\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 45, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/45\hfil Multiple positive solutions] {Multiple positive solutions for nonlinear second-order m-point boundary-value problems with sign changing nonlinearities} \author[F. Xu, Z. Chen, F. Xu\hfil EJDE-2008/45\hfilneg] {Fuyi Xu, Zhenbo Chen, Feng Xu} \address{Fuyi Xu \newline School of Mathematics and Information Science, Shandong University of Technology, Zibo, Shandong, 255049, China} \email{zbxufuyi@163.com} \address{Zhenbo Chen \newline School of Mathematics and Information Science, Shandong University of Technology, Zibo, Shandong, 255049, China} \email{czb56@sdut.edu.cn} \address{Feng Xu \newline School of Mathematics and Information Science, Shandong University of Technology, Zibo, Shandong, 255049, China} \email{zbxf878@126.com} \thanks{Submitted December 27, 2007. Published March 29, 2008.} \thanks{Supported by grant 10471075 from the the National Natural Science Foundation of China} \subjclass[2000]{34B15} \keywords{m-point; boundary-value problem; Green's function; \hfill\break\indent fixed point theorem in double cones} \begin{abstract} In this paper, we study the nonlinear second-order m-point boundary value problem \begin{gather*} u''(t)+f(t,u)=0,\quad 0\leq t \leq 1, \\ \beta u(0)-\gamma u'(0)=0,\quad u(1)=\sum _{i=1}^{m-2}\alpha_{i} u(\xi_{i}), \end{gather*} where the nonlinear term $f$ is allowed to change sign. We impose growth conditions on $f$ which yield the existence of at least two positive solutions by using a fixed-point theorem in double cones. Moreover, the associated Green's function for the above problem is given. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} The study of multi-point boundary value problems for linear second-order ordinary differential equations was initiated by Il'in and Moviseev \cite{i1,i2}. Motivated by the study of \cite{i1,i2}, Gupta \cite{g3} studied certain three-point boundary value problems for nonlinear ordinary differential equations. Since then, more general nonlinear multi-point boundary value problems have been studied by several authors. We refer the reader to \cite{g4,l1,m1} for some references along this line. Multi-point boundary value problems describe many phenomena in the applied mathematical sciences. For example, the vibrations of a guy wire composed of $N$ parts with a uniform cross-section throughout but different densities in different parts can be set up as a multi-point boundary value problems (see \cite{m3}). Many problems in the theory of elastic stability can be handle by the method of multi-point