\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 49, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/49\hfil Systems with critical nonlinearities] {Existence of least energy solutions to coupled elliptic systems with critical nonlinearities} \author[G.-M. Wei, Y.-H. Wang\hfil EJDE-2008/49\hfilneg] {Gong-Ming Wei, Yan-Hua Wang} \address{Gong-Ming Wei \newline Tin Ka-Ping College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China} \email{gmweixy@163.com} \address{Yan-Hua Wang \newline Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai, 200433, China} \email{yhw@mail.shufe.edu.cn} \thanks{Submitted October 18, 2007. Published April 4, 2008.} \thanks{YHW is supported by grant 10726039 from the National Natural Science Foundation of China} \subjclass[2000]{35B33, 35J50} \keywords{Least energy solutions; Nehari manifold; critical exponent; \hfill\break\indent coupled elliptic systems} \begin{abstract} In this paper we study the existence of nontrivial solutions of elliptic systems with critical nonlinearities and subcritical nonlinear coupling interactions, under Dirichlet or Neumann boundary conditions. These equations are motivated from solitary waves of nonlinear Schr\"odinger systems in physics. Using minimax theorem and by estimates on the least energy, we prove the existence of nonstandard least energy solutions, i.e. solutions with least energy and each component is nontrivial. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In this paper, we consider the existence of least energy solutions to the Dirichlet problem \begin{equation}\label{e1.1} \begin{gathered} -\Delta u+\lambda_1u=\mu_1u^3+\beta u^{p-1}v^p\quad \text{in } \Omega\\ -\Delta v+\lambda_2v=\mu_2v^3+\beta u^pv^{p-1}\quad \text{in } \Omega\\ u>0,\quad v>0 \quad \text{in } \Omega\\ u=0,\quad v=0 \quad \text{on } \partial\Omega \end{gathered} \end{equation} and to the Neumann prolem \begin{equation}\label{e1.2} \begin{gathered} -\Delta u+\lambda_1u=\mu_1u^3+\beta u^{p-1}v^p \quad\text{in } \Omega\\ -\Delta v+\lambda_2v=\mu_2v^3+\beta u^pv^{p-1}\quad\text{in }\Omega\\ u>0,\quad v>0 \quad \text{in }\Omega\\ \frac{\partial u}{\partial\nu}=0,\quad \frac{\partial v}{\partial\nu}=0 \quad \text{on }\partial\Omega \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^4$ is a smooth bounded domain, $\lambda_i,\mu_i,\beta$ are constants, $\mu_i>0$, $i=1,2$, and $10$ and \begin{equation} \label{f2.0} c=\inf_{(u,v)\in X, (u,v)\neq(0,0)}\max_{t>0}E(tu,tv)\\ = \inf_{(u,v)\in\mathcal N}E(u,v) \end{equation} where $$ \mathcal N=\{(u,v)\in X\setminus\{(0,0)\}|\|u\|_{\lambda_1}^2+\|v\|_{\lambda_2}^2 =\mu_1|u|_4^4+\mu_2|v|_4^4+2\beta|uv|_p^p\}. $$ \subsection*{Existence of nontrivial solution} Using the mountain pass theorem, we first prove the existence of nontrivial solution. In this section, we always assume that \begin{equation}\label{f2.01} -\lambda_1(\Omega)<\lambda_1<0,\quad -\lambda_1(\Omega)<\lambda_2<0 \end{equation} where $\lambda_1(\Omega)$ is the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$. \begin{theorem}\label{th2.1} Assume that condition \eqref{f2.01} holds, there exists a nontrivial least energy solution for problem \eqref{e1.1} for sufficiently large $\beta$. \end{theorem} \begin{proof} By the mountain pass lemma (e.g. \cite{Wi}), there exists