1}u)(t_j)\big)\Big\} \\ &\geq \frac{1}{\sigma^L-1}\Big\{l|c|\frac{\delta-|c|}{1-c^2}u\beta +\min_{t\in[0,\omega]}\Big\{\int_t^{t+\omega}\lambda b(s) f\big((A^{-1}u)(h_2(s))\big)\,ds\Big\}+I_{(c_2)}\Big\} \\ &> \frac{1}{\sigma^L-1}\Big\{l|c|\frac{\delta-|c|}{1-c^2}u\beta +\Big[\frac{\sigma^l(\sigma^L-1)}{\sigma^l-1}a(u) -\frac{\sigma^l}{\sigma^l-1}I_{(c_2)}\\ &\quad -\frac{\sigma^l}{\sigma^l-1}l|c|\frac{\delta-|c|}{1-c^2}\beta u\Big]\lambda\int_t^{t+\omega}b(s)ds+I_{(c_2)}\Big\} \\ &= \alpha(x)\geq c_1. \end{align*} Thus condition (1) of Lemma \ref{lem2.3} holds. Secondly, by the inequality $f^0+I^0<\frac{(1-|c|)(\sigma^l-1)}{L\sigma^l|c|}-\beta$ in condition of (ii), one can find that for \[ \frac{\frac{(1-|c|)(\sigma^l-1)}{L\sigma^l|c|}-\beta-(f^0+I^0)}{2} >\varepsilon>0, \] there exists $c_4$, with $0c_2,$ by the definition of the cone $K$, we have \[ \Phi u\geq \delta\|\Phi u\|>\delta c_2=c_1. \] Thus condition (3) of Lemma \ref{lem2.3} holds. Therefore, by Lemma \ref{lem2.3}, we obtain that the operator $\Phi$ has at least three fixed points in $K_{c_3}$. From Lemma \ref{lem2.2}, we know that \eqref{e1.1} has at least three fixed points in $K_{c_3}$. The proof of Theorem \ref{thm3.1} is complete. \end{proof} \begin{corollary} \label{coro3.1} The conclusion in Theorem \ref{thm3.1}, sis still true when (ii) is replaced by \begin{itemize} \item [(ii$^*$)] $f^0=0$, $\widehat{f}^0=0$, $f^\infty=0$, $\widehat{f}^\infty=0$. \end{itemize} \end{corollary} \section{An example} Consider the problem \begin{equation} \label{e4.1} \begin{gathered} \frac{d}{dt}\big[x(t)-\frac{1}{3} x(t-\frac{\pi}{2})\big]=-\frac{1}{2\pi}(\frac{1}{3}+e^{-x(t)})x(t) +\lambda (1-\sin t)x^2(t) e^{-x(t)},\quad t\neq t_j,\\ \Delta \big[x(t)-\frac{1}{3} x(t-\frac{\pi}{2})\big]=0.1x^3(t_j)e^{-3x(t_j)},\quad t=t_j,\;j\in\mathbb{Z}^+, \end{gathered} \end{equation} where $\lambda$ is nonnegative parameter. Take $\gamma=\frac{\pi}{2}$, $c=\frac{1}{3}$, $a(t)=\frac{1}{2\pi}$, $b(t)=1-\sin t$, $j=2k$, $k=1,2,\ldots$, $g(x(h_1(t)))=\frac{1}{3}+e^{-x(t)}$, and $f(x(h_2(t)))=x^2(t) e^{-x(t)}$. Clearly, $L=\frac{4}{3}$, $l=\frac{1}{3}$ and $\beta=1$. According to Corollary \ref{coro3.1}, Equation \eqref{e4.1} has at least three positive periodic solutions. \begin{thebibliography}{99} \bibitem{b1} D. Y. Bai, Y. T. Xu; \emph{Periodic solutions of first order functional differential equations with periodic deviations}, Comput. Math. Appl. 53 (2007), 1361-1366. \bibitem{d1} X. Ding, J. Jiang; \emph{Positive periodic solutions in delayed Gause-type predator¨Cprey systems}, J. Math. Anal. Appl. 339 (2008). 1220-1230. \bibitem{d2} F. Dubeau, J. Karrakchou; \emph{State-dependent impulsive delay-differential equations}, Appl. Math. Lett. 15 (2002). 