boundary value problems (see \cite{h1}). In 1997, Henderson and Wang \cite{h1} studied the existence of positive solutions for nonlinear eigenvalue problem \begin{gather*} u''(t)+\lambda h(t)f(u)=0,\quad 0\leq t \leq 1, \\ u(0)=0,\quad u(1)=0, \end{gather*} where $f\in C([0,+\infty),[0,+\infty))$ and $h\in C([0,1],[0,+\infty))$. The authors establish the existence of positive solutions under the condition that $f$ is either superlinear or sublinear. Ma \cite{m1} investigated the second-order three-point boundary value problem(BVP) \begin{gather*} u''(t)+a(t)f(u)=0,\quad 0 \leq t \leq 1,\\ u(0)=0,\quad u(1)=\alpha u(\eta), \end{gather*} where $0 < \eta < 1$, $0<\alpha\eta<1$, $f\in C ([0,+\infty),[0,+\infty))$, $a\in C([0,1], [0,+\infty))$. The existence of at least one positive solution is obtained under the condition that $f$ is either superlinear or sublinear by applying Guo-Krasnoselskii's fixed point theorem. Recently, Ma \cite{m2} studied the second-order m-point boundary-value problem \begin{gather*} u''(t)+ a(t)f(u)=0,\quad 0 \leq t \leq 1, \\ u(0)=0,\quad u(1)=\sum _{i=1}^{m-2}\alpha_{i} u(\xi_{i}), \end{gather*} where $\alpha_i\geq 0$, $i=1, 2, \dots, m-3$, $\alpha_{m-2}>0$, $0<\xi_1<\xi_2<\dots<\xi_{m-2}<1$, $0<\Sigma_{i=1}^{m-2}\alpha_i\xi_i<1 $, $f\in C ([0,+\infty),[0,+\infty))$, $a\in C([0,1], [0,+\infty))$. The author obtained the existence of at least one positive solution if $f$ is either superlinear or sublinear by applying a fixed-point theorem in cones. All the above works were done under the assumption that the nonlinear term is nonnegative, applying the concavity of solutions in the proofs. In this paper we study the nonlinear second-order m-point boundary value problem \begin{gather} \label{e1.1} u''(t)+f(t,u)=0,\quad 00$, let $K_r=\{x\in K: \|x\|a>0$ such that \begin{itemize} \item[(C1)] $\|Tx\|b$ for $x\in \partial K'(b)$; \item[(C3)] $Tx=T'x$, for $x\in K'_{a}(b)\cap\{u:T'u=u\}$. \end{itemize} Then $T$ has at least two fixed points $y_1$ and $y_2$ in $K$, such that $$ 0\leq \|y_1\|0$. If $y\in C[0,1]$ and $y\geq0$, then the unique solution $u$ of \eqref{e2.1}-\eqref{e2.2} satisfies $u(t)\geq0$. \end{lemma} \begin{proof} Since $u''(t)=-y(t)\leq0$, we know that the graph of $u(t)$ is concave down on $(0,1)$. So we only prove $u(0)\geq0$, $u(1)\geq 0$. Firstly, we shall prove $u(0)\geq0$ in the following two cases \noindent{\bf Case i:} If $0<\sum_{i=1}^{m-2}a_i\leq1$, by \eqref{e2.3} we have \begin{align*} u(0)&=\frac{\gamma}{d}\Big[\int_{0}^{1}(1-s)y(s)ds- \sum_{i=1}^{m-2}a_i\int_{0}^{\xi_i}(\xi_i-s)y(s)ds\big] \\ &\geq\frac{\gamma}{d}\Big[\int_{0}^{1}(1-s)y(s)ds- \sum_{i=1}^{m-2}a_i\int_{0}^{1}(1-s)y(s)ds\Big] \\ &=\frac{\gamma}{d}\Big(1-\sum_{i=1}^{m-2}a_i\Big) \int_{0}^{1}(1-s)y(s)ds\geq0. \end{align*} \noindent{\bf Case ii:} If $\sum_{i=1}^{m-2}a_i>1$, by \eqref{e2.3} we have \begin{align*} u(0)&=\frac{\gamma}{d}\Big[\int_{0}^{1}(1-s)y(s)ds- \sum_{i=1}^{m-2}a_i\int_{0}^{\xi_i}(\xi_i-s)y(s)ds\Big] \\ &\geq\frac{\gamma}{d}\Big[\int_{0}^{1}(1-s)y(s)ds- \sum_{i=1}^{m-2}a_i\int_{0}^{1}(\xi_i-s)y(s)ds\Big] \\ &=\frac{\gamma}{d}\int_{0}^{1} \Big[(1-\sum_{i=1}^{m-2}a_i\xi_i)+(\sum_{i=1}^{m-2}a_i-1 )s\Big]y(s)ds\geq0. \end{align*} On the other hand, by \eqref{e2.3} we have \begin{align*} u(1) &=-\int_{0}^{1}(1-s)y(s)ds+ \frac{\beta +\gamma}{d}\int_{0}^{1}(1-s)y(s)ds\\ &\quad -\frac{\beta +\gamma}{d}\sum_{i=1}^{m-2}a_i\int_{0}^{\xi_i}(\xi_i-s)y(s)ds \\ &\geq\frac{\beta}{d}\Big[\sum_{i=1}^{m-2}a_i \int_{0}^{\xi_i}(\xi_i(1-s)-(\xi_i-s))y(s)ds +\sum_{i=1}^{m-2}a_i\xi_i\int_{\xi_i}^{1}(1-s)y(s)ds\Big] \\ &\quad +\frac{\gamma}{d}\sum_{i=1}^{m-2}a_i \Big[\int_{0}^{1}(1-s)y(s)ds-\int_{0}^{1}(\xi_i-s)y(s)ds \Big] \\ &=\frac{\beta}{d}\sum_{i=1}^{m-2}a_i \Big[\int_{0}^{\xi_i}(1-\xi_i)sy(s)ds+ \xi_i\int_{\xi_i}^{1}(1-s)y(s)ds\Big] \\ &\quad +\frac{\gamma}{d}\sum_{i=1}^{m-2}a_i \Big[\int_{0}^{1}(1-\xi_i)y(s)ds\Big]\geq0. \end{align*} The proof is complete. \end{proof} \begin{lemma} \label{lem2.3} Let $\sum_{i=1}^{m-2}a_i\xi_i>1$, $d\neq0$. If $y\in C[0,1]$ and $y\geq0$, then \eqref{e2.1}-\eqref{e2.2} has no positive solution. \end{lemma} \begin{proof} On the contrary, suppose that \eqref{e2.1}-\eqref{e2.2} has a positive solution $u$, then $u(\xi_i)>0$, $i=1,2,\dots, m-2$ and $$ u(1)=\sum_{i=1}^{m-2}a_i u(\xi_i)=\sum_{i=1}^{m-2}a_i \xi_i\frac{u(\xi_i)}{\xi_i}\geq\sum_{i=1}^{m-2}a_i \xi_i\frac{u(\overline{\xi})}{\overline{\xi}} >\frac{u(\overline{\xi})}{\overline{\xi}}, $$ where $\overline{\xi}=\min\{\xi_1, \xi_2, \dots ,\xi_{m-2}\}$ satisfies $$ \frac{u(\overline{\xi})}{\overline{\xi}} =\min\big\{\frac{u(\xi_1)}{\xi_1},\frac{u(\xi_2)}{\xi_2}, \dots,\frac{u(\xi_{m-2})}{\xi_{m-2}} \big\}, $$ which contradicts to the concave of $u(t)$. The proof is complete. \end{proof} \begin{lemma} \label{lem2.4} Let $a_i\geq0$, $ i=1, \dots, m-2$, $0<\sum_{i=1}^{m-2}a_i\xi_i<1$, $d>0$. If $y\in C[0,1]$ and $y\geq0$, then the unique positive solution $u(t)$ of \eqref{e2.1}-\eqref{e2.2} satisfies $$ \inf_{t\in[\xi_{m-2}, 1]}u(t)\geq \sigma \|u\|, $$ where $$ \sigma=\min\big\{ \frac{a_{m-2}(1-\xi_{m-2})}{1-a_{m-2}\xi_{m-2}},\ a_{m-2}\xi_{m-2},\ \xi_{m-2}\big\}, \quad \|u\|=\sup_{t\in[0,1]}|u(t)|. $$ \end{lemma} \begin{proof} Let $u(\overline{t})=\max_{t\in[0,1]}u(t)=\|u\|$, we shall discuss it from the following two cases: \noindent\textbf{Case 1:} If $0<\sum_{i=1}^{m-2}a_i<1$. Firstly, assume that $\overline{t}<\xi_{m-2}<1$, so that $\min_{t\in[\xi_{m-2}, 1]}u(t)=u(1).