a minimizing sequence $(u_n,v_n)\in X$ such that as $n\to\infty$ \begin{equation}\label{f2.1} E(u_n,v_n)\to c,\quad E'(u_n,v_n)\to0\quad \text{in }\ X'. \end{equation} We assume that $(u_n,v_n)$ is nonnegative; otherwise we consider $(|u_n|,|v_n|)$. It is routine to prove that $\|u_n\|_{\lambda_1}^2+\|v_n\|_{\lambda_2}^2$ is bounded and \begin{equation} \label{f2.2} \begin{gathered} \frac{1}{2}(1-\frac{1}{p})(\|u_n\|_{\lambda_1}^2+\|v_n\|_{\lambda_2}^2) +\frac{1}{2}(\frac{1}{p}-\frac{1}{2})(\mu_1|u_n|_4^4 +\mu_2|v_n|_4^4)=c+o(1),\\ \frac{1}{4}(\mu_1|u_n|_4^4+\mu_2|v_n|_4^4)+(1-\frac{1}{p})\beta|u_nv_n|_p^p =c+o(1). \end{gathered} \end{equation} Going to a subsequence, if necessary, there exists $(u,v)\in X$ such that \begin{equation} \label{f2.02} \begin{gathered} u_j\rightharpoonup u,\quad v_j\rightharpoonup v, \quad\text{in }H_0^1(\Omega),\\ u_j\to u,\quad v_j\to v, \quad\text{in }L^2(\Omega),\\ u_j\to u,\quad v_j\to v,\ \ \text{a.e. in } \Omega ,\\ u_j^3\rightharpoonup u^3,\quad v_j^3\rightharpoonup v^3, \quad\text{in } L^{4/3}(\Omega)\\ u_j^{p-1}v_j^p\rightharpoonup u^{p-1}v^p,\quad u_j^pv_j^{p-1}\rightharpoonup u^pv^{p-1}, \quad\text{in } L^{2/p}(\Omega). \end{gathered} \end{equation} It is easy to see that $(u,v)$ is a nonnegative solution of equations \eqref{e1.1} and has nonnegative energy; i.e., \begin{equation}\label{f2.6} E'(u,v)=0,\quad E(u,v)\geq0. \end{equation} Set $\sigma_n=u_n-u$, $\tau_n=v_n-v$, $\gamma_n=u_nv_n-uv$. By Br\'ezis-Lieb theorem and \eqref{f2.02}, \begin{equation}\label{f2.11} \begin{gathered} |u_n|_4^4=|u|_4^4+|\sigma_n|_4^4+o(1),\\ |v_n|_4^4=|v|_4^4+|\tau_n|_4^4+o(1),\\ |u_nv_n|_p^p=|uv|_p^p+o(1). \end{gathered} \end{equation} By a direct computation and \eqref{f2.1}, \eqref{f2.11}, \begin{equation} \label{f2.3} \begin{aligned} E(u_n,v_n)&=E(u,v)+\frac{1}{2}(|\nabla\sigma_n|_2^2+|\nabla\tau_n|_2^2) -\frac{1}{4}(\mu_1|\sigma_n|_4^4+\mu_2|\tau_n|_4^4)+o(1)\\ &=c+o(1), \end{aligned} \end{equation} with \begin{equation} \label{f2.4} \begin{aligned} o(1)&=(E'(u_n,v_n),(u_n,v_n))\\ &=(E'(u,v),(u,v))+|\nabla\sigma_n|_2^2+|\nabla\tau_n|_2^2 -(\mu_1|\sigma_n|_4^4+\mu_2|\tau_n|_4^4)\\ &=|\nabla\sigma_n|_2^2+|\nabla\tau_n|_2^2-(\mu_1|\sigma_n|_4^4 +\mu_2|\tau_n|_4^4). \end{aligned} \end{equation} Assuming that $|\nabla\sigma_n|_2^2+|\nabla\tau_n|_2^2\to b$, by \eqref{f2.4}, \begin{equation}\label{f2.5} \mu_1|\sigma_n|_4^4+\mu_2|\tau_n|_4^4\to b. \end{equation} If $b=0$, the proof is done. Now we assume that $b>0$. By the Sobolev imbedding theorem, \begin{equation*} |\nabla\sigma_n|_2^2>S|\sigma_n|_4^2,\quad |\nabla\tau_n|_2^2>S|\tau_n|_4^2. \end{equation*} Hence \begin{equation} \label{f2.16} \begin{aligned} (|\nabla\sigma_n|_2^2+|\nabla\tau_n|_2^2)^2 &\geq S^2(|\sigma_n|_4^2+|\tau_n|_4^2)^2\\ &\geq \frac{S^2}{\max\{\mu_1,\mu_2\}}(\mu_1|\sigma_n|_4^4 +\mu_2|\tau_n|_4^4) \end{aligned} \end{equation} Let $n\to\infty$ on both side of \eqref{f2.16}, we have \begin{equation}\label{f2.8} b^2>\frac{S^2}{\max\{\mu_1,\mu_2\}}b,\quad\text{i.e. } b>\frac{S^2}{\max\{\mu_1,\mu_2\}}. \end{equation} From \eqref{f2.6}, \eqref{f2.3} and \eqref{f2.5}, we have \begin{equation} \label{f2.7} b\leq4c . \end{equation} Therefore, \begin{equation}\label{f2.8b} 4c>\frac{S^2}{\max\{\mu_1,\mu_2\}}. \end{equation} When $\beta$ is sufficiently