\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 73, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/73\hfil Cohen-Grossberg neural networks] {Convergence of Cohen-Grossberg neural networks with delays and time-varying coefficients} \author[Q. Zhou, J. Shao\hfil EJDE-2008/73\hfilneg] {Qiyuan Zhou, Jianying Shao} \address{Qiyuan Zhou \newline Department of Mathematics, Hunan University of Arts and Science, Changde, Hunan 415000, China} \email{zhouqiyuan65@yahoo.com.cn} \address{Jianying Shao \newline College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China} \email{shaojianying2008@yahoo.cn} \thanks{Submitted January 17, 2008. Published May 15, 2008.} \thanks{Supported by grant 07JJ46001 from the Scientific Research Fund of Hunan Provincial \hfill\break\indent Natural Science Foundation of China, and 20070605 from by Scientific Research Fund \hfill\break\indent of Zhejiang Provincial Education Department} \subjclass[2000]{34C25, 34K13, 34K25} \keywords{Cohen-Grossberg neural networks; exponential convergence; \hfill\break\indent delays; time-varying coefficients} \begin{abstract} In this paper presents sufficient conditions for all solutions of the Cohen-Grossberg neural networks with delays and time-varying coefficients to converge exponentially to zero. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Consider the Cohen-Grossberg neural network (CGNN), with delay and time-varying coefficients, \begin{equation} \begin{aligned} \dot x_i(t)&=-a_{i}(t,x_i(t))\Big[b_{i}(t,x_i(t)) -\sum _{j=1} ^n c_{ij}(t)f_{j}(x_j(t-\tau_{ij}(t)))\\ &\quad -\sum _{j=1} ^n d_{ij}(t)g_{j} \big(\int_{0}^{\infty}K_{ij}(u) x_{j}(t-u)du\Big) +I_i(t)\Big],\quad i=1,2,\dots,n, \end{aligned} \label{e1.1} \end{equation} where $a_{i} $ and $ b_{i} $ are continuous functions on $\mathbb{R}^{2}$, $f_{j}, g_{j}, c_{ij}, d_{ij} $ and $I_i $ are continuous functions on $\mathbb{R}$; $n$ corresponds to the number of units in a neural network; $x_i(t)$ denotes the potential (or voltage) of cell $i$ at time $t$; $a_{i}$ represents an amplification function; $b_{i}$ is an appropriately behaved function; $c_{ij}(t)$ and $d_{ij}(t)$ denote the strengths of connectivity between cell $i$ and $j$ at time $t$ respectively; the activation functions $f_i(\cdot)$ and $g_i(\cdot)$ show how the $i$th neuron reacts to the input, $\tau_{ij}\geq 0$ corresponds to the transmission delay of the $i$th unit along the axon of the $j$th unit at the time $t$, and $I_i(t)$ denotes the $i$th component of an external input source introduced from outside the network to cell $i$ at time $t$ for $i, j=1,2,\dots,n$. Since the model CGNNs was introduced by Cohen and Grossberg \cite{c3}, the dynamical characteristics (including stable, unstable and periodic oscillatory) of CGNNs have been widely investigated for the sake of