333-338. \bibitem{k1} Y. Kuang; \emph{Delay differential equatiuons with Application in population dynamics}, Academic Press, New York 1993. \bibitem{l1} R. W. Leggett, L. R. Williams; \emph{Multiple positive fixed points of nonlinear operator on ordered Banach spaces}, Indiana Univ. Math. J. 28 (1979), 673-688. \bibitem{l2} W. T. Li, H. Huo; \emph{Existence and global attractuvity of positive periodic solutions of functional differential equations with impulsives}, Nonlinear Anal. 59 (2004), 857-877. \bibitem{l3} X. Y. Li, X. N. Lin, D. Q. Jiang; \emph{Existence and multiplicity of positive periodic solutiuons to functional differential equations with impulse effects}, Nonlinear Anal. 62 (2005), 683-701. \bibitem{l4} Y. K. Li; \emph{Existence and global attractivity of a positive periodic solution of a class of delay differential equation}, Science in China series A 41 (3) (1998), 273-284. \bibitem{l5} Y. K. Li, Y. Kuang; \emph{Periodic solutions in periodic state-dependent delay equations and population models}, Proc. Amer. Math. Soc. 130 (5) (2002), 1345-1353. \bibitem{l6} Y. K. Li, Y. Kuang; \emph{Periodic solutions of periodic delay Lotka-Volterra equations and systems}, J. Math. Anal. Appl. 255 (2001), 260-280. \bibitem{l7} Y. K. Li, Periodic solutions of a periodic delay predator-prey system, Proc. Ameri. Math. Soc. 127(1999), 1331-1335. \bibitem{l8} Y. K. Li, L. F. Zhu, P. Liu; \emph{Positive periodic solutions of nonlinear functional difference equations depending on a parameter}, Comput. Math. Appl. 48 (2004), 1453-1459. \bibitem{l9} S. Lu, W. Ge; \emph{On the existence of periodic solutions for neutral functional differential equation}, Nonlinear Analysis 54 (2003), 1285 -1306. \bibitem{m1} X. Meng, L. Chen; \emph{Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay}, J. Math. Anal. Appl. 339 (2008), 125-145. \bibitem{n1} J. J. Nieto; \emph{Impulsive resonance periodic problems of first order}, Appl. Math. Lett. 15 (2002), 489-493. \bibitem{r1} H. L. Royden; \emph{Real Analysis}, Macmillan, New York, 1988. \bibitem{s1} Y. Sun, M. Han, L. Debnath; \emph{Existence of positive periodic solutions for a class of functional differential equations}, Appl. Math. Comput. 190 (2007), 699-704. \bibitem{w1} K. Wang, S. Lu; \emph{The existence, uniqueness and global attractivity of periodic solution for a type of neutral functional differential system with delays}, J. Math. Anal. Appl. 335 (2007),808-818. \bibitem{w2} H. Wu, Y. Xia, M. Lin; \emph{Existence of positive periodic solution of mutualism system with several delays}, Chaos, Solitons \& Fractals 36 (2008), 487-493. \bibitem{z1} N. Zhang, B. Dai, X. Qian; \emph{Periodic solutions for a class of higher-dimension functional differential equations with impulses}, Nonlinear Anal. 68 (2008), 629-638. \bibitem{z2} Q. Zhou, F. Long; \emph{Existence and uniqueness of periodic solutions for a kind of Li¨¦nard equation with two deviating arguments}, J. Comput. Appl. Math. 206 (2007), 1127-1136. \end{thebibliography} \end{document}