$ By $u(1)=\sum_{i=1}^{m-2}a_i u(\xi_i)\geq a_{m-2}u(\xi_{m-2})$ we have \begin{align*} u(\overline{t})&\leq u(1)+\frac{u(1)-u(\xi_{m-2})}{1-\xi_{m-2}}(0-1)\\ &=u(1)-\frac{1}{1-\xi_{m-2}}u(1) +\frac{1}{1-\xi_{m-2}}u(\xi_{m-2}) \\ &\leq u(1)\Big( 1- \frac{1}{1-\xi_{m-2}}+\frac{1}{a_{m-2}(1-\xi_{m-2})}\Big) \\ &=u(1)\frac{1-a_{m-2}\xi_{m-2}}{a_{m-2}(1-\xi_{m-2})}. \end{align*} So that \begin{equation} \min_{t\in[\xi_{m-2}, 1]}u(t)\geq\frac{a_{m-2}(1-\xi_{m-2})}{1-a_{m-2}\xi_{m-2}}\|u\|. \label{e2.6} \end{equation} Secondly, assume $\xi_{m-2}<\overline{t}<1$, then $\min_{t\in[\xi_{m-2}, 1]}u(t)=u(1)$. Otherwise, we have $\min_{t\in[\xi_{m-2}, 1]}u(t)=u(\xi_{m-2})$, then $\overline{t}\in[\xi_{m-2},1], u(\xi_{m-2}) \geq u(\xi_{m-1})\geq\dots\geq u(\xi_{2})\geq u(\xi_{1})$. By $0<\sum_{i=1}^{m-2}a_i <1$ we have $$ u(1)=\sum_{i=1}^{m-2}a_i u(\xi_i) \leq\sum_{i=1}^{m-2}a_i u(\xi_{m-2})1$. Firstly, assume $u(\xi_{m-2})\leq u(1)$, then $\min_{t\in[\xi_{m-2}, 1]}u(t)=u(\xi_{m-2})$. By concave of $u(t)$ we have $\overline{t}\in[\xi_{m-2}, 1]$, which implies $$ \frac{u(\xi_{m-2})}{\xi_{m-2}}\geq\frac{u(\overline{t})}{\overline{t}}\geq u(\overline{t}), $$ then \begin{equation} \min_{t\in[\xi_{m-2},1]}u(t)\geq\xi_{m-2}\|u\|.\label{e2.8} \end{equation} Secondly, assume $u(\xi_{m-2})> u(1)$, and so $\min_{t\in[\xi_{m-2}, 1]}u(t)=u(1)$, and $ \overline{t}\in[\xi_{1}, 1]$. If not, $\overline{t}\in[0,\xi_{1})$, then $u(\xi_{1})\geq \dots\geq u(\xi_{m-2}) > u(1)$. So we have $$ u(1)=\sum_{i=1}^{m-2}a_i u(\xi_i)>u(1)\sum_{i=1}^{m-2}a_i \geq u(1) $$ which is a contradiction. Since $\sum_{i=1}^{m-2}a_i>1$, there exists $\overline{\xi}\in\{\xi_1, \xi_2,\dots, \xi_{m-2}\}$ such that $u(\overline{\xi})\leq u(1)$, then $u(\xi_1)\leq u(\xi_2)\leq\dots\leq u( \xi_{m-2})\leq u(1)$. Since $u(t)$ is concave, we have $\frac{u(1)}{\xi_1}\geq\frac{u(\xi_1)}{\xi_1} \geq \frac{u(\overline{t})}{\overline{t}}\geq u(\overline{t})$, then \begin{equation} \min_{t\in[\xi_{m-2}, 1]}u(t)\geq\xi_{1}\|u\|.\label{e2.9} \end{equation} Therefore, by \eqref{e2.6}-\eqref{e2.9} we have $\inf_{t\in[\xi_{m-2}, 1]}u(t)\geq \sigma \|u\|$, where $$ \sigma=\min\big\{ \frac{a_{m-2}(1-\xi_{m-2})}{1-a_{m-2}\xi_{m-2}},\ a_{m-2}\xi_{m-2},\ \xi_{m-2}\big\}. $$ The proof is complete. \end{proof} \begin{lemma} \label{lem2.5} Suppose that $d\neq 0$. Then the boundary value problem \begin{gather*} -u''(t)=0,\quad 0 0$ there is $\delta>0$ such that $$ \|Th-Tg\|<\varepsilon, \quad \hbox{for } g\in X, \|g-h\|<\delta. $$ Since \begin{align*} |(\theta T h)(t)-(\theta T g)(t)|&= |\max\{(T h)(t),\omega(t)\}-\max\{(T g)(t), \omega(t)\}| \\ &\leq |(T h)(t)-(T g)(t)|<\varepsilon, \end{align*} we have $$ \|(\theta T )h-(\theta T) g\|<\varepsilon, \quad \hbox{for } g\in X, \|g-h\|<\delta, $$ and so $\theta T$ is continuous. For any arbitrary bounded set $D\subset X$ and for all $\varepsilon>0$, there are $y_i, i=1,2,\dots, m$ such that $$ T D\subset\bigcup_{i=1}^{m}B(y_i,\varepsilon), $$ where $B(y_i,\varepsilon):=\{u\in X: \|u-y_i\|<\varepsilon\}$. Then, for for all $\overline{y}\in(\theta\circ T)D$, there is a $y\in TD$ such that $\overline{y}(t)=\max\{y(t), \omega(t)\}$. We choose $i\in\{1, 2, \dots, m\}$ such that $\|y-y_i\|<\varepsilon$. The fact $$ \max_{t\in[0,1]}|\overline{y}(t)-\overline{y}_i(t)| \leq\max_{t\in[0,1]}|y(t)-y_i(t)|, $$ which implies $\overline{y}\in B(\overline{y}_i,\varepsilon)$. Hence $(\theta\circ T)D$ has a finite $\varepsilon-net$ and therefore $(\theta\circ T)D$ is relatively compact. \end{proof} \section{Main results} In this section, we present the existence of two positive solutions for boundary value problem \eqref{e1.1}-\eqref{e1.2} by applying a new fixed-point theorem in double cones. Obviously, $G(t,s)\geq0$. In the following, we denote $$ M=\max_{t\in[0,1]}\int_{0}^{1}G(t,s)ds,\quad n=\min_{t\in[\xi_{m-2},1]}\int_{\xi_{m-2}}^{1}G(t,s)ds. $$ For $ t\in[\xi_{m-2},1]$, by computing we have \begin{align*} \int_{\xi_{m-2}}^{1}G(t,s)ds &=\int_{\xi_{m-2}}^{t} \frac{(\beta_1 s+\gamma_1)(1-t)+\sum_{j=1}^{i-1}a_j(\beta_1\xi_j+\gamma_1)(t-s)} {d_1}ds \\ &\quad +\int_{t}^{1}\frac{(\beta_1 t+\gamma_1)(1-s)}{d_1}ds>0. \end{align*} So $00$, $\alpha_i\geq 0$, $ i=1, 2, \dots, m-3,\alpha_{m-2}>0$, $ 0<\xi_1<\xi_2<\dots<\xi_{m-2}<1$, $0<\Sigma_{i=1}^{m-2}\alpha_i\xi_i<1 $, $d_1=\beta(1-\Sigma_{i=1}^{^{m-2}}\alpha_i\xi_i) +\gamma(1-\Sigma_{i=1}^{^{m-2}}\alpha_i)>0$; \item[(H2)] $f:[0,1]\times[0,+\infty)\to R$ is continuous and $f(t,0)\geq(\not\equiv0), t\in[0,1]$; \item[(H3)] $h:[0,1]\to R^{+}$ is continuous. \end{itemize} \begin{theorem} \label{thm3.1} Suppose that conditions {\rm (H1)--(H3)} hold. Assume that there exist positive numbers $a, b, d$ such that $$ 0<\big(1+\frac{\beta}{\gamma}\big)\max\Big\{1, \frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i}{\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)} \Big\}d 0$, we have $u_1(t)\equiv0$ for $t\in[t_1, t_2]$ and $(Au_1)(t)<0$ for $t\in(t_1, t_2)$, $(Au_1)(t_1)=0$. Thus, $(Au_1)'(t_1)\leq0$. (H2) implies $(Au_1)''(t)=-f(t,0)\leq 0$ for $t\in[t_1, t_2]$. So $t_2=1$. From $(Au_1)(1)=\sum _{i=1}^{m-2}\alpha_{i}(Au_1)(\xi_{i})<0$, there exists $i_0\in\{1,2,\dots,m-2\}$ such that $(Au_1)(\xi_i)<0$ for $i_0\leq j\leq m-2$ and $(Au_1)(\xi_j)\geq0$ for $0\leq j\leq i_0-1$. So $\xi_j\in(t_1, 1)$ for $i_0\leq j\leq m-2$. From the concavity $(Au_1)(t)$ on $[t_1, 1]$, we have $$ \frac{|(Au_1)(\xi_j)|}{\xi_j-1}\leq\frac{|(Au_1)(1)|}{1-t_1}, \quad\hbox{for } i_0\leq j\leq m-2; $$ i.e., $$ |(Au_1)(\xi_j)|\leq\frac{\xi_j-t_1}{1-t_1}|(Au_1)(1)|<\xi_j|(Au_1)(1)|, \quad \hbox{for } i_0\leq j\leq m-2. $$ From the above inequalities, we have $$ \sum_{j=i_0}^{m-2}\alpha_j|(Au_1)(\xi_j)| \leq\sum_{j=i_0}^{m-2}\alpha_j\xi_j|(Au_1)(1)|<|(Au_1)(1)|. $$ On the other hand, from $(Au_1)(1)<0$, we have $$ |(Au_1)(1)|=|\sum_{j=1}^{m-2}\alpha_j(Au_1)(\xi_j)| \leq\sum_{j=i_0}^{m-2}\alpha_j|(Au_1)(\xi_j)|, $$ a contraction. Therefore $u_1$ is a solution of \eqref{e1.1}-\eqref{e1.2} with $0<\|u_1\|a>\big(1+\frac{\beta}{\gamma}\big) \max\Big\{1, \frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}\big\}d. $$ We will prove \begin{equation} u(0)\geq\max\Big\{1, \frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}\Big\}d. \label{e3.1} \end{equation} Suppose this is not true, then there exists $t_0\in(0,1)$ such that $$ u'(t_0)>\frac{\beta}{\gamma}\max\Big\{1, \frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}\Big\}d. $$ It follows from the concavity of $u(t)$ that $$ u'(0)\geq u'(t_0)>\frac{\beta}{\gamma}\max\Big\{1, \frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}\Big\}d. $$ So we have \begin{align*} 0&=\beta u(0)-\gamma u'(0)\\ &<\beta\max\Big\{1,\frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}\Big\}d -\gamma\frac{\beta}{\gamma}\max\Big\{1, \frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}\big\}d =0, \end{align*} which is a contradiction. Next we claim that $u(1)\geq d$. If not, by the concavity of $u(t)$ we have $$ \frac{u(\xi_i)-u(1)}{1-\xi_i}\geq\frac{u(0)-u(1)}{1-0}, \quad \hbox{for } i=1, 2, \dots, m-2; $$ i.e., $u(0)(1-\xi_i)\leq u(\xi_i)-\xi_iu(1)$. By $u(1)=\sum _{i=1}^{m-2}\alpha_{i} u(\xi_{i})$ we get $$ u(0)\leq\frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i} {\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}u(1) <\frac{1-\sum_{i=1}^{m-2}\alpha_i\xi_i}{\sum_{i=1}^{m-2}\alpha_i(1-\xi_i)}d, $$ which contradicts to \eqref{e3.1} . Thus, $d\leq u(t)\leq b$ for $t\in[0,1]$. From (H4) we know that $f^{+}(s, u(s))=f(s,u(s))$. This implies that $Tu=T'u$ for $u\in \partial K'_{a}(\sigma b)\cap\{u: T'u=u\}$. The proof is complete. \end{proof} \section{Applications} Consider the second-order third-point boundary value problem \begin{gather} u''(t)+f(t,u)=0,\quad 0