theoretical interest as well as application considerations. Many good results on the problem of the existence and stability of the equilibriums for system \eqref{e1.1} are given out in the literature. We refer the reader to the references in this article and the references cited therein. Suppose that the following conditions are satisfied. \begin{itemize} \item[(H0)] $a_{i}(t,x_i ) =a_{i}(0,x_i )$ and $b_{i}(t,x_i ) =b_{i}(0,x_i )$ for all $t$, and $ c_{ij}, d_{ij}, I_{j},:\mathbb{R}\to\mathbb{R}$ are constants, where $i,j=1, 2, \dots, n$. \item[(H0*)] For each $j\in\{1, 2, \dots, n\}$, there exist nonnegative constants $\tilde{L}_{j}$ and $L_{j}$ such that $$ |f_{j}(u )-f_{j}(v )|\leq \tilde{L}_{j}|u -v |, \quad |g_{j}(u )-g_{j}(v )| \leq L_{j}|u -v |, \quad \forall u, v \in \mathbb{R}. $$ \end{itemize} Most authors of bibliographies listed above obtained that all solutions of system \eqref{e1.1} converge to the equilibrium point. However, to the best of our knowledge, no author has considered the convergence of all solutions without assumptions (H0) and (H0*). Thus, it is worth to investigate the convergence for \eqref{e1.1} in this case. The main purpose of this paper is to give a new criteria for the convergence for all solutions of \eqref{e1.1}. By applying mathematical analysis techniques, without assuming (H0) and (H0*), we derive some sufficient conditions ensuring that all solutions of \eqref{e1.1} converge exponentially to zero, which are new and complement of previously known results. Moreover, we provide an example that illustrates our results. Throughout this paper, for $i, j=1, 2, \dots, n$, it will be assumed that $K_{ij}:[0, +\infty) \to \mathbb{R}$ are continuous functions, and there exists a constant $\tau $ such that \begin{equation} \tau=\max_{1\leq i,j\leq n}\big\{\sup_{t\in \mathbb{R}}\tau_{ij}(t)\big\}. \label{e1.2} \end{equation} We also assume that the following conditions. \begin{itemize} \item[(H1)] For each $j\in\{1, 2, \dots, n \}$, there exist nonnegative constants $\tilde{L}_{j}$ and $L_{j}$ such that \begin{equation} |f_{j}(u ) |\leq \tilde{L}_{j}|u |, \quad |g_{j}(u ) |\leq L_{j}|u |, \quad \forall u \in \mathbb{R}.\label{e1.3} \end{equation} \item[(H2)] For $i=1, 2, \dots, n$, there exist positive constants such that $\underline{a_i}$, $\overline{a_i}$ and $ T_{1}$ such that $$ \underline{a_i}\leq a_{i}(t,u) \leq \overline{a_i}, \quad \text{for all } t>T_{1},\; u\in \mathbb{R}. $$ \item[(H3)] For $i=1, 2, \dots, n$, there exist positive constants $\underline{b_i}$ and $ T_{2}$ such that $$ \underline{b}_i| u |\leq \mathop{\rm sign} (u) b_{i}(t,u) , \quad \text{for all } t>T_{2}, \; u \in \mathbb{R}. $$ \item[(H4)] There exist constants $T_{3}>0, \eta>0, \lambda>0$ and $\xi_{i}>0$, $i=1, 2, \dots, n$, such that for all $t>T_{3}$, $$ -[\underline{a}_i\underline{b}_i -\lambda]\xi_{i}+ \sum_{j=1}^{n}|c _{ij}(t)|\overline{a_i}e^{\lambda \tau}\tilde{L}_{j}\xi_{j}+ \sum_{j=1}^{n}|d _{ij}(t) |\overline{a_i}\int_{0}^{\infty}|K_{ij}(u) |e^{\lambda u}du L_{j}\xi_{j}<-\eta<0, $$ where $i=1, 2, \dots, n$. \item[(H5)] $I_{i}(t)=O(e^{-\lambda t})$, $i=1, 2, \dots, n$. \end{itemize} The initial conditions associated with \eqref{e1.1} are \begin{equation} x_{i}(s)=\varphi_{i}(s),s\in (-\infty, 0], \quad i=1,2,\dots,n, \label{e1.4} \end{equation} where $\varphi_{i}(\cdot)$ denotes a real-valued bounded continuous function defined on $(-\infty, 0]$. For $ Z(t)=(x_{1}(t), x_{2}(t),\dots,x_{n}(t))^{T} $, we define the norm $$ \|Z(t)\|_{\xi}=\max_{i=1,2,\dots,n}|\xi^{-1}_{i}x_{i}(t)|. $$ The remaining part of this paper is organized as follows. In Section 2, we present sufficient conditions to ensure that all solutions of \eqref{e1.1} converge exponentially to the zero. In Section 3, we shall give some examples and remarks to illustrate the results obtained in the previous sections. \section{Main Results} \begin{theorem} \label{thm2.1} Assume that {\rm (H1)--(H5)} hold. Then every solution $$ Z(t)=(x_{1}(t),x_{2}(t),\dots,x_{n}(t))^{T} $$ of \eqref{e1.1}, corresponding to any initial value $\varphi=(\varphi_{1}(t), \varphi_{2}(t), \dots, \varphi_{n}(t))^{T}$, satisfies $$ x_{ i}(t) =O(e^{-\lambda t}), \quad i= 1, 2, \dots, n. $$ \end{theorem} \begin{proof} From (H5), we can choose constants $F>0$ and $T> \max\{ T_{1}, T_{2}, T_{3}\}$ such that \begin{equation} \overline{a_{i }}| I_{i}(t) |<\frac{1}{2}Fe^{-\lambda t}, \quad \text{for all } t\geq T, \; i=1, 2, \dots, n. \label{e2.1} \end{equation} Set $ Z(t)=(x_{1}(t), x_{2}(t),\dots,x_{n}(t))^{T} $ be a solution of \eqref{e1.1} with any initial value $\varphi=(\varphi_{1}(t), \varphi_{2}(t), \dots, \varphi_{n}(t))^{T}$, and let $i_{t}$ be an index such that \begin{equation} \xi^{-1}_{i_{t}}|x_{i_{t}}(t)|=\|Z (t)\|_{\xi}. \label{e2.2} \end{equation} Calculating the upper right derivative of $ e^{\lambda s}|x_{i_{s}}(s)|$ along \eqref{e1.1}, in view of \eqref{e2.1}, (H1), (H2) and (H3), we have \begin{equation} \begin{aligned} &D^+(e^{\lambda s}|x_{i_{s}}(s)|)|_{s=t}\\ & = \lambda e^{\lambda t}|x_{i_{t}}(t)| +e^{\lambda t}\mathop{\rm sign} (x_{i_{t}}(t))\{-a_{i_{t}}(t,x_{i_{t}}(t))[b_{i_{t}}(t,x_{i_{t}}(t))\\ &\quad -\sum _{j=1} ^n c_{i_{t}j}(t)f_{j}(x_j(t-\tau_{i_{t}j}(t)))\\ & \quad -\sum _{j=1} ^n d_{i_{t}j}(t)g_{j}(\int_{0}^{\infty}K_{i_{t}j}(u) x_{j}(t-u)du)+I_{i_{t}}(t)]\} \\ & \leq e^{\lambda t}\{-( \underline{a}_{i_{t}} \underline{b}_{i_{t}} -\lambda)|x_{i_{t}}(t)|\xi^{-1}_{i_{t}}\xi_{i_{t}} + \sum_{j=1}^{n}|c_{i_{t}j}(t )|\overline{a_i} \tilde{L}_{j}|x_{j}(t-\tau_{i_{t}j}(t))|\xi^{-1}_{j }\xi_{j}\\ & \quad +\sum_{j=1}^{n}| d_{i_{t}j}(t)|\overline{a_i} L_{j}\int_{0}^{\infty}|K_{i_{t}j}(u)| |x_{j}(t-u) |\xi^{-1}_{j }du \xi_{j} \}+\frac{1}{2} Fe^{-\lambda t}e^{\lambda t}, \end{aligned} \label{e2.3} \end{equation} where $t>T$. Let \begin{equation} M(t)=\max_{s\leq t}\{e^{\lambda s}\|Z (s)\|_{\xi}\}. \label{e2.4} \end{equation} It is obvious that $e^{\lambda t}\|Z (t)\|_{\xi}\leq M(t)$, and $M(t)$ is non-decreasing. Now, we consider two cases. \noindent \textbf{Case (i).