large, this is a contradiction with the following lemma. This completes the proof. \end{proof} \begin{lemma} \label{le2.1} As $\beta\to\infty$, $c\to0$. \end{lemma} \begin{proof} Fix a nontrivial $W\in H^1_0(\Omega)$. There exists $t_0>0$ such that $(t_0W,t_0W)\in\mathcal N$. Indeed, \begin{equation}\label{f2.9} t_0=(\frac{\|W\|_{\lambda_1}^2 +\|W\|_{\lambda_2}^2}{t_0^{4-2p}(\mu_1+\mu_2)|W|_4^4 +2\beta|W|_{2p}^{2p}})^{\frac{1}{2(p-1)}} \leq O(\frac{1}{\beta^{1/2(p-1)}})\end{equation} as $\beta\to\infty$. Hence \begin{equation} \label{f2.10} \begin{aligned} c&\leq E(t_0W,t_0W)\\ &= \frac{1}{2}(1-\frac{1}{p})t_0^2(\|W\|_{\lambda_1}^2 +\|W\|_{\lambda_2}^2)+\frac{1}{2}(\frac{1}{p}-\frac{1}{2})t_0^4(\mu_1+\mu_2)|W|_4^4\\ &\leq O(\frac{1}{\beta^{1/(p-1)}}). \end{aligned} \end{equation} \end{proof} \subsection*{Nontrivial solution is nonstandard} In this subsection, we will show that the nontrivial least energy solution in subsection 2.1 is nonstandard. \begin{theorem}\label{th2.2} The solution obtained in Theorem \ref{th2.1} is nonstandard. \end{theorem} \begin{proof} From Br\'ezis-Nirenberg's theorem(\cite{BN}, see also \cite[Theorem 1.45]{Wi}), there exists nontrivial solution $W_i\in H^1_0(\Omega)$ for \begin{equation} -\Delta W+\lambda_iW=\mu_iW^3,\quad i=1,2. \end{equation} In fact, the $W_i$'s are mountain pass solutions and hence they are least energy solutions with respective energies \begin{equation} I_i=\frac{1}{4}\|W_i\|_{\lambda_i}^2=\frac{\mu_i}{4}|W_i|_4^4,\quad i=1,2. \end{equation} From the proof of Lemma \ref{le2.1}, \eqref{f2.9} and \eqref{f2.10}, for sufficiently large $\beta$, we have \begin{equation} c<\min\{I_1,I_2\}. \end{equation} This implies that, for sufficiently large $\beta$, any nontrivial solution with the least energy must be nonstandard. \end{proof} \begin{proof}[Proof of Theorem \ref{th1.1}] By the maximum principle, any nonstandard nonnegative solution of equations \eqref{e1.1} is positive. Combining this with Theorem \ref{th2.1} and Theorem \ref{th2.2}, we complete the proof. \end{proof} \section{Neumann problem} In this section, we assume that $\lambda_1,\lambda_2$ are sufficiently large as in \cite{Wxj}, but not independent of $\beta$. Using the same procedure as in section 2, we come to prove existence of nonstandard solution of problem \eqref{e1.2}. In this section, except we set $X=H^1(\Omega)\times H^1(\Omega)$ and let $W_i$ be the positive least energy solution of problem \eqref{e3.1}, we use the same notations and definitions $c,\Gamma, \mathcal N$ as in section 2. \begin{proof}[Proof of Theorem \ref{th1.2}] We follow the same procedure as in section 2 and we only give a sketch of the proof. \noindent {\it Claim 1.} The least energy $c\to 0$ as $\beta\to\infty$. The proof is the same as Lemma \ref{le2.1}. \noindent {\it Claim 2.} Any least energy solution is nonstandard for sufficiently large $\beta$. From \cite[Theorem 3.1]{Wxj}, for $i=1,2$, problem \begin{equation}\label{e3.1} -\Delta W+\lambda_iW=\mu_iW^3\quad\text{in }\Omega,\quad \frac{\partial W}{\partial\nu}=0\quad\text{on }\partial\Omega \end{equation} possesses a positive solution $W_i$ for $\lambda_i$ suitably large. In fact, the nonconstant solution in \cite{Wxj} is a mountain pass and hence a least energy solution. Assume $I_i,i=1,2$ are their corresponding least energies. By the proof of Theorem \ref{th2.2}, we have $c<\min\{I_1,I_2\}$. So nontrivial least energy solutions are nonstandard. \noindent{\it Claim 3.