\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{ Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 74, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/74\hfil Positive solutions] {Positive solutions for systems of nonlinear singular differential equations} \author[Y. Yuan, C. Zhao, Y. Liu\hfil EJDE-2008/74\hfilneg] {Yanyan Yuan, Chenglong Zhao, Yansheng Liu} % not in alphabetical order \address{Yanyan Yuan\newline Institute of Systems Science, Chinese Academy of Sciences, Beijing 100190, China} \email{yyyuan@amss.ac.cn} \address{Chenglong Zhao \newline Department of Mathematics and Physics, Jinan Engineering Vocational Technical College, Jinan 250014, China} \email{chlzhao666@126.com} \address{Yansheng Liu \newline Department of Mathematics, Shandong Normal University, Jinan 250014, China} \email{ysliu6668@sohu.com} \thanks{Submitted January 16, 2008. Published May 21, 2008.} \thanks{Supported by grants 10571111 from the NNSF of China, and Y2006A22 from China \hfill\break\indent Scholarship Council and Natural Science Foundation of Shandong Province} \subjclass[2000]{34B16} \keywords{Singular boundary value problem; cone; positive Solution} \begin{abstract} By constructing a special cone and using the fixed point theorem of cone expansion and compression, this paper shows the existence of positive solutions for two-point boundary-value problems of nonlinear singular differential systems. To illustrate the applications of our main results, some examples are given. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Recently, singular boundary value problems (SBVP for short) have been studied extensively (see \cite{g1,l2,l3,o1,s1,w1,w2,z1,z2} and references therein). Under the superlinear effect, Wei and Zhang \cite{w2} obtained necessary and sufficient conditions for the existence of $C^2[0,1]$ and $C^3[0,1]$ positive solutions for fourth-order singular boundary value problems by using the fixed point theorem of cone expansion and compression. Under the sublinear effect, Wei \cite{w1} obtained necessary and sufficient conditions for the existence of positive solutions for fourth-order singular boundary value problems by using the upper and lower solution method and the maximal principal. However, in this paper, we will investigate the existence of positive solutions of second and fourth order singular boundary value problems of nonlinear singular differential systems. We obtain necessary and sufficient conditions for the existence of $C^2[0,1]\times C[0,1]$ and $C^3[0,1]\times C^1[0,1]$ positive solutions for the coupled systems. Two examples are given to show the applications of our results. In this article, we investigate the boundary-value problem \begin{equation} \begin{gathered} u^{(4)}=f(t,u,v);\\ -v''=g(t,u,v);\\ u(0)=u(1)=u''(0)=u''(1)=0;\\ v(0)=v(1)=0, \end{gathered} \label{e1.1} \end{equation} where $t\in (0,1), f, g\in C[(0,1)\times [0,\infty)\times [0,\infty),[0,\infty)]$; that is, $f, g$ may be singular at $t=0$ and $t=1$. Let \begin{align*} E=\big\{&(u,v)\in C^2[0,1]\times C[0,1]: u(0)=u(1)=u''(0)=u''(1)=0, \\ & v(0)=v(1)=0\big\} , \end{align*} with the norm $\|(u,v)\|=\|u\|_2+\|v\|_0$, where $ \|u\|_2=\max_{t\in J}|u''(t)|$, $ \|v\|_0=\max_{t \in J}|v(t)|$, $J=[0,1]$. Then $(E,\|\cdot\|)$ is a Banach space. In this paper, $E$ will be the basic space to study \eqref{e1.1}. Define \begin{align*} P=\Big\{&(u,v)\in E:v(t)\geq t(1-t)v(s),\, u(t)\geq t(1-t)u(s),\\ & u(t)\geq -t(1-t)u''(s)/30,\, u''(t)\leq t(1-t) u''(s)\leq 0 \text{ and}\\ &u(t), v(t) \text{ are nonnegative concave functions, for all $t,s \in J$}\Big\}. \end{align*} It is easy to see that $P$ is a cone of $E$. A pair $(u,v)$ is said to be a $C^2[0,1]\times C[0,1]$ positive solution of \eqref{e1.1} if $u\in C^2[0,1]\cap C^{(4)}(0,1)$, $ v\in C[0,1]\cap C^2(0,1)$ satisfy \eqref{e1.1} and $u(t)>0$, $u''(t)\leq0$, $v(t)>0 $ for $ t\in(0,1)$. In addition, if $(u,v)$ is a $C^2[0,1]\times C[0,1]$ positive solution of \eqref{e1.1} and both $u'''(0^+)$, $u'''(1^-)$, $v'(0^+)$ and $v'(1^-)$ exist, then $(u,v)$ is said to be a $C^3[0,1]\times C^1[0,1]$ positive solution of \eqref{e1.1}. Now, we state a lemma which will be used in Section 2. \begin{lemma}[\cite{g1}] \label{lem1.1} Let $P$ be a cone of real Banach space $E$, $\Omega_1$, $\Omega_2$ be bounded open sets of $E$, and $\theta$ be in $\overline{\Omega}_1\subset\Omega_2$. Suppose that $A:P\cap(\overline{\Omega}_2\setminus\Omega_1)\to P$ is completely continuous such that one of the following two conditions is satisfied: \begin{itemize} \item[(i)] $\|Ax\|\leq\|x\|$ for $x\in P\cap\partial\Omega_1$; $\|Ax\|\geq\|x\|$ for $x\in P\cap\partial\Omega_2$. \item[(ii)] $\|Ax\|\leq\|x\|$ for $x\in P\cap\partial\Omega_2$; $\|Ax\|\geq\|x\|$ for $x\in P\cap\partial\Omega_1$. \end{itemize} Then, $A$ has a fixed point in $P\cap(\overline{\Omega}_2\setminus\Omega_1)$. \end{lemma} \section{Main Results} Let us list some conditions to be used later. \begin{itemize} \item[(H1)] $ g\in C[(0,1)\times [0,\infty)\times [0,\infty),[0,\infty)]$ and satisfy $$ \int_0^1 t(1-t)f(t,t(1-t),1)dt<\infty,\quad \int_0^1 t(1-t)g(t,t(1-t),1)dt<\infty . $$ \item[(H2)] $$ \int_0^1 f(t,t(1-t),t(1-t))dt<\infty ,\quad \int_0^1 g(t,t(1-t),t(1-t))dt<\infty. $$ \item[(H3)] $f$ is quasi-homogeneous with respect to the last two variables, that is, there are constants $\lambda_1, \mu_1, \alpha _1, \beta_1, N_1, M_1, N_2, M_2$ with $0\leq\lambda_1\leq\mu_1<+\infty$, $0\leq \alpha _1\leq \beta_1\leq1$, $\mu_1+\beta_1<1$, $ 0< N_1\leq1\leq M_1$, $0< N_2\leq1\leq M_2$ such that for all $00$ such that $\|(u,v)\| \leq M$ for any $ (u,v)\in V$. It follows from $u(t)=\int_0^1 G(t,s)(-u''(s))ds$ that $u(t)\leq \frac{1}{2}t(1-t)\|u\|_2$. On the other hand, it follows from $u(t)\geq t(1-t)u(s)$, for all $t,s\in J$ that $u(t)\geq t(1-t)\|u\|_0$. Hence \begin{equation} t(1-t)\|u\|_0\leq u(t)\leq \frac{1}{2}t(1-t)\|u\|_2, \quad t\in J.