} If \begin{equation} M(t)> e^{\lambda t}\|Z (t)\|_{\xi} \quad \text{for all } t\geq T. \label{e2.5} \end{equation} Then, we claim that \begin{equation} M(t)\equiv M(T) \quad \text{is constant for all } t\geq T. \label{e2.6} \end{equation} Assume, by way of contradiction, that \eqref{e2.6} does not hold. Then, there exists $t_{1}>T$ such that $M(t_{1})> M(T)$. Since $$ e^{\lambda t}\|Z (t)\|_{\xi}\leq M(T) \quad \text{for all } t\leq T, $$ there must exist $\beta \in (T, t_{1})$ such that $$ e^{\lambda \beta}\|Z (\beta)\|_{\xi}= M(t_{1})\geq M(\beta), $$ which contradicts to \eqref{e2.5}. This contradiction implies that \eqref{e2.6} holds. It follows that \begin{equation} e^{ \lambda t}\|Z (t)\|_{\xi} < M(t)= M(T) \text{ for all } t\geq T. \label{e2.7} \end{equation} \noindent\textbf{ Case (ii).} If there is a point $t_{0}\geq T$ such that $M(t_{0})= e^{\lambda t_{0}}\|Z (t_{0})\|_{\xi}$. Then, in view of \eqref{e2.3} and (H4), we obtain \begin{equation} \begin{aligned} & D^+(e^{\lambda s}|x_{i_{s}}(s)|)|_{s=t_{0}}\\ &\leq e^{\lambda t_{0}}\{-( \underline{a}_{i_{t_{0}}} \underline{b}_{i_{t_{0}}} -\lambda)|x_{i_{t_{0}}}(t_{0})|\xi^{-1}_{i_{t_{0}}}\xi_{i_{t_{0}}}\\ &\quad + \sum_{j=1}^{n}|c_{i_{t_{0}}j}(t _{0})|\overline{a_{i_{t_{0}}}} \tilde{L}_{j}|x_{j}(t_{0}-\tau_{i_{t_{0}}j}(t_{0}))|\xi^{-1}_{j }\xi_{j}\\ &\quad +\sum_{j=1}^{n}| d_{i_{t_{0}}j}(t_{0})|\overline{a_{i_{t_{0}}}} L_{j}\int_{0}^{\infty}|K_{i_{t_{0}}j}(u)| |x_{j}(t_{0}-u) |\xi^{-1}_{j }du \xi_{j} \} + \frac{1}{2}F\\ & = -( \underline{a}_{i_{t_{0}}} \underline{b}_{i_{t_{0}}} -\lambda) |x_{i_{t_{0}}}(t_{0})|e^{\lambda t_{0}}\xi^{-1}_{i_{t_{0}}}\xi_{i_{t_{0}}} \\ &\quad + \sum_{j=1}^{n}|c_{i_{t_{0}}j}(t _{0})|\overline{a_{i_{t_{0}}}} \tilde{L}_{j}|x_{j}(t_{0}-\tau_{i_{t_{0}}j}(t_{0}))| e^{\lambda (t_{0}-\tau_{i_{t_{0}}j}(t_{0}))}\xi^{-1}_{j} e^{ \lambda \tau_{i_{t_{0}}j}(t_{0})} \xi_{j}\\ &\quad +\sum_{j=1}^{n}| d_{i_{t_{0}}j}(t_{0})|\overline{a_{i_{t_{0}}}} L_{j}\int_{0}^{\infty}|K_{i_{t_{0}}j}(u)|e^{\lambda u } |x_{j}(t_{0}-u) | e^{\lambda(t_{0}-u)}\xi^{-1}_{j }du \xi_{j} +\frac{1}{2}F\\ &\leq \{-( \underline{a}_{i_{t_{0}}} \underline{b}_{i_{t_{0}}} -\lambda) \xi_{i_{t_{0}}} + \sum_{j=1}^{n}|c_{i_{t_{0}}j}(t _{0})|\overline{a_{i_{t_{0}}}} \tilde{L}_{j} e^{ \lambda \tau }\xi_{j} \\ & \quad +\sum_{j=1}^{n}| d_{i_{t_{0}}j}(t_{0})|\overline{a_{i_{t_{0}}}} L_{j}\int_{0}^{\infty}|K_{i_{t_{0}}j}(u)|e^{\lambda u } du \xi_{j} \}M(t_{0}) +\frac{1}{2}F\\ & < -\frac{1}{2}\eta M(t_{0})+ F. \end{aligned}\label{e2.8} \end{equation} In addition, if $M(t_{0})\geq 2\frac{F}{\eta}$, then $M(t )$ is strictly decreasing in a small neighborhood $(t_{0}, t_{0}+\delta_{0})$. This contradicts that $M(t)$ is non-decreasing. Hence, \begin{equation} e^{\lambda t_{0}}\|Z (t_{0})\|_{\xi}=M(t_{0})< 2\frac{F}{\eta}. \label{e2.9} \end{equation} For $t>t_{0}$, by the same approach as the one used in the proof of \eqref{e2.9}, we have \begin{equation} e^{\lambda t }\|Z (t )\|_{\xi} < 2\frac{F}{\eta}, \quad \text{if } M(t )= e^{\lambda t }\|Z (t )\|_{\xi}. \label{e2.10} \end{equation} On the other hand, if $M(t )> e^{\lambda t }\|Z (t )\|_{\xi}, t>t_{0}$, we can choose $t_{0}\leq t_{2} e^{\lambda s }\|Z (s )\|_{\xi} \quad \text{for all } s\in (t_{2}, t]. $$ Using a similar argument as in the proof of \textbf{Case (i)}, we can show that \begin{equation} M(s)\equiv M(t_{2}) \text{ is constant for all } s\in ( t_{2}, t], \label{e2.11} \end{equation} which implies $$ e^{ \lambda t }\|Z (t )\|_{\xi} < M(t)= M(t_{2}) < 2\frac{F}{\eta}. $$ In summary, there must exist $N>0$ such that $e^{ \lambda t }\|Z (t )\|_{\xi}<\max\{ M(T), 2\frac{F}{\eta}\}$ holds for all $t>N$. The proof is complete. \end{proof} \section{An Example} In this section, we give an example to demonstrate the results obtained in previous sections. Consider the CGNN with delays and time-varying coefficients \begin{equation} \begin{gathered} \begin{aligned} x_{1}'(t) &=-(2+e^{\cos t}\frac{1}{10\pi}\arctan x_{1}(t)) [ (2-\frac{ (100+|t|)\sin t}{1+2|t|})(x_{1}(t) +5x^{3}_{1}(t))\\ &\quad + \frac{1}{8}\frac{ (101+|t|)\sin t}{1+4|t|} f_{1}(x_{1}(t -2\sin ^{2}t)) + \frac{1}{8}\frac{ (102+|t|)\sin t}{1+36|t|}\\ &\quad \times f_{2}(x_{2}(t-3\sin ^{2}t )) + \frac{1}{8}\frac{ (103+|t|)\sin t}{1+4|t|} \int_{0}^{\infty}e^{- u} g_{1}(x_{j}(t-u))du\\ &\quad + \frac{1}{8}\frac{ (100+|t|^{2})\sin t}{1+36|t|^{2}} \int_{0}^{\infty}e^{- u} g_{2}(x_{j}(t-u))du+ e^{-3t}\sin t ], \end{aligned}\\ \begin{aligned} x_{2}'(t) &=-(2+e^{\sin t}\frac{1}{10\pi}\arctan x_{2}(t)) [(4-\frac{ (200+|t|)\cos t}{1+2|t|} )(x_{2}(t) +15x^{3}_{2}(t)) \\ &\quad + \frac{1}{8}\frac{ (200+|t|)\cos t}{1+8|t|}f_{1}(x_{1} (t-2\sin ^{2}t )) \\ &\quad +\frac{1}{8}\frac{ (206+|t|)\cos t}{1+5|t|}f(x_{2}(t-5\sin ^{2}t ))\\ &\quad +\frac{1}{8}\frac{ (205+|t|)\cos t}{1+6|t|}\int_{0}^{\infty}e^{- u} g_{1}(x_{j}(t-u))du\\ &\quad + \frac{1}{8}\frac{ (204+|t|)\cos t}{1+7 |t|} \int_{0}^{\infty}e^{- u} g_{2}(x_{j}(t-u))du+ e^{-t}\sin t ], \end{aligned} \end{gathered} \label{e3.1} \end{equation} where $f_{1}(x)=f_{2}(x) =g_{1}(x)=g_{2}(x)=x\sin x $. Noting that \begin{gather*} a_{1}(t, x)= (2+e^{\cos t}\frac{1}{10\pi}\arctan x_{1} ), \quad a _{2}(t, x)= (2+e^{\sin t}\frac{1}{10\pi}\arctan x_{2} ), \\ b_{1}(t, x)= (2-\frac{ (100+|t|)\sin