\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 40, pp 1--8. \newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2008/40\hfil Differential equations with $p$-Laplacian] {Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian} \author[M. Bartu\v sek, M. Medve\v d\hfil EJDE-2008/40\hfilneg] {Miroslav Bartu\v sek, Milan Medve\v d} % in alphabetical order \address{Miroslav Bartu\v sek \newline Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Jan\'a\v ckovo n\'am. 2a, CZ-602 00 Brno, Czech Republic} \email{bartusek@math.muni.cz} \address{Milan Medve\v d \newline Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia} \email{medved@fmph.uniba.sk} \thanks{Submitted January 29, 2008. Published March 20, 2008.} \subjclass[2000]{34C11, 34K10} \keywords{Second order functional-differential equation; $p$-Laplacian; \hfill\break\indent global solution} \begin{abstract} We find sufficient conditions for the existence of global solutions for the systems of functional-differential equations $$ \big(A(t)\Phi_p(y')\big)' + B(t)g(y', y'_t) + R(t)f(y, y_t) = e(t), $$ where $\Phi_p(u) = (|u_1|^{p-1}u_1, \dots, |u_n|^{p-1}u_n)^T$ which is the multidimensional $p$-Laplacian. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \section{Introduction}\label{s:1} There are many papers concerning various problems for ordinary differential equations with $p$-Laplacian. From the recently published papers and books see e.g. \cite{14, 15, 24, 25, 26}. The problems treated in this paper are close to those studied in \cite{1}-\cite{6}, \cite{8}-\cite{26}. The recently published paper \cite{10} contains some results on the existence of positive solutions of a boundary value problem for a $p$-Laplacian functional- differential equations. This paper motivated us to study the problem of the existence of global solutions for such type of equations. This problem for functional-differential equations of the first order on the Banach space has been recently studied in the paper \cite{20}. A survey of papers on this problems concerning systems of ordinary differential equations and also scalar differential equations with $p$-Laplacian and some remarks on results close to the results proved in \cite{21} can be found in the introduction of this paper. In this paper, we are concerned with the initial value problem \begin{gather}\label{e:1} \big(A(t)\Phi_p(y')\big)' + B(t)g(y', y'_t) + R(t)f(y, y_t) = e(t), \quad t \geq 0, \\ \label{e:2} y(t) = \varphi_0(t), y'(t) = \varphi_1(t),\quad - r \leq t \leq 0, \end{gather} where $n\in \{1,2,\dots\}$, $\Phi_p(u) = (|u_1|^{p-1}u_1, \dots, |u_n|^{p-1}u_n)^T$, $u \in \mathbb{R}^n$, $y_t \in C^1 := C^1(\langle - r, 0\rangle, \mathbb{R}^n)$, $y_t(\Theta)= y(t + \Theta)$, $y'_t \in C = C(\langle - r, 0\rangle, \mathbb{R}^n)$, $y'_t(\Theta) = y'(t + \Theta)$, $A(t)$, $B(t)$, $R(t)$ are continuous, matrix-valued functions on $\mathbb{R}_+ := \langle 0, \infty), A(t)$ is regular for all $t \in \mathbb{R}_+$, $e: \mathbb{R}_+ \to \mathbb{R}^n$, $ \varphi_0:\langle -r, 0 \rangle \to {\mathbb R}^n$, $\varphi_1 :\langle -r, 0 \rangle \to {\mathbb R}^n$ and $f:\mathbb{R}^n \times C^1 \to R^n, g:\mathbb{R}^n \times C \to \mathbb{R}^n$ are continuous mappings. The aim of the paper is to study the problem of the existence of global solutions of the equation \eqref{e:1} in the sense of the following definition. \begin{definition} \label{def1.1} \rm A solution $y(t)$, $t \in \langle - r, T)$ of the initial value problem \eqref{e:1}, \eqref{e:2} is called non-extendable to the right if either $T < \infty$ and $\lim_{t \to T^-} [\|y(t)\| + \|y'(t)\|]=\infty$, or $T = \infty$, i.