\label{e2.2} \end{equation} Choose positive numbers $c_1\geq \max \{M_1,\frac{M}{2N_1}\}$ and $ c_2\geq \max\{M_2, \frac{M}{N_2} \}$. For any $(u,v)\in V$, $t\in J$, we can get \begin{align*} |( A_1(u,v))''(t)| &= \int_0^1 G(t,s)f(s,u(s),v(s))ds \\ &\leq \int_0^1 s(1-s) f(s,c_1\frac {u(s)}{c_1s(1-s)}s(1-s), c_2\frac{v(s)}{c_2})ds\\ &\leq c_1^{\mu_1}c_2^{\beta_1}\int_0^1 (\frac{u(s)}{c_1s(1-s)})^{\lambda_1} (\frac{v(s)}{c_2})^{\alpha_1}s(1-s) f(s,s(1-s),1)ds\\ &\leq c_1^{\mu_1}(\frac{1}{2c_1})^{\lambda_1}{\|u\|_2}^{\lambda_1} c_2^{\beta_1}\|v\|_0^ {\alpha_1}c_2^{-\alpha_1}\int_0^1 s(1-s) f(s,s(1-s),1)ds\\ &\leq 2^{-\lambda_1} c_1^{\mu_1-\lambda_1}c_2^{\beta_1-\alpha_1} M^{\lambda_1+\alpha_1}\int_0^1 s(1-s) f(s,s(1-s),1)ds<+\infty. \end{align*} Let $c_3\geq\max\{M_3,\frac{M}{2N_3}\}$ and $ c_4\geq \max\{M_4,\frac{M}{N_4} \}$. For any $(u,v)\in V$, $t\in J$, we have \begin{align*}|A_2(u,v)(t)| &= \int_0^1 G(t,s)g(s,u(s),v(s))ds \\ &\leq \int_0^1 s(1-s)g(s, c_3\frac {u(s)}{c_3s(1-s)}s(1-s), c_4\frac{v(s)}{c_4})ds\\ &\leq 2^{-\lambda_2} c_3^{\mu_2-\lambda_2}c_4^{\beta_2-\alpha_2} M^{\lambda_2+\alpha_2}\int_0^1 s(1-s) g(s,s(1-s),1)ds<+\infty. \end{align*} Consequently, $A$ is bounded on $P$. Thirdly, we show that $AV$ is equicontinuous for arbitrary bounded set $V \subset P $. Choose positive numbers $c_1\geq\max \{M_1,\frac{M}{2N_1}\}$, $c_2\geq \max\{M_2, \frac{M}{N_2} \}$, it follows from $$ A_1(u,v)(t)=\int_0^1 G(t,s)\int_0^1 G(s,\tau)f(\tau,u(\tau),v(\tau)) d\tau ds $$ that \begin{align*} ( A_1(u,v))''(t) &= -\int_0^1 G(t,s)f(s,u(s),v(s))ds\\ &= -\int_{0}^{t}s(1-t)f(s,u(s),v(s))ds-\int_{t}^{1} t(1-s) f(s,u(s),v(s))ds , \end{align*} \begin{align*} ( A_1(u,v))'''(t) &= \int_{0}^{t}sf(s,u(s),v(s))ds- \int_{t}^{1}(1-s)f(s,u(s),v(s))ds\\ &\leq \int_{0}^{t} sf(s,u(s),v(s))ds+\int_{t}^{1}(1-s)f(s,u(s),v(s))ds\\ &\leq c_0\Big(\int_{0}^{t}sf(s,s(1-s),1)ds+ \int_{t}^{1}(1-s)f(s,s(1-s),1)ds\Big), \end{align*} where $c_0=2^{-\lambda_1}c_1^{\mu_1-\lambda_1}c_2^{\beta_1-\alpha_1}M^{\lambda_1+\alpha_1}$. Assume $$ H(t)= c_0\Big(\int_{0}^{t}sf(s,s(1-s),1)ds+ \int_{t}^{1}(1-s)f(s,s(1-s),1)ds\Big). $$ So we can obtain \begin{equation} \begin{aligned} \int_0^1 H(t)dt &= c_0\Big(\int_0^1 dt \int_{0}^{t}sf(s,s(1-s),1)ds\\ &\quad +\int_0^1 dt\int_{t}^{1}(1-s)f(s,s(1-s),1)ds\Big) \\ &= 2c_0\int_0^1 s(1-s)f(s,s(1-s),1)ds<+\infty. \end{aligned} \label{e2.3} \end{equation} Thus for any given $t_1,t_2\in J$ with $t_1\leq t_2$ and all $(u,v)\in V$, we obtain \[ \| (A_1(u,v))''(t_2)-(A_1(u,v))''(t_1)\| =|\int_{t_1}^{t_2}A_1(u,v))'''(t) dt|\leq \int_{t_1}^{t_2}H(t)dt. %\label{e2.4} \] From this inequality, \eqref{e2.3} and the absolute continuity of integral, it follows that $A_1V$ is equicontinuous on $J$. On the other hand \begin{align*}| (A_2(u,v))'(t)| &=-\int_{0}^{t}s g(s,u(s),v(s))ds+ \int_{t}^{1}(1-s)g(s,u(s),v(s))ds\\ &\leq \int_{0}^{t} s g(s,u(s),v(s))d s+ \int_{t}^{1}(1-s)g(s,u(s),v(s))ds \end{align*} Let $G(t)= \int_{0}^{t} s g(s,u(s),v(s))d s+ \int_{t}^{1}(1-s)g(s,u(s),v(s))ds, c_3\geq\max \{M_3,\frac{M}{2N_3}\}$ and $ c_4\geq \max\{M_4, \frac{M}{N_4}\}$, then \begin{equation} \begin{aligned} \int_0^1 G(t)dt &= 2\int_0^1 s(1-s) g(s,u(s),v(s))d s \\ &\leq 2^{1-\lambda_2} c_3^{\mu_2-\lambda_2}c_4^{\beta_2-\alpha_2} M^{\lambda_2+\alpha_2}\int_0^1 