t}{1+2|t|} )(x_{1} +5x^{3}_{1} ), \\ b _{2}(t, x)= (4-\frac{ (200+|t|)\cos t}{1+2|t|} )(x_{2}(t) +15x^{3}_{2} ), \\ L _{1}=L _{2}=\tilde{L} _{1}=\tilde{L} _{2}=1, \quad \tau=5, \quad K_{ij}(u)= e^{-u}, \quad i, j=1,2, \\ c _{11}(t) = \frac{1}{8}\frac{ (101+|t|)\sin t}{1+4|t|}, \quad d _{11} (t)= \frac{1}{8}\frac{ (103+|t|)\sin t}{1+4|t|}, \\ c _{12}(t) = \frac{1}{8}\frac{ (102+|t|)\sin t}{1+36|t|}, \quad d _{12}(t) = \frac{1}{8}\frac{ (100+|t|^{2})\sin t}{1+36|t|^{2}}, \\ c _{21}(t) = \frac{1}{8}\frac{ (200+|t|)\cos t}{1+8|t|}, \quad d _{21}(t) = \frac{1}{8}\frac{ (205+|t|)\cos t}{1+6|t|}, \\ c _{22} (t)= \frac{1}{8}\frac{ (206+|t|)\cos t}{1+5|t|}, \quad d _{22}(t)= \frac{1}{8}\frac{ (204+|t|)\cos t}{1+7 |t|}\,. \end{gather*} It follows that \begin{gather*} 1=\underline{a_i}\leq a_{i}(t,u) \leq \overline{a_i}=4, \quad \text{for all } t,u\in \mathbb{R}, i=1, 2;\\ | u | =\underline{b}_i| u |\leq \mathop{\rm sign} (u) b_{i}(t,u) , \quad \text{for all } t, u \in \mathbb{R}, \; i=1, 2. \end{gather*} Then, we can choose a sufficient large constant $T_{0}>0$ and a positive constant $\bar{\eta}=\frac{1}{2} $ and $\xi_{i}=1$, $i=1, 2$, such that for all $t>T_{0}$, there holds \begin{align*} &- \underline{a}_i\underline{b}_i \xi_{i}+ \sum_{j=1}^{2}|c _{ij}(t)|\overline{a_i} \tilde{L}_{j}\xi_{j}+ \sum_{j=1}^{2}|d _{ij}(t) |\overline{a_i}\int_{0}^{\infty}|K_{ij}(u) | du L_{j}\xi_{j}\\ &= - \underline{a}_i\underline{b}_i + \sum_{j=1}^{2}|c _{ij}(t)|\overline{a_i} \tilde{L}_{j} + \sum_{j=1}^{2}|d _{ij}(t) |\overline{a_i} L_{j} \\ &= - 1 + 4\sum_{j=1}^{2}|c _{ij}(t)| + 4\sum_{j=1}^{2}|d _{ij}(t) | <-\frac{1}{2}=-\bar{\eta}<0, i=1, 2. \end{align*} Then, we can choose constants $\eta>0$ and $\lambda>0 $ such that \begin{align*} &-[\underline{a}_i\underline{b}_i -\lambda]\xi_{i}+ \sum_{j=1}^{2}|c _{ij}(t)|\overline{a_i}e^{\lambda \tau}\tilde{L}_{j}\xi_{j}+ \sum_{j=1}^{2}|d _{ij}(t) |\overline{a_i}\int_{0}^{\infty}|K_{ij}(u) |e^{\lambda u}du L_{j}\xi_{j}\\ &<-\eta<0, \quad i=1, 2, t>T_{0}, \end{align*} which implies that \eqref{e3.1} satisfies (H1)--(H5). Hence, from Theorem \ref{thm2.1}, all solutions of system \eqref{e3.1} converge exponentially to the zero point $(0, 0, \dots, 0)^{T}$. \begin{remark} \label{rmk3.1} \rm Since $f_{1}(x)=f_{2}(x) =g_{1}(x)=g_{2}(x)=x\sin x $ and \eqref{e3.1} is a very simple form of delayed Cohen-Grossberg neural network with time-varying coefficients. It is clear that the conditions (H0) and (H0*) are not satisfied. Therefore, the results in the references of this article are not applicable for proving that the solutions to \eqref{e3.1} converge exponentially to the zero. This implies that the results of this paper are essentially new. \end{remark} \begin{thebibliography}{00} \bibitem{c1} J. Cao; \emph{Global stability analysis in delayed cellular neural networks}, Phys. Rev. E, 