} Existence of nontrivial solution. Assume that $\{(u_j,v_j\}_{j=1}^\infty$ is a nonnegative minimizing sequence for the mountain pass energy $c$, i.e. \begin{equation} E(u_j,v_j)\to c,\quad E'(u_j,v_j)\to0\quad\text{in } X'. \end{equation} The same procedure as in section 2 \eqref{f2.2} implies that as $j\to\infty$ \begin{equation} \label{f3.5} \frac{1}{2}(1-\frac{1}{p})(\|u_j\|_{\lambda_1}^2 +\|v_j\|_{\lambda_2}^2)+\frac{1}{2}(\frac{1}{p} -\frac{1}{2})(\mu_1|u_j|_4^4+\mu_2|v_j|_4^4)=c+o(1), \end{equation} Hence $\{\|u_j\|_{\lambda_1}\}$ and $\{\|v_j\|_{\lambda_2}\}$ are bounded sequences. Going if necessary to a subsequence, there exists $(u,v)\in X$ such that \begin{gather*} u_j\rightharpoonup u,\quad v_j\rightharpoonup v, \quad\text{in }H^1(\Omega),\\ u_j\to u,\quad v_j\to v, \quad\text{in }L^2(\Omega),\\ u_j\to u,\quad v_j\to v, \quad \text{a.e. in } \Omega ,\\ u_j^3\rightharpoonup u^3,\quad v_j^3\rightharpoonup v^3, \quad\text{in } L^{4/3(\Omega)}\\ u_j^{p-1}v_j^p\rightharpoonup u^{p-1}v^p,\quad u_j^pv_j^{p-1}\rightharpoonup u^pv^{p-1}, \quad\text{in } L^{2/p}(\Omega). \end{gather*} Hence $(u,v)$ is nonnegative and satisfies the equations in \eqref{e1.2}. \noindent{\bf\it Claim:} $(u,v)\neq(0,0)$. Otherwise, $(u_j,v_j)\rightharpoonup(0,0)$ in $H^1(\Omega)\times H^1(\Omega)$, $(u_j,v_j)\to(0,0)$ in $L^2(\Omega)\times L^2(\Omega)$, and $u_jv_j\to0$ in $L^{p}(\Omega)$. From \cite[Lemma 2.1, page 289]{Wxj}, for any $\varepsilon>0$, as $j\to\infty$ \begin{gather} S_\varepsilon|u_j|_4^2\leq |\nabla u_j|_2^2+o(1),\label{f3.3}\\ S_\varepsilon|v_j|_4^2\leq |\nabla v_j|_2^2+o(1)\label{f3.4} \end{gather} where $S_\varepsilon=(2^{-1/2}S-\varepsilon)(1+\varepsilon)^{-1}$, $S$ is the Sobolev constant. Assume that $|\nabla u_j|_2^2+|\nabla v_j|_2^2\to b$. Since $(E'(u_j,v_j),(u_j,v_j))\to0$ and $|u_jv_j|_p^p\to0$, \begin{equation}\label{f3.6} |\nabla u_j|_2^2+|\nabla v_j|_2^2=\mu_1|u_j|_4^4+\mu_2|v_j|_4^4+o(1). \end{equation} It follows that \begin{equation}\label{f3.7} E(u_j,v_j)=\frac{1}{4}(|\nabla u_j|_2^2+|\nabla v_j|_2^2)+o(1) =\frac{1}{4}(\mu_1|u_j|_4^4+\mu_2|v_j|_4^4)+o(1)\to c>0. \end{equation} If $b=0$, this is a contradiction with \eqref{f3.7}. If $b>0$, by \eqref{f3.3},\eqref{f3.4}, we have \begin{equation} (|\nabla u_j|_2^2+|\nabla v_j|_2^2)^2\geq S_\varepsilon^2(|u_j|_4^2+|v_j|_4^2)^2+o(1)\geq C_\varepsilon(\mu_1|u_j|_4^4+\mu_2|v_j|_4^4)+o(1) \end{equation} where $C_\varepsilon=\frac{S_\varepsilon^2}{\max\{\mu_1,\mu_2\}}$. From \eqref{f3.6}, \begin{equation} b^2\geq C_\varepsilon b,\quad \text{i.e., } b\geq C_\varepsilon. \end{equation} This is a contradiction with \eqref{f3.7} and Claim 1. Hence $(u,v)$ is nontrivial. The same procedure as in \cite[page 9]{LNT} (also \cite{Wxj}) implies that the solution is positive. This completes the proof. \end{proof} \subsection*{Remarks} (1) The arguments developed in this paper also work in dimension $N>4$ with critical nonlinearities. For simplification in writing, we consider only the case $N=4$. (2) According to the proof developed in the paper we cannot exclude the possibility that the solutions of Neumann problem are nonconstant for some suitably chosen large $\beta$. \subsection*{Acknowledgements} The author would like to thank the anonymous referees for their useful suggestions and helpful comments, which improve the original manuscript. \begin{thebibliography}{99} \bibitem{AC} A. Ambrosetti, E. Colorado; Standing waves of some coupled nonlinear Schr\"odinger equations, {\it J. Lond Math. Soc.