s(1-s) g(s,s(1-s),1)ds<+\infty. \end{aligned} \label{e2.5} \end{equation} Thus for any given $t_1,t_2\in J$ with $t_1\leq t_2$ and all $(u,v)\in V$, we obtain \[ \| A_2(u,v)(t_2)-A_2(u,v)(t_1)\| =\big|\int_{t_1}^{t_2}(A_2(u,v))'(t) dt\big|\leq \int_{t_1}^{t_2}G(t)dt. %\label{e2.6} \] From this inequality, \eqref{e2.5}, and the absolute continuity of integral, it follows that $A_2V$ is equicontinuous on $J$. Therefore $AV$ are equicontinuous on $J$. It follows from the Ascoli-Arzela theorem that $A_1V$ and $A_2V$ is relatively compact. Finally, we show that $A:P\to P$ is a continuous operator. Notice that $A$ is continuous on $C^2[0,1]\times C[0,1]$ if and only if $A_1$ is continuous on $C^2[0,1]$ and $A_2$ is continuous on $C[0,1]$. Suppose $\{(u_n,v_n)\}\subset P, (u,v) \in P$ and $\|u_n-u\|_2\to 0$, $\| v_n-v\|_0\to 0$ as $n\to\infty$. It follows from \eqref{e2.2} that $\|u\|_0\leq\frac{1}{2}\|u\|_2$. So we can get $\|u_n-u\|_0\to0(n\to\infty)$ from $\|u_n-u\|_2\to0(n\to\infty)$. Then $u_n(t)\to u(t)$ and $v_n(t)\to v(t)$ as $n\to\infty$ uniformly with respect to $t\in J$. Therefore \begin{align*} &| (A_1(u_n,v_n))''(t)- (A_1(u,v))''(t)|\\ &= \big|\int_0^1 G(t,s)f(s,u_n(s),v_n(s))ds-\int_0^1 G(t,s)f(s,u(s),v(s))ds\big| \\ &\leq \int_0^1 G(t,s)\big|f(s,u_n(s),v_n(s))- f(s,u(s),v(s))\big|ds. \end{align*} From (H1), (H3) and the Lebesgue dominated convergence theorem, it follows that $$ |( A_1(u_n,v_n))''(t)- ( A_1(u,v))''(t)|\to0 \quad \text{as } n\to\infty. $$ Hence one can conclude that $$ \|A_1(u_n,v_n)- A_1(u,v)\|_2\to0 \quad \text{as } n\to\infty. $$ In fact, if this is not true, then there exist $\epsilon_0$ and $\{u_{n_i}\}\subset\{u_n\}, \{v_{n_i}\}\subset\{v_n\}$ such that $\| A_1(u_{n_i},v_{n_i})- A_1(u,v)\|_2 \geq\epsilon_0$ ($i=1,2\dots$). Since $ \{ A_1(u_n,v_n)\}$ is relatively compact, there exists a sequence of $ \{ A_1(u_n,v_n)\}$ which convergence in $C^2[0,1]$ to some $y$. Not loss of generality, we may assume that $\{A_1(u_{n_i},v_{n_i})\}$ itself converge to $y$, then $y=A_1(u,v)$. This is a contradiction. Consequently $A_1$ is continuous. In the same way, we can get $A_2$ is continuous, too. This completes the proof. \end{proof} \begin{lemma}[\cite{l1}] \label{lem2.3} Suppose $(u,v)\in P$ and $\mu \in (0, \frac{1}{2})$. Then $u(t)+v(t)\geq\mu(1-\mu)(\|u\|_0+\|v\|_0), t\in [\mu, 1-\mu]$. \end{lemma} The proof of the above lemma is obvious; we omit it. In the following we prove Theorem \ref{thm2.1}. \begin{proof} \textbf{Sufficiency.} From Lemma \ref{lem2.3}, we can choose $\mu=\frac{1}{4}$. Then $u(t)+v(t)\geq\frac{3}{16}(\|u\|_0+\|v\|_0), t\in [\frac{1}{4}, \frac{3}{4}]$. First of all, we prove \begin{equation} \|A(u,v)\|\geq\|(u,v)\|, \quad \forall (u,v)\in \partial P_r,\label{e2.7} \end{equation} where $P_r=\big\{\|(u,v)\|0$, $v(t)>0$, for all $t\in (0,1)$. \smallskip \noindent\textbf{Necessity.} Let $u\in C^2[0,1]\cap C^{(4)}(0,1), v\in C[0,1]\cap C^2(0,1)$ be a positive solution of \eqref{e1.1}. It follows from $u(0)=u(1)=0$ and $ u''(t)\leq0$ for $t\in J$ that there exist $0