59(1999) 5940-5944. \bibitem{c2} J. Cao, J. Liang; \emph{Boundedness and stability for Cohen-Grossberg neural networks with time-varing delays}, J. Math. Anal. Appl., 296(2004) 665-685. \bibitem{c3} M. Cohen, S. Grossberg; \emph{Absolute stability and global pattern formation and parallel memory storage by competiticve neural networks}, IEEE Trans. Man Cybernet., SMC, 13(1983) 815-826. \bibitem{c5} T. Chen, L. Rong; \emph{Delay-independent stability analysis of Cohen-Grossberg neural networks}, Physics Letters A, 317(2003) 436-449. \bibitem{c6} Chun-Hsien Li and Suh-Yuh Yang; \emph{A further analysis on harmless delays in Cohen-Grossberg neural networks}, Chaos, Solutions and Fractals, 34(2007) 646-653. \bibitem{g1} K. Gopalsamy, X. Z. He; \emph{Delay-independent stability in bidirection associative memory networks}, IEEE Trans. Neural Networks, 5(1994) 998-1002. \bibitem{g2} S. Guo, L. Huang; \emph{Stability analysis of a delayed Hopfield neural network}, Physical Review E, 67 (2003) 061902. \bibitem{l1} X. Li, L. Huang, H. Zhu; \emph{Global stability of cellular neural networks with constant and variable delays}, Nonlinear Anal., 53(2003) 319-333. \bibitem{l2} X. Liao, C. Li and K. Wong; \emph{Criteria for exponential stability of Cohen-Grossberg neural networks}, Neural Networks, 17(2004) 1401-1414. \bibitem{l3} Bingwen Liu, Lihong Huang; \emph{Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with time-varying delays}, Chaos, Solitons and Fractals 32 (2007) 617-627. \bibitem{l4} Fei Long, Yixuan Wang, Shuzi Zhou; \emph{Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with bounded and unbounded delays}, Nonlinear Analysis: Real World Applications 8 (2007) 797- 810. \bibitem{w1} L. Wang, X. Zou; \emph{Harmless delays in Cohen-Grossberg neural networks}, Physics D, 170 (2002) 162-173. \bibitem{w2} L. Wang; \emph{Stability of Cohen-Grossberg neural networks with distributed delays}, Appl. Math. Comput., 160(2005) 93-110. \bibitem{w3} L. Wang, X. Zou; \emph{Exponential stability of Cohen-Grossberg neural networks}, Neural Networks, 15 (2002) 415-422. \bibitem{y1} Zhaohui Yuan, Dewen Hua, Lihong Huang, Guohua Dong; \emph{Existence and global expo- nential stability of periodic solution for CohenGrossberg neural networks with delays}, Nonlinear Analysis: Real World Applications 7 (2006) 572-590. \bibitem{z1} Weirui Zhao; \emph{Dynamics of Cohen-Grossberg neural network with variable coefficients and time-varying delays}, Nonlinear Analysis: Real World Applications, In Press, Corrected Proof, Available online 23 February 2007. \bibitem{z2} Fuxing Zhang, Bingwen Liu, Lihong Huang; \emph{Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with bounded and unbounded delays}, Computers and Mathematics with Applications 53 (2007) 1325-1338. \end{thebibliography} \end{document}