} (2){\bf 75}(2007), no.1, 67-82. \bibitem{BN} H. Br\'ezis, L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, {\it Comm. Pure Appl. Math.} {\bf 36}(1983), 437-477. \bibitem{CZ} R. Cipolatti, W. Zumpichiatti; Orbitally stable standing waves for a system of coupled nonlinear Schr\"odinger equations, {\it Nonlinear Analysis} {\bf 42}(2000), 445-461. \bibitem{GG} C. Gui, N. Ghoussoub; Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, {\it Math. Z.} {\bf 229}(1998), 443-474. \bibitem{LN} C.S. Lin, W.-M. Ni; On the diffusion coefficient of a semilinear Neumann problem, in ``Calculus of variations and partial differential equations" (Trento, 1986)160-174, Lecture Notes in Mathematics, 1340, Springer, Berlin-New York, 1988. \bibitem{LNT} C.-S. Lin, W.-M. Ni, I. Takagi; Large amplitude stationary solutions to a chemotaxis system, \emph{J. Differential Equations} {\bf 72}(1988), 1-27. \bibitem{LW1} Tai-Chia Lin, J. Wei; Ground states of $N$ coupled nonlinear Schr\"{o}dinger equations in $\mathbb{R}^n, n\leq3$, \emph{Comm. Math. Phys.} {\bf 255}(2005), 629-653. \bibitem{LW2} Tai-Chia Lin, J. Wei; Spikes in two coupled nonlinear Schr\"{o}dinger equations, \emph{Ann. Inst. H. Poincar\'{e}, Anal. Non Lin\'eaire} {\bf 22}(2005), 403-439. \bibitem{MMP} L. A. Maia, E. Montefusco, B. Pellacci, Positive solutions for a weakly coupled nonlinear Schr\"odinger systems, {\it J. Diffrenrential Equations} {\bf 229}(2006),no.2, 743-767. \bibitem{MP1} R. Molle, A. Pistoia; Concentration phenomena in elliptic problems with critical and supercritical growth, {\it Adv. Differential Equations} {\bf 8}(5)(2003), 547-570. \bibitem{MP2} R. Molle, A. Pistoia; Concentration phenomena in weakly coupled elliptic systems with critical growth, {\it Bull Braz Math. Soc. New series} {\bf 35}(3)(2004), 395-418. \bibitem{MP} M. Musso, A. Pistoia; Multispike solutions for a nonlinear elliptic problems involving the critical Sobolev exponent, {\it Indiana Univ. Math. J.} {\bf 51}(3)(2002), 541-579. \bibitem{Ni} W.-M. Ni, Diffusion; cross-diffusion, and their spike-layer steady states, {\it Notices of the AMS}, January 1998, 9-18. \bibitem{NPT} W.-M. Ni, X.-B. Pan, I. Takagi; Singular behavoir of least-energy solutions of a semilinear Neumann problem involving ctitical Sobolev exponents, {\it Duke Math. J.} {\bf 67}(1)(1992), 1-20. \bibitem{S} B. Sirakov; Least energy solitary waves for a system of nonlinear Schr\"odinger equations in $\mathbb{R}^n$, {\it Comm. Math. Phys.} {\bf 271}(2007), 199-221. \bibitem{Wxj} Xu-Jia Wang; Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, {\it J. Differential Equations} {\bf 93}(1991), 283-310. \bibitem{Wei} G.-M. Wei; Existence and concentration of ground states of coupled nonlinear Schr\"odinger equations, {\it J. Math. Anal. Appl.} {\bf 332}(2007), 846-862. \bibitem{Wi} M. Willem; Minimax Theorems, Birkh\"auser, 1996. \end{thebibliography} \end{document}