\,e. $y(t)$ is defined on $\langle - r, \infty)$. In the second case the solution $y(t)$ is called global. \end{definition} We shall use in the sequel the norm $\|z\|= \max_{0 \leq i \leq n}|z_i|$ of $ z = (z_1, z_2,\dots, z_n) \in R^n$. The main results of this paper are formulated in the following theorems. \begin{theorem}\label{t:1} Let $m > p, m \geq 1, A(t)$, $B(t)$, $R(t)$ be continuous matrix-valued functions on $\langle 0, \infty), A(t)$ be regular for all $t \in \mathbb{R}_+, e:\mathbb{R}_+ \to \mathbb{R}^n$, $f, g: \mathbb{R}^n \to \mathbb{R}^n$ be continuous mappings and $\varphi_0 \in C^1$, $\varphi_1 \in C$, $\varphi_0(0) = y_0$, $\varphi_1(0) = y_1$. Let \begin{equation} \int_0^\infty \|R(s)\|s^{m-1}{\rm d}s < \infty \label{e:3} \end{equation} and there exist constants $K_1, K_2 > 0$ such that \begin{equation} \|g(u, v)\| \leq K_1 (\|u\|^m + \|v\|_C^m),\quad \|f(u, v)\| \leq K_2 (\|u\|^m + \|v\|_C^m)\,,\label{e:4} \end{equation} for all $(u, v) \in \mathbb{R}^n \times C$. Let $A_\infty =\sup_{0\leq t<\infty} \Vert A(t)^{-1}\Vert$, $R_\infty =\int_0^\infty \|R(s)\|\,{\rm d} s$, \begin{gather*} B_\infty := \sup_{0 \leq t < \infty }\int_0^t\Vert B(\tau)\Vert {\rm d}\tau < \infty, \quad E_\infty := \sup_{0 \leq t < \infty}\int_0^t \Vert e(s)\Vert {\rm d} s < \infty \end{gather*} and \begin{equation} \frac{m - p}{p}c^{\frac{m - p}{p}} \sup_{0 \leq t < \infty}\int_0^tF(s){\rm d} s< 1, \label{e:5} \end{equation} where \begin{gather*} \begin{aligned} c &:= A_\infty \{\Vert A(0)\Phi_p(y_1)\Vert + 2^{m-1}K_1\Vert \varphi_1\Vert_C^m B_\infty\\ &\quad + 2^{m-1} K_2\big(\Vert y_0\Vert ^m + \big(\Vert \varphi_0\Vert _C + \Vert y_0\Vert\big)^m\big)R_\infty \}, \end{aligned} \\ F(t) = 2^mK_2A_\infty \int_t^\infty\Vert R(s)\Vert s^{m-1}{\rm d} s + (2^{m-1}+1)K_1A_\infty\Vert B(t)\Vert\,. \end{gather*} Then any nonextendable to the right solution $y(t)$ of the initial value problem \eqref{e:1}, \eqref{e:2} is global. \end{theorem} Due to the continuous Jensen's inequality, Theorem \ref{t:1} is valid for $m\geq 1$ only. A similar result is stated in the following theorem in case $m<1$ under stronger assumptions. \begin{theorem}\label{t:3} Let $m >p>0$, $00$ exist such that $$ \Vert g(u,v)\Vert \leq K_1 (\Vert u\Vert ^m + \Vert v\Vert _C^m), \quad \Vert f(u,v)\Vert \leq K_2 (\Vert u\Vert ^m + \Vert v\Vert _C^m) $$ for $(u,v)\in {\mathbb R^n \times C}$. Let $$ \frac{m-p}{p} C_1^{\frac{m-p}{p}} \sup_{0\leq t <\infty } \int_0^t F_1 (s)\,{\rm d} s <1\,, $$ where $B_\infty $ and $E_\infty $ are given in Theorem \ref{t:1}.2 and \begin{gather*} \begin{aligned} C_1&= A_\infty \big\{ \Vert A(0)\Phi_p(y_1)\Vert + 2^m K_1 \Vert \varphi_1\Vert _C^m B_\infty \\ &\quad + 2^m K_2 R_\infty \big(\Vert y_0\Vert ^m + (\Vert \varphi_0\Vert + \Vert y_0\Vert )^m\big)\big\}\,, \end{aligned}\\ F_1(t)= (2^m+1)A_\infty K_1 \Vert B(t)\Vert + 2^{m+1}A_\infty K_2 \Vert R(t)\Vert t^m\,. \end{gather*} Then any nonextendable to the right solution $y(t)$ of the initial value problem \eqref{e:1}, \eqref{e:2} is global. \end{theorem} The above theorem solves the problem in case $m\leq p$. \begin{theorem}\label{t:4} Let $p>0$, $01$. Then $\varepsilon >0$ exists such that a solution of the problem \eqref{e:c5}, $|y(0)|<\varepsilon$, $|y'(0)|<\varepsilon$ is defined on ${\mathbb R}_+$ if and only if \begin{equation}\label{e:c6} \alpha < - m-1\,. \end{equation} \end{corollary} Corollary \ref{coro1.5} shows that condition \eqref{e:3} cannot be weaken, the integral cannot be infinite. \section{Proofs of the main results}\label{s:2} \subsection*{Proof of Theorem \ref{t:1}} Let $y:\langle - r, T)\to \mathbb{R}^n$ be a nonextendable to the right solution of the initial value problem \eqref{e:1}, \eqref{e:2} with $0 0$ yield \begin{align*} \Vert \Phi_p(u(t))\Vert & \leq\Vert A(t)^{-1}\Vert \big\{ \Vert A(0)\Phi_p(y_1)\Vert + K_1 \int_0^t \Vert B(s)\Vert w^m(s)\,{\rm d} s\\ &\quad + 2^m K_1 \Vert \varphi_1\Vert _C^m B_\infty + 2^m K_1 \int_0^t \Vert B(s)\Vert w^m (s)\,{\rm de} s\\ &\quad + 2^m K_2 \Vert y_0\Vert ^m R_\infty + 2^m K_2 \int_0^t \Vert R(s)\Vert s^m w^m(s)\,{\rm d} s\\ &\quad + 2^m K_2 (\Vert \varphi_0\Vert_C + \Vert y_0\Vert )^m R_\infty + 2^m K_2 \int_0^t \Vert R(s)\Vert s^m w^m (s)\,{\rm d} s\big\}\,. \end{align*} Hence, $$ w^p(t)\leq C_1 +\int_0^t F_1 (\tau) w^m (\tau)\,{\rm d} \tau\,, $$ where $C_1$ and $F_1$ are given in Theorem \ref{t:3}, and the rest of the proof is the same as in the end of the proof of Theorem \ref{t:1}. \subsection*{Proof of Theorem \ref{t:4}} Let $y:\langle -r, T)\to {\mathbb R^n}$ be a nonextendable solution of the initial value problem \eqref{e:1}, \eqref{e:2} with $0